llvm-project/llvm/test/Transforms/SCCP/ip-constant-ranges.ll

237 lines
5.9 KiB
LLVM

; RUN: opt < %s -ipsccp -S | FileCheck %s
; Constant range for %a is [1, 48) and for %b is [301, 1000)
; CHECK-LABEL: f1
; CHECK: ret i32 undef
define internal i32 @f1(i32 %a, i32 %b) {
entry:
%cmp.a = icmp sgt i32 %a, 300
%cmp.b = icmp sgt i32 %b, 300
%cmp.a2 = icmp ugt i32 %a, 300
%cmp.b2 = icmp ugt i32 %b, 300
%a.1 = select i1 %cmp.a, i32 1, i32 2
%b.1 = select i1 %cmp.b, i32 1, i32 2
%a.2 = select i1 %cmp.a2, i32 1, i32 2
%b.2 = select i1 %cmp.b2, i32 1, i32 2
%res1 = add i32 %a.1, %b.1
%res2 = add i32 %a.2, %b.2
%res3 = add i32 %res1, %res2
ret i32 %res3
}
; Constant range for %x is [47, 302)
; CHECK-LABEL: f2
; CHECK: %cmp = icmp sgt i32 %x, 300
; CHECK: %res1 = select i1 %cmp, i32 1, i32 2
; CHECK-NEXT: %res4 = select i1 %cmp4, i32 3, i32 4
; CHECK-NEXT: %res6 = add i32 %res1, 3
; CHECK-NEXT: %res7 = add i32 5, %res4
; CHECK-NEXT: %res = add i32 %res6, 5
; CHECK-NEXT: ret i32 %res
define internal i32 @f2(i32 %x) {
entry:
%cmp = icmp sgt i32 %x, 300
%cmp2 = icmp ne i32 %x, 10
%cmp3 = icmp sge i32 %x, 47
%cmp4 = icmp ugt i32 %x, 300
%cmp5 = icmp uge i32 %x, 47
%res1 = select i1 %cmp, i32 1, i32 2
%res2 = select i1 %cmp2, i32 3, i32 4
%res3 = select i1 %cmp3, i32 5, i32 6
%res4 = select i1 %cmp4, i32 3, i32 4
%res5 = select i1 %cmp5, i32 5, i32 6
%res6 = add i32 %res1, %res2
%res7 = add i32 %res3, %res4
%res = add i32 %res6, %res5
ret i32 %res
}
define i32 @caller1() {
entry:
%call1 = tail call i32 @f1(i32 1, i32 301)
%call2 = tail call i32 @f1(i32 47, i32 999)
%call3 = tail call i32 @f2(i32 47)
%call4 = tail call i32 @f2(i32 301)
%res.1 = add nsw i32 12, %call3
%res.2 = add nsw i32 %res.1, %call4
ret i32 %res.2
}
; x is overdefined, because constant ranges are only used for parameter
; values.
; CHECK-LABEL: f3
; CHECK: %cmp = icmp sgt i32 %x, 300
; CHECK: %res = select i1 %cmp, i32 1, i32 2
; CHECK: ret i32 %res
define internal i32 @f3(i32 %x) {
entry:
%cmp = icmp sgt i32 %x, 300
%res = select i1 %cmp, i32 1, i32 2
ret i32 %res
}
; The phi node could be converted in a ConstantRange.
define i32 @caller2(i1 %cmp) {
entry:
br i1 %cmp, label %if.true, label %end
if.true:
br label %end
end:
%res = phi i32 [ 0, %entry], [ 1, %if.true ]
%call1 = tail call i32 @f3(i32 %res)
ret i32 %call1
}
; CHECK-LABEL: f4
; CHECK: %cmp = icmp sgt i32 %x, 300
; CHECK: %res = select i1 %cmp, i32 1, i32 2
; CHECK: ret i32 %res
define internal i32 @f4(i32 %x) {
entry:
%cmp = icmp sgt i32 %x, 300
%res = select i1 %cmp, i32 1, i32 2
ret i32 %res
}
; ICmp could introduce bounds on ConstantRanges.
