forked from OSchip/llvm-project
828 lines
31 KiB
C++
828 lines
31 KiB
C++
//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns chains of integer comparisons into memcmp (the memcmp is
|
|
// later typically inlined as a chain of efficient hardware comparisons). This
|
|
// typically benefits c++ member or nonmember operator==().
|
|
//
|
|
// The basic idea is to replace a larger chain of integer comparisons loaded
|
|
// from contiguous memory locations into a smaller chain of such integer
|
|
// comparisons. Benefits are double:
|
|
// - There are less jumps, and therefore less opportunities for mispredictions
|
|
// and I-cache misses.
|
|
// - Code size is smaller, both because jumps are removed and because the
|
|
// encoding of a 2*n byte compare is smaller than that of two n-byte
|
|
// compares.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
#define DEBUG_TYPE "mergeicmps"
|
|
|
|
// Returns true if the instruction is a simple load or a simple store
|
|
static bool isSimpleLoadOrStore(const Instruction *I) {
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
return LI->isSimple();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->isSimple();
|
|
return false;
|
|
}
|
|
|
|
// A BCE atom.
|
|
struct BCEAtom {
|
|
BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
|
|
|
|
const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
|
|
|
|
bool operator<(const BCEAtom &O) const {
|
|
assert(Base() && "invalid atom");
|
|
assert(O.Base() && "invalid atom");
|
|
// Just ordering by (Base(), Offset) is sufficient. However because this
|
|
// means that the ordering will depend on the addresses of the base
|
|
// values, which are not reproducible from run to run. To guarantee
|
|
// stability, we use the names of the values if they exist; we sort by:
|
|
// (Base.getName(), Base(), Offset).
|
|
const int NameCmp = Base()->getName().compare(O.Base()->getName());
|
|
if (NameCmp == 0) {
|
|
if (Base() == O.Base()) {
|
|
return Offset.slt(O.Offset);
|
|
}
|
|
return Base() < O.Base();
|
|
}
|
|
return NameCmp < 0;
|
|
}
|
|
|
|
GetElementPtrInst *GEP;
|
|
LoadInst *LoadI;
|
|
APInt Offset;
|
|
};
|
|
|
|
// If this value is a load from a constant offset w.r.t. a base address, and
|
|
// there are no other users of the load or address, returns the base address and
|
|
// the offset.
|
|
BCEAtom visitICmpLoadOperand(Value *const Val) {
|
|
BCEAtom Result;
|
|
if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
|
|
LLVM_DEBUG(dbgs() << "load\n");
|
|
if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
// Do not optimize atomic loads to non-atomic memcmp
|
|
if (!LoadI->isSimple()) {
|
|
LLVM_DEBUG(dbgs() << "volatile or atomic\n");
|
|
return {};
|
|
}
|
|
Value *const Addr = LoadI->getOperand(0);
|
|
if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
|
|
LLVM_DEBUG(dbgs() << "GEP\n");
|
|
if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
|
|
LLVM_DEBUG(dbgs() << "used outside of block\n");
|
|
return {};
|
|
}
|
|
const auto &DL = GEP->getModule()->getDataLayout();
|
|
if (!isDereferenceablePointer(GEP, DL)) {
|
|
LLVM_DEBUG(dbgs() << "not dereferenceable\n");
|
|
// We need to make sure that we can do comparison in any order, so we
|
|
// require memory to be unconditionnally dereferencable.
|
|
return {};
|
|
}
|
|
Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
|
|
if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
|
|
Result.GEP = GEP;
|
|
Result.LoadI = LoadI;
|
|
}
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// A basic block with a comparison between two BCE atoms.
|
|
// The block might do extra work besides the atom comparison, in which case
|
|
// doesOtherWork() returns true. Under some conditions, the block can be
|
|
// split into the atom comparison part and the "other work" part
|
|
// (see canSplit()).
|
|
// Note: the terminology is misleading: the comparison is symmetric, so there
|
|
// is no real {l/r}hs. What we want though is to have the same base on the
|
|
// left (resp. right), so that we can detect consecutive loads. To ensure this
|
|
// we put the smallest atom on the left.
