llvm-project/llvm/lib/Target/X86/X86InsertPrefetch.cpp

254 lines
9.5 KiB
C++

//===------- X86InsertPrefetch.cpp - Insert cache prefetch hints ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass applies cache prefetch instructions based on a profile. The pass
// assumes DiscriminateMemOps ran immediately before, to ensure debug info
// matches the one used at profile generation time. The profile is encoded in
// afdo format (text or binary). It contains prefetch hints recommendations.
// Each recommendation is made in terms of debug info locations, a type (i.e.
// nta, t{0|1|2}) and a delta. The debug info identifies an instruction with a
// memory operand (see X86DiscriminateMemOps). The prefetch will be made for
// a location at that memory operand + the delta specified in the
// recommendation.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Transforms/IPO/SampleProfile.h"
using namespace llvm;
using namespace sampleprof;
static cl::opt<std::string>
PrefetchHintsFile("prefetch-hints-file",
cl::desc("Path to the prefetch hints profile."),
cl::Hidden);
namespace {
class X86InsertPrefetch : public MachineFunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool doInitialization(Module &) override;
bool runOnMachineFunction(MachineFunction &MF) override;
struct PrefetchInfo {
unsigned InstructionID;
int64_t Delta;
};
typedef SmallVectorImpl<PrefetchInfo> Prefetches;
bool findPrefetchInfo(const FunctionSamples *Samples, const MachineInstr &MI,
Prefetches &prefetches) const;
public:
static char ID;
X86InsertPrefetch(const std::string &PrefetchHintsFilename);
StringRef getPassName() const override {
return "X86 Insert Cache Prefetches";
}
private:
std::string Filename;
std::unique_ptr<SampleProfileReader> Reader;
};
using PrefetchHints = SampleRecord::CallTargetMap;
// Return any prefetching hints for the specified MachineInstruction. The hints
// are returned as pairs (name, delta).
ErrorOr<PrefetchHints> getPrefetchHints(const FunctionSamples *TopSamples,
const MachineInstr &MI) {
if (const auto &Loc = MI.getDebugLoc())
if (const auto *Samples = TopSamples->findFunctionSamples(Loc))
return Samples->findCallTargetMapAt(FunctionSamples::getOffset(Loc),
Loc->getBaseDiscriminator());
return std::error_code();
}
// The prefetch instruction can't take memory operands involving vector
// registers.
bool IsMemOpCompatibleWithPrefetch(const MachineInstr &MI, int Op) {
unsigned BaseReg = MI.getOperand(Op + X86::AddrBaseReg).getReg();
unsigned IndexReg = MI.getOperand(Op + X86::AddrIndexReg).getReg();
return (BaseReg == 0 ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg)) &&
(IndexReg == 0 ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg));
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
char X86InsertPrefetch::ID = 0;
X86InsertPrefetch::X86InsertPrefetch(const std::string &PrefetchHintsFilename)
: MachineFunctionPass(ID), Filename(PrefetchHintsFilename) {}
/// Return true if the provided MachineInstruction has cache prefetch hints. In
/// that case, the prefetch hints are stored, in order, in the Prefetches
/// vector.
bool X86InsertPrefetch::findPrefetchInfo(const FunctionSamples *TopSamples,
const MachineInstr &MI,
Prefetches &Prefetches) const {
assert(Prefetches.empty() &&
"Expected caller passed empty PrefetchInfo vector.");
static const std::pair<const StringRef, unsigned> HintTypes[] = {
{"_nta_", X86::PREFETCHNTA},
{"_t0_", X86::PREFETCHT0},
{"_t1_", X86::PREFETCHT1},
{"_t2_", X86::PREFETCHT2},
};
static const char *SerializedPrefetchPrefix = "__prefetch";
const ErrorOr<PrefetchHints> T = getPrefetchHints(TopSamples, MI);
if (!T)
return false;
int16_t max_index = -1;
// Convert serialized prefetch hints into PrefetchInfo objects, and populate
// the Prefetches vector.