define i32 @caller3(i32 %x) {
entry:
%cmp = icmp sgt i32 %x, 300
br i1 %cmp, label %if.true, label %end
if.true:
%x.1 = tail call i32 @f4(i32 %x)
br label %end
end:
%res = phi i32 [ 0, %entry], [ %x.1, %if.true ]
ret i32 %res
}
; Check to make sure we do not attempt to access lattice values in unreachable
; blocks.
define i32 @test_unreachable() {
entry:
call i1 @test_unreachable_callee(i32 1)
call i1 @test_unreachable_callee(i32 2)
ret i32 1
}
define internal i1 @test_unreachable_callee(i32 %a) {
entry:
ret i1 true
unreachablebb:
%cmp = icmp eq i32 undef, %a
unreachable
}
; Check that we do not attempt to get range info for non-integer types and
; crash.
define double @test_struct({ double, double } %test) {
%v = extractvalue { double, double } %test, 0
%r = fmul double %v, %v
ret double %r
}
; Constant range for %x is [47, 302)
; CHECK-LABEL: @f5
; CHECK-NEXT: entry:
; CHECK-NEXT: %cmp = icmp sgt i32 %x, undef
; CHECK-NEXT: %res1 = select i1 %cmp, i32 1, i32 2
; CHECK-NEXT: %res = add i32 %res1, 3
; CHECK-NEXT: ret i32 %res
define internal i32 @f5(i32 %x) {
entry:
%cmp = icmp sgt i32 %x, undef
%cmp2 = icmp ne i32 undef, %x
%res1 = select i1 %cmp, i32 1, i32 2
%res2 = select i1 %cmp2, i32 3, i32 4
%res = add i32 %res1, %res2
ret i32 %res
}
define i32 @caller4() {
entry:
%call1 = tail call i32 @f5(i32 47)
%call2 = tail call i32 @f5(i32 301)
%res = add nsw i32 %call1, %call2
ret i32 %res
}
; Make sure we do re-evaluate the function after ParamState changes.
; CHECK-LABEL: @recursive_f
; CHECK-LABEL: entry:
; CHECK: %cmp = icmp eq i32 %i, 0
; CHECK-NEXT: br i1 %cmp, label %if.then, label %if.else
define internal i32 @recursive_f(i32 %i) {
entry:
%cmp = icmp eq i32 %i, 0
br i1 %cmp, label %if.then, label %if.else
if.then: ; preds = %entry
br label %return
if.else: ; preds = %entry
%sub = sub nsw i32 %i, 1
%call = call i32 @recursive_f(i32 %sub)
%add = add i32 %i, %call
br label %return
return: ; preds = %if.else, %if.then
%retval.0 = phi i32 [ 0, %if.then ], [ %add, %if.else ]
ret i32 %retval.0
}
; CHECK-LABEL: @caller5
; CHECK: %call = call i32 @recursive_f(i32 42)
; CHECK-NEXT: ret i32 %call
define i32 @caller5() {
entry:
%call = call i32 @recursive_f(i32 42)
ret i32 %call
}
define internal i32 @callee6.1(i32 %i) {
; CHECK-LABEL: define internal i32 @callee6.1(
; CHECK-NEXT: %res = call i32 @callee6.2(i32 %i)
; CHECK-NEXT: ret i32 undef
;
%res = call i32 @callee6.2(i32 %i)
ret i32 %res
}
define internal i32 @callee6.2(i32 %i) {
; CHECK-LABEL: define internal i32 @callee6.2(i32 %i) {
; CHECK-NEXT: br label %if.then
; CHECK-LABEL: if.then:
; CHECK-NEXT: ret i32 undef
;
%cmp = icmp ne i32 %i, 0
br i1 %cmp, label %if.then, label %if.else
if.then: ; preds = %entry
ret i32 1
if.else: ; preds = %entry
ret i32 2
}
define i32 @caller6() {
; CHECK-LABEL: define i32 @caller6() {
; CHECK-NEXT: %call.1 = call i32 @callee6.1(i32 30)
; CHECK-NEXT: %call.2 = call i32 @callee6.1(i32 43)
; CHECK-NEXT: ret i32 2
%call.1 = call i32 @callee6.1(i32 30)
%call.2 = call i32 @callee6.1(i32 43)
%res = add i32 %call.1, %call.2
ret i32 %res
}