|
|
class BCECmpBlock {
|
|
public:
|
|
BCECmpBlock() {}
|
|
|
|
BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
|
|
: Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
|
|
if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
|
|
}
|
|
|
|
bool IsValid() const {
|
|
return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
|
|
}
|
|
|
|
// Assert the block is consistent: If valid, it should also have
|
|
// non-null members besides Lhs_ and Rhs_.
|
|
void AssertConsistent() const {
|
|
if (IsValid()) {
|
|
assert(BB);
|
|
assert(CmpI);
|
|
assert(BranchI);
|
|
}
|
|
}
|
|
|
|
const BCEAtom &Lhs() const { return Lhs_; }
|
|
const BCEAtom &Rhs() const { return Rhs_; }
|
|
int SizeBits() const { return SizeBits_; }
|
|
|
|
// Returns true if the block does other works besides comparison.
|
|
bool doesOtherWork() const;
|
|
|
|
// Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
|
|
// instructions in the block.
|
|
bool canSplit(AliasAnalysis *AA) const;
|
|
|
|
// Return true if this all the relevant instructions in the BCE-cmp-block can
|
|
// be sunk below this instruction. By doing this, we know we can separate the
|
|
// BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
|
|
// block.
|
|
bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
|
|
AliasAnalysis *AA) const;
|
|
|
|
// We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
|
|
// instructions. Split the old block and move all non-BCE-cmp-insts into the
|
|
// new parent block.
|
|
void split(BasicBlock *NewParent, AliasAnalysis *AA) const;
|
|
|
|
// The basic block where this comparison happens.
|
|
BasicBlock *BB = nullptr;
|
|
// The ICMP for this comparison.
|
|
ICmpInst *CmpI = nullptr;
|
|
// The terminating branch.
|
|
BranchInst *BranchI = nullptr;
|
|
// The block requires splitting.
|
|
bool RequireSplit = false;
|
|
|
|
private:
|
|
BCEAtom Lhs_;
|
|
BCEAtom Rhs_;
|
|
int SizeBits_ = 0;
|
|
};
|
|
|
|
bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
|
|
DenseSet<Instruction *> &BlockInsts,
|
|
AliasAnalysis *AA) const {
|
|
// If this instruction has side effects and its in middle of the BCE cmp block
|
|
// instructions, then bail for now.
|
|
if (Inst->mayHaveSideEffects()) {
|
|
// Bail if this is not a simple load or store
|
|
if (!isSimpleLoadOrStore(Inst))
|
|
return false;
|
|
// Disallow stores that might alias the BCE operands
|
|
MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
|
|
MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
|
|
if (isModSet(AA->getModRefInfo(Inst, LLoc)) ||
|
|
isModSet(AA->getModRefInfo(Inst, RLoc)))
|
|
return false;
|
|
}
|
|
// Make sure this instruction does not use any of the BCE cmp block
|
|
// instructions as operand.
|
|
for (auto BI : BlockInsts) {
|
|
if (is_contained(Inst->operands(), BI))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis *AA) const {
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
llvm::SmallVector<Instruction *, 4> OtherInsts;
|
|
for (Instruction &Inst : *BB) {
|
|
if (BlockInsts.count(&Inst))
|
|
continue;
|
|
assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
|
|
"Split unsplittable block");
|
|
// This is a non-BCE-cmp-block instruction. And it can be separated
|
|
// from the BCE-cmp-block instruction.
|
|
OtherInsts.push_back(&Inst);
|
|
}
|
|
|
|
// Do the actual spliting.
|
|
for (Instruction *Inst : reverse(OtherInsts)) {
|
|
Inst->moveBefore(&*NewParent->begin());
|
|
}
|
|
}
|
|
|
|
bool BCECmpBlock::canSplit(AliasAnalysis *AA) const {
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
for (Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst)) {
|
|
if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BCECmpBlock::doesOtherWork() const {
|
|
AssertConsistent();
|
|
// All the instructions we care about in the BCE cmp block.
