forked from OSchip/llvm-project
500 lines
15 KiB
C++
500 lines
15 KiB
C++
//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for X86.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86LegalizerInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
using namespace llvm;
|
|
using namespace TargetOpcode;
|
|
using namespace LegalizeActions;
|
|
|
|
/// FIXME: The following static functions are SizeChangeStrategy functions
|
|
/// that are meant to temporarily mimic the behaviour of the old legalization
|
|
/// based on doubling/halving non-legal types as closely as possible. This is
|
|
/// not entirly possible as only legalizing the types that are exactly a power
|
|
/// of 2 times the size of the legal types would require specifying all those
|
|
/// sizes explicitly.
|
|
/// In practice, not specifying those isn't a problem, and the below functions
|
|
/// should disappear quickly as we add support for legalizing non-power-of-2
|
|
/// sized types further.
|
|
static void
|
|
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
|
|
const LegalizerInfo::SizeAndActionsVec &v) {
|
|
for (unsigned i = 0; i < v.size(); ++i) {
|
|
result.push_back(v[i]);
|
|
if (i + 1 < v[i].first && i + 1 < v.size() &&
|
|
v[i + 1].first != v[i].first + 1)
|
|
result.push_back({v[i].first + 1, Unsupported});
|
|
}
|
|
}
|
|
|
|
static LegalizerInfo::SizeAndActionsVec
|
|
widen_1(const LegalizerInfo::SizeAndActionsVec &v) {
|
|
assert(v.size() >= 1);
|
|
assert(v[0].first > 1);
|
|
LegalizerInfo::SizeAndActionsVec result = {{1, WidenScalar},
|
|
{2, Unsupported}};
|
|
addAndInterleaveWithUnsupported(result, v);
|
|
auto Largest = result.back().first;
|
|
result.push_back({Largest + 1, Unsupported});
|
|
return result;
|
|
}
|
|
|
|
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
|
|
const X86TargetMachine &TM)
|
|
: Subtarget(STI), TM(TM) {
|
|
|
|
setLegalizerInfo32bit();
|
|
setLegalizerInfo64bit();
|
|
setLegalizerInfoSSE1();
|
|
setLegalizerInfoSSE2();
|
|
setLegalizerInfoSSE41();
|
|
setLegalizerInfoAVX();
|
|
setLegalizerInfoAVX2();
|
|
setLegalizerInfoAVX512();
|
|
setLegalizerInfoAVX512DQ();
|
|
setLegalizerInfoAVX512BW();
|
|
|
|
setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1);
|
|
for (unsigned BinOp : {G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
setLegalizeScalarToDifferentSizeStrategy(BinOp, 0, widen_1);
|
|
for (unsigned MemOp : {G_LOAD, G_STORE})
|
|
setLegalizeScalarToDifferentSizeStrategy(MemOp, 0,
|
|
narrowToSmallerAndWidenToSmallest);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
G_GEP, 1, widenToLargerTypesUnsupportedOtherwise);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
G_CONSTANT, 0, widenToLargerTypesAndNarrowToLargest);
|
|
|
|
computeTables();
|
|
verify(*STI.getInstrInfo());
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfo32bit() {
|
|
|
|
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT s128 = LLT::scalar(128);
|
|
|
|
for (auto Ty : {p0, s1, s8, s16, s32})
|
|
setAction({G_IMPLICIT_DEF, Ty}, Legal);
|
|
|
|
for (auto Ty : {s8, s16, s32, p0})
|
|
setAction({G_PHI, Ty}, Legal);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
for (auto Ty : {s8, s16, s32})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (unsigned Op : {G_UADDE}) {
|
|
setAction({Op, s32}, Legal);
|
|
setAction({Op, 1, s1}, Legal);
|
|
}
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE}) {
|
|
for (auto Ty : {s8, s16, s32, p0})
|
|
setAction({MemOp, Ty}, Legal);
|
|
|
|
// And everything's fine in addrspace 0.