for (const auto &S_V : *T) {
StringRef Name = S_V.getKey();
if (Name.consume_front(SerializedPrefetchPrefix)) {
int64_t D = static_cast<int64_t>(S_V.second);
unsigned IID = 0;
for (const auto &HintType : HintTypes) {
if (Name.startswith(HintType.first)) {
Name = Name.drop_front(HintType.first.size());
IID = HintType.second;
break;
}
}
if (IID == 0)
return false;
uint8_t index = 0;
Name.consumeInteger(10, index);
if (index >= Prefetches.size())
Prefetches.resize(index + 1);
Prefetches[index] = {IID, D};
max_index = std::max(max_index, static_cast<int16_t>(index));
}
}
assert(max_index + 1 >= 0 &&
"Possible overflow: max_index + 1 should be positive.");
assert(static_cast<size_t>(max_index + 1) == Prefetches.size() &&
"The number of prefetch hints received should match the number of "
"PrefetchInfo objects returned");
return !Prefetches.empty();
}
bool X86InsertPrefetch::doInitialization(Module &M) {
if (Filename.empty())
return false;
LLVMContext &Ctx = M.getContext();
ErrorOr<std::unique_ptr<SampleProfileReader>> ReaderOrErr =
SampleProfileReader::create(Filename, Ctx);
if (std::error_code EC = ReaderOrErr.getError()) {
std::string Msg = "Could not open profile: " + EC.message();
Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg,
DiagnosticSeverity::DS_Warning));
return false;
}
Reader = std::move(ReaderOrErr.get());
Reader->read();
return true;
}
void X86InsertPrefetch::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
}
bool X86InsertPrefetch::runOnMachineFunction(MachineFunction &MF) {
if (!Reader)
return false;
const FunctionSamples *Samples = Reader->getSamplesFor(MF.getFunction());
if (!Samples)
return false;
bool Changed = false;
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<PrefetchInfo, 4> Prefetches;
for (auto &MBB : MF) {
for (auto MI = MBB.instr_begin(); MI != MBB.instr_end();) {
auto Current = MI;
++MI;
int Offset = X86II::getMemoryOperandNo(Current->getDesc().TSFlags);
if (Offset < 0)
continue;
unsigned Bias = X86II::getOperandBias(Current->getDesc());
int MemOpOffset = Offset + Bias;
// FIXME(mtrofin): ORE message when the recommendation cannot be taken.
if (!IsMemOpCompatibleWithPrefetch(*Current, MemOpOffset))
continue;
Prefetches.clear();
if (!findPrefetchInfo(Samples, *Current, Prefetches))
continue;
assert(!Prefetches.empty() &&
"The Prefetches vector should contain at least a value if "
"findPrefetchInfo returned true.");
for (auto &PrefInfo : Prefetches) {
unsigned PFetchInstrID = PrefInfo.InstructionID;
int64_t Delta = PrefInfo.Delta;
const MCInstrDesc &Desc = TII->get(PFetchInstrID);
MachineInstr *PFetch =
MF.CreateMachineInstr(Desc, Current->getDebugLoc(), true);
MachineInstrBuilder MIB(MF, PFetch);
assert(X86::AddrBaseReg == 0 && X86::AddrScaleAmt == 1 &&
X86::AddrIndexReg == 2 && X86::AddrDisp == 3 &&
X86::AddrSegmentReg == 4 &&
"Unexpected change in X86 operand offset order.");
// This assumes X86::AddBaseReg = 0, {...}ScaleAmt = 1, etc.
// FIXME(mtrofin): consider adding a:
// MachineInstrBuilder::set(unsigned offset, op).
MIB.addReg(Current->getOperand(MemOpOffset + X86::AddrBaseReg).getReg())
.addImm(
Current->getOperand(MemOpOffset + X86::AddrScaleAmt).getImm())
.addReg(
Current->getOperand(MemOpOffset + X86::AddrIndexReg).getReg())
.addImm(Current->getOperand(MemOpOffset + X86::AddrDisp).getImm() +
Delta)
.addReg(Current->getOperand(MemOpOffset + X86::AddrSegmentReg)
.getReg());
if (!Current->memoperands_empty()) {
MachineMemOperand *CurrentOp = *(Current->memoperands_begin());
MIB.addMemOperand(MF.getMachineMemOperand(
CurrentOp, CurrentOp->getOffset() + Delta, CurrentOp->getSize()));
}
// Insert before Current. This is because Current may clobber some of
// the registers used to describe the input memory operand.
MBB.insert(Current, PFetch);
Changed = true;
}
}
}
return Changed;
}
FunctionPass *llvm::createX86InsertPrefetchPass() {
return new X86InsertPrefetch(PrefetchHintsFile);
}