forked from OSchip/llvm-project
323 lines
11 KiB
C++
323 lines
11 KiB
C++
//===------- ShadowCallStack.cpp - Shadow Call Stack pass -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The ShadowCallStack pass instruments function prologs/epilogs to check that
|
|
// the return address has not been corrupted during the execution of the
|
|
// function. The return address is stored in a 'shadow call stack' addressed
|
|
// using the %gs segment register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class ShadowCallStack : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
ShadowCallStack() : MachineFunctionPass(ID) {
|
|
initializeShadowCallStackPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
private:
|
|
// Do not instrument leaf functions with this many or fewer instructions. The
|
|
// shadow call stack instrumented prolog/epilog are slightly race-y reading
|
|
// and checking the saved return address, so it is better to not instrument
|
|
// functions that have fewer instructions than the instrumented prolog/epilog
|
|
// race.
|
|
static const size_t SkipLeafInstructions = 3;
|
|
};
|
|
|
|
char ShadowCallStack::ID = 0;
|
|
} // end anonymous namespace.
|
|
|
|
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB, const DebugLoc &DL);
|
|
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB, const DebugLoc &DL,
|
|
MCPhysReg FreeRegister);
|
|
|
|
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB);
|
|
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB,
|
|
MCPhysReg FreeRegister);
|
|
// Generate a longer epilog that only uses r10 when a tailcall branches to r11.
|
|
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB);
|
|
|
|
// Helper function to add ModR/M references for [Seg: Reg + Offset] memory
|
|
// accesses
|
|
static inline const MachineInstrBuilder &
|
|
addSegmentedMem(const MachineInstrBuilder &MIB, MCPhysReg Seg, MCPhysReg Reg,
|
|
int Offset = 0) {
|
|
return MIB.addReg(Reg).addImm(1).addReg(0).addImm(Offset).addReg(Seg);
|
|
}
|
|
|
|
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB, const DebugLoc &DL) {
|
|
const MCPhysReg ReturnReg = X86::R10;
|
|
const MCPhysReg OffsetReg = X86::R11;
|
|
|
|
auto MBBI = MBB.begin();
|
|
// mov r10, [rsp]
|
|
addDirectMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(ReturnReg),
|
|
X86::RSP);
|
|
// xor r11, r11
|
|
BuildMI(MBB, MBBI, DL, TII->get(X86::XOR64rr))
|
|
.addDef(OffsetReg)
|
|
.addReg(OffsetReg, RegState::Undef)
|
|
.addReg(OffsetReg, RegState::Undef);
|
|
// add QWORD [gs:r11], 8
|
|
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::ADD64mi8)), X86::GS,
|
|
OffsetReg)
|
|
.addImm(8);
|
|
// mov r11, [gs:r11]
|
|
addSegmentedMem(
|
|
BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(OffsetReg), X86::GS,
|
|
OffsetReg);
|
|
// mov [gs:r11], r10
|
|
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64mr)), X86::GS,
|
|
OffsetReg)
|
|
.addReg(ReturnReg);
|
|
}
|
|
|
|
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB, const DebugLoc &DL,
|
|
MCPhysReg FreeRegister) {
|
|
// mov REG, [rsp]
|
|
addDirectMem(BuildMI(MBB, MBB.begin(), DL, TII->get(X86::MOV64rm))
|
|
.addDef(FreeRegister),
|
|
X86::RSP);
|
|
}
|
|
|
|
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB) {
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
// xor r11, r11
|
|
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
|
|
.addDef(X86::R11)
|
|
.addReg(X86::R11, RegState::Undef)
|
|
.addReg(X86::R11, RegState::Undef);
|
|
// mov r10, [gs:r11]
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
|
|
X86::GS, X86::R11);
|
|
// mov r10, [gs:r10]
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
|
|
X86::GS, X86::R10);
|
|
// sub QWORD [gs:r11], 8
|
|
// This instruction should not be moved up to avoid a signal race.
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)),
|
|
X86::GS, X86::R11)
|
|
.addImm(8);
|
|
// cmp [rsp], r10
|
|
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
|
|
.addReg(X86::R10);
|
|
// jne trap
|
|
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
|
|
MBB.addSuccessor(&TrapBB);
|
|
}
|
|
|
|
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB,
|
|
MCPhysReg FreeRegister) {
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
// cmp [rsp], REG
|
|
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
|
|
.addReg(FreeRegister);
|
|
// jne trap
|
|
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
|
|
MBB.addSuccessor(&TrapBB);
|
|
}
|
|
|
|
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineInstr &MI, MachineBasicBlock &TrapBB) {
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
// xor r10, r10
|
|
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
|
|
.addDef(X86::R10)
|
|
.addReg(X86::R10, RegState::Undef)
|
|
.addReg(X86::R10, RegState::Undef);
|
|
// mov r10, [gs:r10]
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
|
|
X86::GS, X86::R10);
|
|
// mov r10, [gs:r10]
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
|
|
X86::GS, X86::R10);
|
|
// sub QWORD [gs:0], 8
|
|
// This instruction should not be moved up to avoid a signal race.