|
|
setAction({MemOp, 1, p0}, Legal);
|
|
}
|
|
|
|
// Pointer-handling
|
|
setAction({G_FRAME_INDEX, p0}, Legal);
|
|
setAction({G_GLOBAL_VALUE, p0}, Legal);
|
|
|
|
setAction({G_GEP, p0}, Legal);
|
|
setAction({G_GEP, 1, s32}, Legal);
|
|
|
|
if (!Subtarget.is64Bit()) {
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
.legalForCartesianProduct({s1, s8, s16, s32}, {p0})
|
|
.maxScalar(0, s32)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
|
|
|
|
// Shifts and SDIV
|
|
getActionDefinitionsBuilder(
|
|
{G_SHL, G_LSHR, G_ASHR, G_SDIV, G_SREM, G_UDIV, G_UREM})
|
|
.legalFor({s8, s16, s32})
|
|
.clampScalar(0, s8, s32);
|
|
}
|
|
|
|
// Control-flow
|
|
setAction({G_BRCOND, s1}, Legal);
|
|
|
|
// Constants
|
|
for (auto Ty : {s8, s16, s32, p0})
|
|
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
|
|
|
|
// Extensions
|
|
for (auto Ty : {s8, s16, s32}) {
|
|
setAction({G_ZEXT, Ty}, Legal);
|
|
setAction({G_SEXT, Ty}, Legal);
|
|
setAction({G_ANYEXT, Ty}, Legal);
|
|
}
|
|
setAction({G_ANYEXT, s128}, Legal);
|
|
|
|
// Comparison
|
|
setAction({G_ICMP, s1}, Legal);
|
|
|
|
for (auto Ty : {s8, s16, s32, p0})
|
|
setAction({G_ICMP, 1, Ty}, Legal);
|
|
|
|
// Merge/Unmerge
|
|
for (const auto &Ty : {s16, s32, s64}) {
|
|
setAction({G_MERGE_VALUES, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
|
|
}
|
|
for (const auto &Ty : {s8, s16, s32}) {
|
|
setAction({G_MERGE_VALUES, 1, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, Ty}, Legal);
|
|
}
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfo64bit() {
|
|
|
|
if (!Subtarget.is64Bit())
|
|
return;
|
|
|
|
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT s128 = LLT::scalar(128);
|
|
|
|
setAction({G_IMPLICIT_DEF, s64}, Legal);
|
|
// Need to have that, as tryFoldImplicitDef will create this pattern:
|
|
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
|
|
setAction({G_IMPLICIT_DEF, s128}, Legal);
|
|
|
|
setAction({G_PHI, s64}, Legal);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
setAction({BinOp, s64}, Legal);
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE})
|
|
setAction({MemOp, s64}, Legal);
|
|
|
|
// Pointer-handling
|
|
setAction({G_GEP, 1, s64}, Legal);
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
|
|
.maxScalar(0, s64)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s64}});
|
|
|
|
// Constants
|
|
setAction({TargetOpcode::G_CONSTANT, s64}, Legal);
|
|
|
|
// Extensions
|
|
for (unsigned extOp : {G_ZEXT, G_SEXT, G_ANYEXT}) {
|
|
setAction({extOp, s64}, Legal);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_SITOFP)
|
|
.legalForCartesianProduct({s32, s64})
|
|
.clampScalar(1, s32, s64)
|
|
.widenScalarToNextPow2(1)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder(G_FPTOSI)
|
|
.legalForCartesianProduct({s32, s64})
|
|
.clampScalar(1, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(1);
|
|
|
|
// Comparison
|
|
setAction({G_ICMP, 1, s64}, Legal);
|
|
|
|
getActionDefinitionsBuilder(G_FCMP)
|
|
.legalForCartesianProduct({s8}, {s32, s64})
|
|
.clampScalar(0, s8, s8)
|
|
.clampScalar(1, s32, s64)
|
|
.widenScalarToNextPow2(1);
|
|
|
|
// Shifts and SDIV
|
|
getActionDefinitionsBuilder(
|
|
{G_SHL, G_LSHR, G_ASHR, G_SDIV, G_SREM, G_UDIV, G_UREM})
|
|
.legalFor({s8, s16, s32, s64})
|
|
.clampScalar(0, s8, s64);
|
|
|
|
// Merge/Unmerge
|
|
setAction({G_MERGE_VALUES, s128}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, s128}, Legal);
|
|
setAction({G_MERGE_VALUES, 1, s128}, Legal);
|
|
setAction({G_UNMERGE_VALUES, s128}, Legal);