|
|
DenseSet<Instruction *> BlockInsts(
|
|
{Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
|
|
// TODO(courbet): Can we allow some other things ? This is very conservative.
|
|
// We might be able to get away with anything does not have any side
|
|
// effects outside of the basic block.
|
|
// Note: The GEPs and/or loads are not necessarily in the same block.
|
|
for (const Instruction &Inst : *BB) {
|
|
if (!BlockInsts.count(&Inst))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Visit the given comparison. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
BCECmpBlock visitICmp(const ICmpInst *const CmpI,
|
|
const ICmpInst::Predicate ExpectedPredicate) {
|
|
// The comparison can only be used once:
|
|
// - For intermediate blocks, as a branch condition.
|
|
// - For the final block, as an incoming value for the Phi.
|
|
// If there are any other uses of the comparison, we cannot merge it with
|
|
// other comparisons as we would create an orphan use of the value.
|
|
if (!CmpI->hasOneUse()) {
|
|
LLVM_DEBUG(dbgs() << "cmp has several uses\n");
|
|
return {};
|
|
}
|
|
if (CmpI->getPredicate() == ExpectedPredicate) {
|
|
LLVM_DEBUG(dbgs() << "cmp "
|
|
<< (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
|
|
<< "\n");
|
|
auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
|
|
if (!Lhs.Base()) return {};
|
|
auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
|
|
if (!Rhs.Base()) return {};
|
|
const auto &DL = CmpI->getModule()->getDataLayout();
|
|
return BCECmpBlock(std::move(Lhs), std::move(Rhs),
|
|
DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// Visit the given comparison block. If this is a comparison between two valid
|
|
// BCE atoms, returns the comparison.
|
|
BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
|
|
const BasicBlock *const PhiBlock) {
|
|
if (Block->empty()) return {};
|
|
auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
|
|
if (!BranchI) return {};
|
|
LLVM_DEBUG(dbgs() << "branch\n");
|
|
if (BranchI->isUnconditional()) {
|
|
// In this case, we expect an incoming value which is the result of the
|
|
// comparison. This is the last link in the chain of comparisons (note
|
|
// that this does not mean that this is the last incoming value, blocks
|
|
// can be reordered).
|
|
auto *const CmpI = dyn_cast<ICmpInst>(Val);
|
|
if (!CmpI) return {};
|
|
LLVM_DEBUG(dbgs() << "icmp\n");
|
|
auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
|
|
Result.CmpI = CmpI;
|
|
Result.BranchI = BranchI;
|
|
return Result;
|
|
} else {
|
|
// In this case, we expect a constant incoming value (the comparison is
|
|
// chained).
|
|
const auto *const Const = dyn_cast<ConstantInt>(Val);
|
|
LLVM_DEBUG(dbgs() << "const\n");
|
|
if (!Const->isZero()) return {};
|
|
LLVM_DEBUG(dbgs() << "false\n");
|
|
auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
|
|
if (!CmpI) return {};
|
|
LLVM_DEBUG(dbgs() << "icmp\n");
|
|
assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
|
|
BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
|
|
auto Result = visitICmp(
|
|
CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
|
|
Result.CmpI = CmpI;
|
|
Result.BranchI = BranchI;
|
|
return Result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
|
|
BCECmpBlock &Comparison) {
|
|
LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
|
|
<< "': Found cmp of " << Comparison.SizeBits()
|
|
<< " bits between " << Comparison.Lhs().Base() << " + "
|
|
<< Comparison.Lhs().Offset << " and "
|
|
<< Comparison.Rhs().Base() << " + "
|
|
<< Comparison.Rhs().Offset << "\n");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
Comparisons.push_back(Comparison);
|
|
}
|
|
|
|
// A chain of comparisons.
