forked from OSchip/llvm-project
1976 lines
82 KiB
C++
1976 lines
82 KiB
C++
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements loop fusion.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Transforms/LoopFusionUtils.h"
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#define DEBUG_TYPE "affine-loop-fusion"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
|
|
/// which fuses loop nests with single-writer/single-reader memref dependences
|
|
/// with the goal of improving locality.
|
|
|
|
// TODO: Support fusion of source loop nests which write to multiple
|
|
// memrefs, where each memref can have multiple users (if profitable).
|
|
// TODO: Extend this pass to check for fusion preventing dependences,
|
|
// and add support for more general loop fusion algorithms.
|
|
|
|
struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
|
|
LoopFusion() = default;
|
|
LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
|
|
bool maximalFusion) {
|
|
this->fastMemorySpace = fastMemorySpace;
|
|
this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
|
|
this->maximalFusion = maximalFusion;
|
|
}
|
|
|
|
void runOnFunction() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::createLoopFusionPass(unsigned fastMemorySpace,
|
|
uint64_t localBufSizeThreshold, bool maximalFusion) {
|
|
return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
|
|
maximalFusion);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// LoopNestStateCollector walks loop nests and collects load and store
|
|
// operations, and whether or not a region holding op other than ForOp and IfOp
|
|
// was encountered in the loop nest.
|
|
struct LoopNestStateCollector {
|
|
SmallVector<AffineForOp, 4> forOps;
|
|
SmallVector<Operation *, 4> loadOpInsts;
|
|
SmallVector<Operation *, 4> storeOpInsts;
|
|
bool hasNonAffineRegionOp = false;
|
|
|
|
void collect(Operation *opToWalk) {
|
|
opToWalk->walk([&](Operation *op) {
|
|
if (isa<AffineForOp>(op))
|
|
forOps.push_back(cast<AffineForOp>(op));
|
|
else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op))
|
|
hasNonAffineRegionOp = true;
|
|
else if (isa<AffineReadOpInterface>(op))
|
|
loadOpInsts.push_back(op);
|
|
else if (isa<AffineWriteOpInterface>(op))
|
|
storeOpInsts.push_back(op);
|
|
});
|
|
}
|
|
};
|
|
|
|
// MemRefDependenceGraph is a graph data structure where graph nodes are
|
|
// top-level operations in a FuncOp which contain load/store ops, and edges
|
|
// are memref dependences between the nodes.
|
|
// TODO: Add a more flexible dependence graph representation.
|
|
// TODO: Add a depth parameter to dependence graph construction.
|
|
struct MemRefDependenceGraph {
|
|
public:
|
|
// Node represents a node in the graph. A Node is either an entire loop nest
|
|
// rooted at the top level which contains loads/stores, or a top level
|
|
// load/store.
|
|
struct Node {
|
|
// The unique identifier of this node in the graph.
|
|
unsigned id;
|
|
// The top-level statement which is (or contains) a load/store.
|
|
Operation *op;
|
|
// List of load operations.
|
|
SmallVector<Operation *, 4> loads;
|
|
// List of store op insts.
|
|
SmallVector<Operation *, 4> stores;
|
|
Node(unsigned id, Operation *op) : id(id), op(op) {}
|
|
|
|
// Returns the load op count for 'memref'.
|
|
unsigned getLoadOpCount(Value memref) {
|
|
unsigned loadOpCount = 0;
|
|
for (auto *loadOpInst : loads) {
|
|
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
|
|
++loadOpCount;
|
|
}
|
|
return loadOpCount;
|
|
}
|
|
|
|
// Returns the store op count for 'memref'.
|
|
unsigned getStoreOpCount(Value memref) {
|
|
unsigned storeOpCount = 0;
|
|
for (auto *storeOpInst : stores) {
|
|
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
|
|
++storeOpCount;
|
|
}
|
|
return storeOpCount;
|
|
}
|
|
|
|
// Returns all store ops in 'storeOps' which access 'memref'.