|
|
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)), X86::GS, 0)
|
|
.addImm(8);
|
|
// cmp [rsp], r10
|
|
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
|
|
.addReg(X86::R10);
|
|
// jne trap
|
|
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
|
|
MBB.addSuccessor(&TrapBB);
|
|
}
|
|
|
|
bool ShadowCallStack::runOnMachineFunction(MachineFunction &Fn) {
|
|
if (!Fn.getFunction().hasFnAttribute(Attribute::ShadowCallStack) ||
|
|
Fn.getFunction().hasFnAttribute(Attribute::Naked))
|
|
return false;
|
|
|
|
if (Fn.empty() || !Fn.getRegInfo().tracksLiveness())
|
|
return false;
|
|
|
|
// FIXME: Skip functions that have r10 or r11 live on entry (r10 can be live
|
|
// on entry for parameters with the nest attribute.)
|
|
if (Fn.front().isLiveIn(X86::R10) || Fn.front().isLiveIn(X86::R11))
|
|
return false;
|
|
|
|
// FIXME: Skip functions with conditional and r10 tail calls for now.
|
|
bool HasReturn = false;
|
|
for (auto &MBB : Fn) {
|
|
if (MBB.empty())
|
|
continue;
|
|
|
|
const MachineInstr &MI = MBB.instr_back();
|
|
if (MI.isReturn())
|
|
HasReturn = true;
|
|
|
|
if (MI.isReturn() && MI.isCall()) {
|
|
if (MI.findRegisterUseOperand(X86::EFLAGS))
|
|
return false;
|
|
// This should only be possible on Windows 64 (see GR64_TC versus
|
|
// GR64_TCW64.)
|
|
if (MI.findRegisterUseOperand(X86::R10) ||
|
|
MI.hasRegisterImplicitUseOperand(X86::R10))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!HasReturn)
|
|
return false;
|
|
|
|
// For leaf functions:
|
|
// 1. Do not instrument very short functions where it would not improve that
|
|
// function's security.
|
|
// 2. Detect if there is an unused caller-saved register we can reserve to
|
|
// hold the return address instead of writing/reading it from the shadow
|
|
// call stack.
|
|
MCPhysReg LeafFuncRegister = X86::NoRegister;
|
|
if (!Fn.getFrameInfo().adjustsStack()) {
|
|
size_t InstructionCount = 0;
|
|
std::bitset<X86::NUM_TARGET_REGS> UsedRegs;
|
|
for (auto &MBB : Fn) {
|
|
for (auto &LiveIn : MBB.liveins())
|
|
UsedRegs.set(LiveIn.PhysReg);
|
|
for (auto &MI : MBB) {
|
|
if (!MI.isDebugValue() && !MI.isCFIInstruction() && !MI.isLabel())
|
|
InstructionCount++;
|
|
for (auto &Op : MI.operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
UsedRegs.set(Op.getReg());
|
|
}
|
|
}
|
|
|
|
if (InstructionCount <= SkipLeafInstructions)
|
|
return false;
|
|
|
|
std::bitset<X86::NUM_TARGET_REGS> CalleeSavedRegs;
|
|
const MCPhysReg *CSRegs = Fn.getRegInfo().getCalleeSavedRegs();
|
|
for (size_t i = 0; CSRegs[i]; i++)
|
|
CalleeSavedRegs.set(CSRegs[i]);
|
|
|
|
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
|
|
for (auto &Reg : X86::GR64_NOSPRegClass.getRegisters()) {
|
|
// FIXME: Optimization opportunity: spill/restore a callee-saved register
|
|
// if a caller-saved register is unavailable.
|
|
if (CalleeSavedRegs.test(Reg))
|
|
continue;
|
|
|
|
bool Used = false;
|
|
for (MCSubRegIterator SR(Reg, TRI, true); SR.isValid(); ++SR)
|
|
if ((Used = UsedRegs.test(*SR)))
|
|
break;
|
|
|
|
if (!Used) {
|
|
LeafFuncRegister = Reg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool LeafFuncOptimization = LeafFuncRegister != X86::NoRegister;
|
|
if (LeafFuncOptimization)
|
|
// Mark the leaf function register live-in for all MBBs except the entry MBB
|
|
for (auto I = ++Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
I->addLiveIn(LeafFuncRegister);
|
|
|
|
MachineBasicBlock &MBB = Fn.front();
|
|
const MachineBasicBlock *NonEmpty = MBB.empty() ? MBB.getFallThrough() : &MBB;
|
|
const DebugLoc &DL = NonEmpty->front().getDebugLoc();
|
|
|
|
const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
|
|
if (LeafFuncOptimization)
|
|
addPrologLeaf(Fn, TII, MBB, DL, LeafFuncRegister);
|
|
else
|
|
addProlog(Fn, TII, MBB, DL);
|
|
|
|
MachineBasicBlock *Trap = nullptr;
|
|
for (auto &MBB : Fn) {
|
|
if (MBB.empty())
|
|
continue;
|
|
|
|
MachineInstr &MI = MBB.instr_back();
|
|
if (MI.isReturn()) {
|
|
if (!Trap) {
|
|
Trap = Fn.CreateMachineBasicBlock();
|
|
BuildMI(Trap, MI.getDebugLoc(), TII->get(X86::TRAP));
|
|
Fn.push_back(Trap);
|
|
}
|
|
|
|
if (LeafFuncOptimization)
|
|
addEpilogLeaf(TII, MBB, MI, *Trap, LeafFuncRegister);
|
|
else if (MI.findRegisterUseOperand(X86::R11))
|
|
addEpilogOnlyR10(TII, MBB, MI, *Trap);
|
|
else
|
|
addEpilog(TII, MBB, MI, *Trap);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
INITIALIZE_PASS(ShadowCallStack, "shadow-call-stack", "Shadow Call Stack",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createShadowCallStackPass() {
|
|
return new ShadowCallStack();
|
|
}
|