|
|
class BCECmpChain {
|
|
public:
|
|
BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis *AA);
|
|
|
|
int size() const { return Comparisons_.size(); }
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void dump() const;
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
bool simplify(const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
|
|
|
|
private:
|
|
static bool IsContiguous(const BCECmpBlock &First,
|
|
const BCECmpBlock &Second) {
|
|
return First.Lhs().Base() == Second.Lhs().Base() &&
|
|
First.Rhs().Base() == Second.Rhs().Base() &&
|
|
First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
|
|
First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
|
|
}
|
|
|
|
// Merges the given comparison blocks into one memcmp block and update
|
|
// branches. Comparisons are assumed to be continguous. If NextBBInChain is
|
|
// null, the merged block will link to the phi block.
|
|
void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
|
|
BasicBlock *const NextBBInChain, PHINode &Phi,
|
|
const TargetLibraryInfo *const TLI, AliasAnalysis *AA);
|
|
|
|
PHINode &Phi_;
|
|
std::vector<BCECmpBlock> Comparisons_;
|
|
// The original entry block (before sorting);
|
|
BasicBlock *EntryBlock_;
|
|
};
|
|
|
|
BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
|
|
AliasAnalysis *AA)
|
|
: Phi_(Phi) {
|
|
assert(!Blocks.empty() && "a chain should have at least one block");
|
|
// Now look inside blocks to check for BCE comparisons.
|
|
std::vector<BCECmpBlock> Comparisons;
|
|
for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
|
|
BasicBlock *const Block = Blocks[BlockIdx];
|
|
assert(Block && "invalid block");
|
|
BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
|
|
Block, Phi.getParent());
|
|
Comparison.BB = Block;
|
|
if (!Comparison.IsValid()) {
|
|
LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
|
|
return;
|
|
}
|
|
if (Comparison.doesOtherWork()) {
|
|
LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
|
|
<< "' does extra work besides compare\n");
|
|
if (Comparisons.empty()) {
|
|
// This is the initial block in the chain, in case this block does other
|
|
// work, we can try to split the block and move the irrelevant
|
|
// instructions to the predecessor.
|
|
//
|
|
// If this is not the initial block in the chain, splitting it wont
|
|
// work.
|
|
//
|
|
// As once split, there will still be instructions before the BCE cmp
|
|
// instructions that do other work in program order, i.e. within the
|
|
// chain before sorting. Unless we can abort the chain at this point
|
|
// and start anew.
|
|
//
|
|
// NOTE: we only handle block with single predecessor for now.
|
|
if (Comparison.canSplit(AA)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Split initial block '" << Comparison.BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
Comparison.RequireSplit = true;
|
|
enqueueBlock(Comparisons, Comparison);
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ignoring initial block '" << Comparison.BB->getName()
|
|
<< "' that does extra work besides compare\n");
|
|
}
|
|
continue;
|
|
}
|
|
// TODO(courbet): Right now we abort the whole chain. We could be
|
|
// merging only the blocks that don't do other work and resume the
|
|
// chain from there. For example:
|
|
// if (a[0] == b[0]) { // bb1
|
|
// if (a[1] == b[1]) { // bb2
|
|
// some_value = 3; //bb3
|
|
// if (a[2] == b[2]) { //bb3
|
|
// do a ton of stuff //bb4
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// This is:
|
|
//
|
|
// bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// We can only merge the first two comparisons, because bb3* does
|
|
// "other work" (setting some_value to 3).
|
|
// We could still merge bb1 and bb2 though.
|
|
return;
|
|
}
|
|
enqueueBlock(Comparisons, Comparison);
|
|
}
|
|
|
|
// It is possible we have no suitable comparison to merge.
|
|
if (Comparisons.empty()) {
|
|
LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
|
|
return;
|
|
}
|
|
EntryBlock_ = Comparisons[0].BB;
|
|
Comparisons_ = std::move(Comparisons);
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "BEFORE REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
// Reorder blocks by LHS. We can do that without changing the
|
|
// semantics because we are only accessing dereferencable memory.
