forked from OSchip/llvm-project
157 lines
5.7 KiB
C++
157 lines
5.7 KiB
C++
//===- X86DiscriminateMemOps.cpp - Unique IDs for Mem Ops -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This pass aids profile-driven cache prefetch insertion by ensuring all
|
|
/// instructions that have a memory operand are distinguishible from each other.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/ProfileData/SampleProfReader.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/IPO/SampleProfile.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-discriminate-memops"
|
|
|
|
namespace {
|
|
|
|
using Location = std::pair<StringRef, unsigned>;
|
|
|
|
Location diToLocation(const DILocation *Loc) {
|
|
return std::make_pair(Loc->getFilename(), Loc->getLine());
|
|
}
|
|
|
|
/// Ensure each instruction having a memory operand has a distinct <LineNumber,
|
|
/// Discriminator> pair.
|
|
void updateDebugInfo(MachineInstr *MI, const DILocation *Loc) {
|
|
DebugLoc DL(Loc);
|
|
MI->setDebugLoc(DL);
|
|
}
|
|
|
|
class X86DiscriminateMemOps : public MachineFunctionPass {
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
StringRef getPassName() const override {
|
|
return "X86 Discriminate Memory Operands";
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
/// Default construct and initialize the pass.
|
|
X86DiscriminateMemOps();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char X86DiscriminateMemOps::ID = 0;
|
|
|
|
/// Default construct and initialize the pass.
|
|
X86DiscriminateMemOps::X86DiscriminateMemOps() : MachineFunctionPass(ID) {}
|
|
|
|
bool X86DiscriminateMemOps::runOnMachineFunction(MachineFunction &MF) {
|
|
DISubprogram *FDI = MF.getFunction().getSubprogram();
|
|
if (!FDI || !FDI->getUnit()->getDebugInfoForProfiling())
|
|
return false;
|
|
|
|
// Have a default DILocation, if we find instructions with memops that don't
|
|
// have any debug info.
|
|
const DILocation *ReferenceDI =
|
|
DILocation::get(FDI->getContext(), FDI->getLine(), 0, FDI);
|
|
|
|
DenseMap<Location, unsigned> MemOpDiscriminators;
|
|
MemOpDiscriminators[diToLocation(ReferenceDI)] = 0;
|
|
|
|
// Figure out the largest discriminator issued for each Location. When we
|
|
// issue new discriminators, we can thus avoid issuing discriminators
|
|
// belonging to instructions that don't have memops. This isn't a requirement
|
|
// for the goals of this pass, however, it avoids unnecessary ambiguity.
|
|
for (auto &MBB : MF) {
|
|
for (auto &MI : MBB) {
|
|
const auto &DI = MI.getDebugLoc();
|
|
if (!DI)
|
|
continue;
|
|
Location Loc = diToLocation(DI);
|
|
MemOpDiscriminators[Loc] =
|
|
std::max(MemOpDiscriminators[Loc], DI->getBaseDiscriminator());
|
|
}
|
|
}
|
|
|
|
// Keep track of the discriminators seen at each Location. If an instruction's
|
|
// DebugInfo has a Location and discriminator we've already seen, replace its
|
|
// discriminator with a new one, to guarantee uniqueness.
|
|
DenseMap<Location, DenseSet<unsigned>> Seen;
|
|
|
|
bool Changed = false;
|
|
for (auto &MBB : MF) {
|
|
for (auto &MI : MBB) {
|
|
if (X86II::getMemoryOperandNo(MI.getDesc().TSFlags) < 0)
|
|
continue;
|
|
const DILocation *DI = MI.getDebugLoc();
|
|
if (!DI) {
|
|
DI = ReferenceDI;
|
|
}
|
|
Location L = diToLocation(DI);
|
|
DenseSet<unsigned> &Set = Seen[L];
|
|
const std::pair<DenseSet<unsigned>::iterator, bool> TryInsert =
|
|
Set.insert(DI->getBaseDiscriminator());
|
|
if (!TryInsert.second) {
|
|
unsigned BF, DF, CI = 0;
|
|
DILocation::decodeDiscriminator(DI->getDiscriminator(), BF, DF, CI);
|
|
Optional<unsigned> EncodedDiscriminator = DILocation::encodeDiscriminator(
|
|
MemOpDiscriminators[L] + 1, DF, CI);
|
|
|
|
if (!EncodedDiscriminator) {
|
|
// FIXME(mtrofin): The assumption is that this scenario is infrequent/OK
|
|
// not to support. If evidence points otherwise, we can explore synthesizeing
|
|
// unique DIs by adding fake line numbers, or by constructing 64 bit
|
|
// discriminators.
|
|
LLVM_DEBUG(dbgs() << "Unable to create a unique discriminator "
|
|
"for instruction with memory operand in: "
|
|
<< DI->getFilename() << " Line: " << DI->getLine()
|
|
<< " Column: " << DI->getColumn()
|
|
<< ". This is likely due to a large macro expansion. \n");
|
|
continue;
|
|
}
|
|
// Since we were able to encode, bump the MemOpDiscriminators.
|
|
++MemOpDiscriminators[L];
|
|
DI = DI->cloneWithDiscriminator(EncodedDiscriminator.getValue());
|
|
updateDebugInfo(&MI, DI);
|
|
Changed = true;
|
|
std::pair<DenseSet<unsigned>::iterator, bool> MustInsert =
|
|
Set.insert(DI->getBaseDiscriminator());
|
|
(void)MustInsert; // Silence warning in release build.
|
|
assert(MustInsert.second && "New discriminator shouldn't be present in set");
|
|
}
|
|
|
|
// Bump the reference DI to avoid cramming discriminators on line 0.
|
|
// FIXME(mtrofin): pin ReferenceDI on blocks or first instruction with DI
|
|
// in a block. It's more consistent than just relying on the last memop
|
|
// instruction we happened to see.
|
|
ReferenceDI = DI;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86DiscriminateMemOpsPass() {
|
|
return new X86DiscriminateMemOps();
|
|
}
|