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoSSE1() {
|
|
if (!Subtarget.hasSSE1())
|
|
return;
|
|
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
|
|
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
|
|
for (auto Ty : {s32, v4s32})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE})
|
|
for (auto Ty : {v4s32, v2s64})
|
|
setAction({MemOp, Ty}, Legal);
|
|
|
|
// Constants
|
|
setAction({TargetOpcode::G_FCONSTANT, s32}, Legal);
|
|
|
|
// Merge/Unmerge
|
|
for (const auto &Ty : {v4s32, v2s64}) {
|
|
setAction({G_CONCAT_VECTORS, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
|
|
}
|
|
setAction({G_MERGE_VALUES, 1, s64}, Legal);
|
|
setAction({G_UNMERGE_VALUES, s64}, Legal);
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoSSE2() {
|
|
if (!Subtarget.hasSSE2())
|
|
return;
|
|
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT v16s8 = LLT::vector(16, 8);
|
|
const LLT v8s16 = LLT::vector(8, 16);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
|
|
const LLT v32s8 = LLT::vector(32, 8);
|
|
const LLT v16s16 = LLT::vector(16, 16);
|
|
const LLT v8s32 = LLT::vector(8, 32);
|
|
const LLT v4s64 = LLT::vector(4, 64);
|
|
|
|
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
|
|
for (auto Ty : {s64, v2s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB})
|
|
for (auto Ty : {v16s8, v8s16, v4s32, v2s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
setAction({G_MUL, v8s16}, Legal);
|
|
|
|
setAction({G_FPEXT, s64}, Legal);
|
|
setAction({G_FPEXT, 1, s32}, Legal);
|
|
|
|
setAction({G_FPTRUNC, s32}, Legal);
|
|
setAction({G_FPTRUNC, 1, s64}, Legal);
|
|
|
|
// Constants
|
|
setAction({TargetOpcode::G_FCONSTANT, s64}, Legal);
|
|
|
|
// Merge/Unmerge
|
|
for (const auto &Ty :
|
|
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
|
|
setAction({G_CONCAT_VECTORS, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
|
|
}
|
|
for (const auto &Ty : {v16s8, v8s16, v4s32, v2s64}) {
|
|
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, Ty}, Legal);
|
|
}
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoSSE41() {
|
|
if (!Subtarget.hasSSE41())
|
|
return;
|
|
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
|
|
setAction({G_MUL, v4s32}, Legal);
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoAVX() {
|
|
if (!Subtarget.hasAVX())
|
|
return;
|
|
|
|
const LLT v16s8 = LLT::vector(16, 8);
|
|
const LLT v8s16 = LLT::vector(8, 16);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
|
|
const LLT v32s8 = LLT::vector(32, 8);
|
|
const LLT v64s8 = LLT::vector(64, 8);
|
|
const LLT v16s16 = LLT::vector(16, 16);
|
|
const LLT v32s16 = LLT::vector(32, 16);
|
|
const LLT v8s32 = LLT::vector(8, 32);
|
|
const LLT v16s32 = LLT::vector(16, 32);
|
|
const LLT v4s64 = LLT::vector(4, 64);
|
|
const LLT v8s64 = LLT::vector(8, 64);
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE})
|
|
for (auto Ty : {v8s32, v4s64})
|
|
setAction({MemOp, Ty}, Legal);
|
|
|
|
for (auto Ty : {v32s8, v16s16, v8s32, v4s64}) {
|
|
setAction({G_INSERT, Ty}, Legal);
|
|
setAction({G_EXTRACT, 1, Ty}, Legal);
|
|
}
|
|
for (auto Ty : {v16s8, v8s16, v4s32, v2s64}) {
|
|
setAction({G_INSERT, 1, Ty}, Legal);
|
|
setAction({G_EXTRACT, Ty}, Legal);
|
|
}
|
|
// Merge/Unmerge
|
|
for (const auto &Ty :
|
|
{v32s8, v64s8, v16s16, v32s16, v8s32, v16s32, v4s64, v8s64}) {
|
|
setAction({G_CONCAT_VECTORS, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
|
|
}
|
|
for (const auto &Ty :
|
|
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
|
|
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, Ty}, Legal);