|
|
llvm::sort(Comparisons_, [](const BCECmpBlock &a, const BCECmpBlock &b) {
|
|
return a.Lhs() < b.Lhs();
|
|
});
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
errs() << "AFTER REORDERING:\n\n";
|
|
dump();
|
|
#endif // MERGEICMPS_DOT_ON
|
|
}
|
|
|
|
#ifdef MERGEICMPS_DOT_ON
|
|
void BCECmpChain::dump() const {
|
|
errs() << "digraph dag {\n";
|
|
errs() << " graph [bgcolor=transparent];\n";
|
|
errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
|
|
errs() << " edge [color=black];\n";
|
|
for (size_t I = 0; I < Comparisons_.size(); ++I) {
|
|
const auto &Comparison = Comparisons_[I];
|
|
errs() << " \"" << I << "\" [label=\"%"
|
|
<< Comparison.Lhs().Base()->getName() << " + "
|
|
<< Comparison.Lhs().Offset << " == %"
|
|
<< Comparison.Rhs().Base()->getName() << " + "
|
|
<< Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
|
|
<< " bytes)\"];\n";
|
|
const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
|
|
if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
|
|
errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
|
|
}
|
|
errs() << " \"Phi\" [label=\"Phi\"];\n";
|
|
errs() << "}\n\n";
|
|
}
|
|
#endif // MERGEICMPS_DOT_ON
|
|
|
|
bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI,
|
|
AliasAnalysis *AA) {
|
|
// First pass to check if there is at least one merge. If not, we don't do
|
|
// anything and we keep analysis passes intact.
|
|
{
|
|
bool AtLeastOneMerged = false;
|
|
for (size_t I = 1; I < Comparisons_.size(); ++I) {
|
|
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
|
|
AtLeastOneMerged = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!AtLeastOneMerged) return false;
|
|
}
|
|
|
|
// Remove phi references to comparison blocks, they will be rebuilt as we
|
|
// merge the blocks.
|
|
for (const auto &Comparison : Comparisons_) {
|
|
Phi_.removeIncomingValue(Comparison.BB, false);
|
|
}
|
|
|
|
// If entry block is part of the chain, we need to make the first block
|
|
// of the chain the new entry block of the function.
|
|
BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock();
|
|
for (size_t I = 1; I < Comparisons_.size(); ++I) {
|
|
if (Entry == Comparisons_[I].BB) {
|
|
BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "",
|
|
Entry->getParent(), Entry);
|
|
BranchInst::Create(Entry, NEntryBB);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Point the predecessors of the chain to the first comparison block (which is
|
|
// the new entry point) and update the entry block of the chain.
|
|
if (EntryBlock_ != Comparisons_[0].BB) {
|
|
EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
|
|
EntryBlock_ = Comparisons_[0].BB;
|
|
}
|
|
|
|
// Effectively merge blocks.
|
|
int NumMerged = 1;
|
|
for (size_t I = 1; I < Comparisons_.size(); ++I) {
|
|
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
|
|
++NumMerged;
|
|
} else {
|
|
// Merge all previous comparisons and start a new merge block.
|
|
mergeComparisons(
|
|
makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
|
|
Comparisons_[I].BB, Phi_, TLI, AA);
|
|
NumMerged = 1;
|
|
}
|
|
}
|
|
mergeComparisons(makeArrayRef(Comparisons_)
|
|
.slice(Comparisons_.size() - NumMerged, NumMerged),
|
|
nullptr, Phi_, TLI, AA);
|
|
|
|
return true;
|
|
}
|
|
|
|
void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
|
|
BasicBlock *const NextBBInChain,
|
|
PHINode &Phi,
|
|
const TargetLibraryInfo *const TLI,
|
|
AliasAnalysis *AA) {
|
|
assert(!Comparisons.empty());
|
|
const auto &FirstComparison = *Comparisons.begin();
|
|
BasicBlock *const BB = FirstComparison.BB;
|
|
LLVMContext &Context = BB->getContext();
|
|
|
|
if (Comparisons.size() >= 2) {
|
|
// If there is one block that requires splitting, we do it now, i.e.
|
|
// just before we know we will collapse the chain. The instructions
|
|
// can be executed before any of the instructions in the chain.