|
|
void getStoreOpsForMemref(Value memref,
|
|
SmallVectorImpl<Operation *> *storeOps) {
|
|
for (auto *storeOpInst : stores) {
|
|
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
|
|
storeOps->push_back(storeOpInst);
|
|
}
|
|
}
|
|
|
|
// Returns all load ops in 'loadOps' which access 'memref'.
|
|
void getLoadOpsForMemref(Value memref,
|
|
SmallVectorImpl<Operation *> *loadOps) {
|
|
for (auto *loadOpInst : loads) {
|
|
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
|
|
loadOps->push_back(loadOpInst);
|
|
}
|
|
}
|
|
|
|
// Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
|
|
// has at least one load and store operation.
|
|
void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
|
|
llvm::SmallDenseSet<Value, 2> loadMemrefs;
|
|
for (auto *loadOpInst : loads) {
|
|
loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
|
|
}
|
|
for (auto *storeOpInst : stores) {
|
|
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
|
|
if (loadMemrefs.count(memref) > 0)
|
|
loadAndStoreMemrefSet->insert(memref);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Edge represents a data dependence between nodes in the graph.
|
|
struct Edge {
|
|
// The id of the node at the other end of the edge.
|
|
// If this edge is stored in Edge = Node.inEdges[i], then
|
|
// 'Node.inEdges[i].id' is the identifier of the source node of the edge.
|
|
// If this edge is stored in Edge = Node.outEdges[i], then
|
|
// 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
|
|
unsigned id;
|
|
// The SSA value on which this edge represents a dependence.
|
|
// If the value is a memref, then the dependence is between graph nodes
|
|
// which contain accesses to the same memref 'value'. If the value is a
|
|
// non-memref value, then the dependence is between a graph node which
|
|
// defines an SSA value and another graph node which uses the SSA value
|
|
// (e.g. a constant or load operation defining a value which is used inside
|
|
// a loop nest).
|
|
Value value;
|
|
};
|
|
|
|
// Map from node id to Node.
|
|
DenseMap<unsigned, Node> nodes;
|
|
// Map from node id to list of input edges.
|
|
DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
|
|
// Map from node id to list of output edges.
|
|
DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
|
|
// Map from memref to a count on the dependence edges associated with that
|
|
// memref.
|
|
DenseMap<Value, unsigned> memrefEdgeCount;
|
|
// The next unique identifier to use for newly created graph nodes.
|
|
unsigned nextNodeId = 0;
|
|
|
|
MemRefDependenceGraph() {}
|
|
|
|
// Initializes the dependence graph based on operations in 'f'.
|
|
// Returns true on success, false otherwise.
|
|
bool init(FuncOp f);
|
|
|
|
// Returns the graph node for 'id'.
|
|
Node *getNode(unsigned id) {
|
|
auto it = nodes.find(id);
|
|
assert(it != nodes.end());
|
|
return &it->second;
|
|
}
|
|
|
|
// Returns the graph node for 'forOp'.
|
|
Node *getForOpNode(AffineForOp forOp) {
|
|
for (auto &idAndNode : nodes)
|
|
if (idAndNode.second.op == forOp.getOperation())
|
|
return &idAndNode.second;
|
|
return nullptr;
|
|
}
|
|
|
|
// Adds a node with 'op' to the graph and returns its unique identifier.
|
|
unsigned addNode(Operation *op) {
|
|
Node node(nextNodeId++, op);
|
|
nodes.insert({node.id, node});
|
|
return node.id;
|
|
}
|
|
|
|
// Remove node 'id' (and its associated edges) from graph.
|
|
void removeNode(unsigned id) {
|
|
// Remove each edge in 'inEdges[id]'.
|
|
if (inEdges.count(id) > 0) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[id];
|
|
for (auto &inEdge : oldInEdges) {
|
|
removeEdge(inEdge.id, id, inEdge.value);
|
|
}
|
|
}
|
|
// Remove each edge in 'outEdges[id]'.