|
|
}
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoAVX2() {
|
|
if (!Subtarget.hasAVX2())
|
|
return;
|
|
|
|
const LLT v32s8 = LLT::vector(32, 8);
|
|
const LLT v16s16 = LLT::vector(16, 16);
|
|
const LLT v8s32 = LLT::vector(8, 32);
|
|
const LLT v4s64 = LLT::vector(4, 64);
|
|
|
|
const LLT v64s8 = LLT::vector(64, 8);
|
|
const LLT v32s16 = LLT::vector(32, 16);
|
|
const LLT v16s32 = LLT::vector(16, 32);
|
|
const LLT v8s64 = LLT::vector(8, 64);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB})
|
|
for (auto Ty : {v32s8, v16s16, v8s32, v4s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (auto Ty : {v16s16, v8s32})
|
|
setAction({G_MUL, Ty}, Legal);
|
|
|
|
// Merge/Unmerge
|
|
for (const auto &Ty : {v64s8, v32s16, v16s32, v8s64}) {
|
|
setAction({G_CONCAT_VECTORS, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, 1, Ty}, Legal);
|
|
}
|
|
for (const auto &Ty : {v32s8, v16s16, v8s32, v4s64}) {
|
|
setAction({G_CONCAT_VECTORS, 1, Ty}, Legal);
|
|
setAction({G_UNMERGE_VALUES, Ty}, Legal);
|
|
}
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoAVX512() {
|
|
if (!Subtarget.hasAVX512())
|
|
return;
|
|
|
|
const LLT v16s8 = LLT::vector(16, 8);
|
|
const LLT v8s16 = LLT::vector(8, 16);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
|
|
const LLT v32s8 = LLT::vector(32, 8);
|
|
const LLT v16s16 = LLT::vector(16, 16);
|
|
const LLT v8s32 = LLT::vector(8, 32);
|
|
const LLT v4s64 = LLT::vector(4, 64);
|
|
|
|
const LLT v64s8 = LLT::vector(64, 8);
|
|
const LLT v32s16 = LLT::vector(32, 16);
|
|
const LLT v16s32 = LLT::vector(16, 32);
|
|
const LLT v8s64 = LLT::vector(8, 64);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB})
|
|
for (auto Ty : {v16s32, v8s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
setAction({G_MUL, v16s32}, Legal);
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE})
|
|
for (auto Ty : {v16s32, v8s64})
|
|
setAction({MemOp, Ty}, Legal);
|
|
|
|
for (auto Ty : {v64s8, v32s16, v16s32, v8s64}) {
|
|
setAction({G_INSERT, Ty}, Legal);
|
|
setAction({G_EXTRACT, 1, Ty}, Legal);
|
|
}
|
|
for (auto Ty : {v32s8, v16s16, v8s32, v4s64, v16s8, v8s16, v4s32, v2s64}) {
|
|
setAction({G_INSERT, 1, Ty}, Legal);
|
|
setAction({G_EXTRACT, Ty}, Legal);
|
|
}
|
|
|
|
/************ VLX *******************/
|
|
if (!Subtarget.hasVLX())
|
|
return;
|
|
|
|
for (auto Ty : {v4s32, v8s32})
|
|
setAction({G_MUL, Ty}, Legal);
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoAVX512DQ() {
|
|
if (!(Subtarget.hasAVX512() && Subtarget.hasDQI()))
|
|
return;
|
|
|
|
const LLT v8s64 = LLT::vector(8, 64);
|
|
|
|
setAction({G_MUL, v8s64}, Legal);
|
|
|
|
/************ VLX *******************/
|
|
if (!Subtarget.hasVLX())
|
|
return;
|
|
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
const LLT v4s64 = LLT::vector(4, 64);
|
|
|
|
for (auto Ty : {v2s64, v4s64})
|
|
setAction({G_MUL, Ty}, Legal);
|
|
}
|
|
|
|
void X86LegalizerInfo::setLegalizerInfoAVX512BW() {
|
|
if (!(Subtarget.hasAVX512() && Subtarget.hasBWI()))
|
|
return;
|
|
|
|
const LLT v64s8 = LLT::vector(64, 8);
|
|
const LLT v32s16 = LLT::vector(32, 16);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB})
|
|
for (auto Ty : {v64s8, v32s16})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
setAction({G_MUL, v32s16}, Legal);
|
|
|
|
/************ VLX *******************/
|
|
if (!Subtarget.hasVLX())
|
|
return;
|
|
|
|
const LLT v8s16 = LLT::vector(8, 16);
|
|
const LLT v16s16 = LLT::vector(16, 16);
|
|
|
|
for (auto Ty : {v8s16, v16s16})
|
|
setAction({G_MUL, Ty}, Legal);
|
|
}
|