|
|
auto C = std::find_if(Comparisons.begin(), Comparisons.end(),
|
|
[](const BCECmpBlock &B) { return B.RequireSplit; });
|
|
if (C != Comparisons.end())
|
|
C->split(EntryBlock_, AA);
|
|
|
|
LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
|
|
const auto TotalSize =
|
|
std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
|
|
[](int Size, const BCECmpBlock &C) {
|
|
return Size + C.SizeBits();
|
|
}) /
|
|
8;
|
|
|
|
// Incoming edges do not need to be updated, and both GEPs are already
|
|
// computing the right address, we just need to:
|
|
// - replace the two loads and the icmp with the memcmp
|
|
// - update the branch
|
|
// - update the incoming values in the phi.
|
|
FirstComparison.BranchI->eraseFromParent();
|
|
FirstComparison.CmpI->eraseFromParent();
|
|
FirstComparison.Lhs().LoadI->eraseFromParent();
|
|
FirstComparison.Rhs().LoadI->eraseFromParent();
|
|
|
|
IRBuilder<> Builder(BB);
|
|
const auto &DL = Phi.getModule()->getDataLayout();
|
|
Value *const MemCmpCall = emitMemCmp(
|
|
FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP,
|
|
ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
|
|
Builder, DL, TLI);
|
|
Value *const MemCmpIsZero = Builder.CreateICmpEQ(
|
|
MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
|
|
|
|
// Add a branch to the next basic block in the chain.
|
|
if (NextBBInChain) {
|
|
Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
|
|
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
|
|
} else {
|
|
Builder.CreateBr(Phi.getParent());
|
|
Phi.addIncoming(MemCmpIsZero, BB);
|
|
}
|
|
|
|
// Delete merged blocks.
|
|
for (size_t I = 1; I < Comparisons.size(); ++I) {
|
|
BasicBlock *CBB = Comparisons[I].BB;
|
|
CBB->replaceAllUsesWith(BB);
|
|
CBB->eraseFromParent();
|
|
}
|
|
} else {
|
|
assert(Comparisons.size() == 1);
|
|
// There are no blocks to merge, but we still need to update the branches.
|
|
LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
|
|
if (NextBBInChain) {
|
|
if (FirstComparison.BranchI->isConditional()) {
|
|
LLVM_DEBUG(dbgs() << "conditional -> conditional\n");
|
|
// Just update the "true" target, the "false" target should already be
|
|
// the phi block.
|
|
assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
|
|
FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
|
|
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "unconditional -> conditional\n");
|
|
// Replace the unconditional branch by a conditional one.
|
|
FirstComparison.BranchI->eraseFromParent();
|
|
IRBuilder<> Builder(BB);
|
|
Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
|
|
Phi.getParent());
|
|
Phi.addIncoming(FirstComparison.CmpI, BB);
|
|
}
|
|
} else {
|
|
if (FirstComparison.BranchI->isConditional()) {
|
|
LLVM_DEBUG(dbgs() << "conditional -> unconditional\n");
|
|
// Replace the conditional branch by an unconditional one.
|
|
FirstComparison.BranchI->eraseFromParent();
|
|
IRBuilder<> Builder(BB);
|
|
Builder.CreateBr(Phi.getParent());
|
|
Phi.addIncoming(FirstComparison.CmpI, BB);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "unconditional -> unconditional\n");
|
|
Phi.addIncoming(FirstComparison.CmpI, BB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
|
|
BasicBlock *const LastBlock,
|
|
int NumBlocks) {
|
|
// Walk up from the last block to find other blocks.
|
|
std::vector<BasicBlock *> Blocks(NumBlocks);
|
|
assert(LastBlock && "invalid last block");
|
|
BasicBlock *CurBlock = LastBlock;
|
|
for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
|
|
if (CurBlock->hasAddressTaken()) {
|
|
// Somebody is jumping to the block through an address, all bets are
|
|
// off.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has its address taken\n");
|
|
return {};
|
|
}
|
|
Blocks[BlockIndex] = CurBlock;
|
|
auto *SinglePredecessor = CurBlock->getSinglePredecessor();
|
|
if (!SinglePredecessor) {
|
|
// The block has two or more predecessors.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " has two or more predecessors\n");
|
|
return {};
|
|
}
|
|
if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
|
|
// The block does not link back to the phi.
|
|
LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
|
|
<< " does not link back to the phi\n");
|
|
return {};
|
|
}
|
|
CurBlock = SinglePredecessor;
|
|
}
|
|
Blocks[0] = CurBlock;
|
|
return Blocks;
|
|
}
|
|
|
|
bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI,
|
|
AliasAnalysis *AA) {
|
|
LLVM_DEBUG(dbgs() << "processPhi()\n");
|
|
if (Phi.getNumIncomingValues() <= 1) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
|
|
return false;
|
|
}
|
|
// We are looking for something that has the following structure:
|
|
// bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
|
|
// \ \ \ \
|
|
// ne ne ne \
|
|
// \ \ \ v
|
|
// +------------+-----------+----------> bb_phi
|
|
//
|
|
// - The last basic block (bb4 here) must branch unconditionally to bb_phi.
|
|
// It's the only block that contributes a non-constant value to the Phi.
|
|
// - All other blocks (b1, b2, b3) must have exactly two successors, one of
|
|
// them being the phi block.
|
|
// - All intermediate blocks (bb2, bb3) must have only one predecessor.
|
|
// - Blocks cannot do other work besides the comparison, see doesOtherWork()
|
|
|
|
// The blocks are not necessarily ordered in the phi, so we start from the
|
|
// last block and reconstruct the order.
|
|
BasicBlock *LastBlock = nullptr;
|
|
for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
|
|
if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
|
|
if (LastBlock) {
|
|
// There are several non-constant values.
|
|
LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
|
|
return false;
|
|
}
|
|
if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
|
|
cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
|
|
Phi.getIncomingBlock(I)) {
|
|
// Non-constant incoming value is not from a cmp instruction or not
|
|
// produced by the last block. We could end up processing the value
|
|
// producing block more than once.
|
|
//
|
|
// This is an uncommon case, so we bail.
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "skip: non-constant value not from cmp or not from last block.\n");
|
|
return false;
|
|
}
|
|
LastBlock = Phi.getIncomingBlock(I);
|
|
}
|
|
if (!LastBlock) {
|
|
// There is no non-constant block.
|
|
LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
|
|
return false;
|
|
}
|
|
if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
|
|
LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
|
|
return false;
|
|
}
|
|
|
|
const auto Blocks =
|
|
getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
|
|
if (Blocks.empty()) return false;
|
|
BCECmpChain CmpChain(Blocks, Phi, AA);
|
|
|
|
if (CmpChain.size() < 2) {
|
|
LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
|
|
return false;
|
|
}
|
|
|
|
return CmpChain.simplify(TLI, AA);
|
|
}
|
|
|
|
class MergeICmps : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
MergeICmps() : FunctionPass(ID) {
|
|
initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F)) return false;
|
|
const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto PA = runImpl(F, &TLI, &TTI, AA);
|
|
return !PA.areAllPreserved();
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
}
|
|
|
|
PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AliasAnalysis *AA);
|
|
};
|
|
|
|
PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA) {
|
|
LLVM_DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
|
|
|
|
// We only try merging comparisons if the target wants to expand memcmp later.
|
|
// The rationale is to avoid turning small chains into memcmp calls.
|
|
if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
|
|
|
|
// If we don't have memcmp avaiable we can't emit calls to it.
|
|
if (!TLI->has(LibFunc_memcmp))
|
|
return PreservedAnalyses::all();
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
|
|
// A Phi operation is always first in a basic block.
|
|
if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
|
|
MadeChange |= processPhi(*Phi, TLI, AA);
|
|
}
|
|
|
|
if (MadeChange) return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
char MergeICmps::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
|
|
"Merge contiguous icmps into a memcmp", false, false)
|
|
|
|
Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }
|