|
|
if (outEdges.count(id) > 0) {
|
|
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
|
|
for (auto &outEdge : oldOutEdges) {
|
|
removeEdge(id, outEdge.id, outEdge.value);
|
|
}
|
|
}
|
|
// Erase remaining node state.
|
|
inEdges.erase(id);
|
|
outEdges.erase(id);
|
|
nodes.erase(id);
|
|
}
|
|
|
|
// Returns true if node 'id' writes to any memref which escapes (or is an
|
|
// argument to) the function/block. Returns false otherwise.
|
|
bool writesToLiveInOrEscapingMemrefs(unsigned id) {
|
|
Node *node = getNode(id);
|
|
for (auto *storeOpInst : node->stores) {
|
|
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
|
|
auto *op = memref.getDefiningOp();
|
|
// Return true if 'memref' is a block argument.
|
|
if (!op)
|
|
return true;
|
|
// Return true if any use of 'memref' escapes the function.
|
|
for (auto *user : memref.getUsers())
|
|
if (!isa<AffineMapAccessInterface>(*user))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true iff there is an edge from node 'srcId' to node 'dstId' which
|
|
// is for 'value' if non-null, or for any value otherwise. Returns false
|
|
// otherwise.
|
|
bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
|
|
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
|
|
return false;
|
|
}
|
|
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
|
|
return edge.id == dstId && (!value || edge.value == value);
|
|
});
|
|
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
|
|
return edge.id == srcId && (!value || edge.value == value);
|
|
});
|
|
return hasOutEdge && hasInEdge;
|
|
}
|
|
|
|
// Adds an edge from node 'srcId' to node 'dstId' for 'value'.
|
|
void addEdge(unsigned srcId, unsigned dstId, Value value) {
|
|
if (!hasEdge(srcId, dstId, value)) {
|
|
outEdges[srcId].push_back({dstId, value});
|
|
inEdges[dstId].push_back({srcId, value});
|
|
if (value.getType().isa<MemRefType>())
|
|
memrefEdgeCount[value]++;
|
|
}
|
|
}
|
|
|
|
// Removes an edge from node 'srcId' to node 'dstId' for 'value'.
|
|
void removeEdge(unsigned srcId, unsigned dstId, Value value) {
|
|
assert(inEdges.count(dstId) > 0);
|
|
assert(outEdges.count(srcId) > 0);
|
|
if (value.getType().isa<MemRefType>()) {
|
|
assert(memrefEdgeCount.count(value) > 0);
|
|
memrefEdgeCount[value]--;
|
|
}
|
|
// Remove 'srcId' from 'inEdges[dstId]'.
|
|
for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
|
|
if ((*it).id == srcId && (*it).value == value) {
|
|
inEdges[dstId].erase(it);
|
|
break;
|
|
}
|
|
}
|
|
// Remove 'dstId' from 'outEdges[srcId]'.
|
|
for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
|
|
if ((*it).id == dstId && (*it).value == value) {
|
|
outEdges[srcId].erase(it);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true if there is a path in the dependence graph from node 'srcId'
|
|
// to node 'dstId'. Returns false otherwise.
|
|
bool hasDependencePath(unsigned srcId, unsigned dstId) {
|
|
// Worklist state is: <node-id, next-output-edge-index-to-visit>
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
|
|
worklist.push_back({srcId, 0});
|
|
// Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
|
|
while (!worklist.empty()) {
|
|
auto &idAndIndex = worklist.back();
|
|
// Return true if we have reached 'dstId'.
|
|
if (idAndIndex.first == dstId)
|
|
return true;
|
|
// Pop and continue if node has no out edges, or if all out edges have
|
|
// already been visited.
|
|
if (outEdges.count(idAndIndex.first) == 0 ||
|
|
idAndIndex.second == outEdges[idAndIndex.first].size()) {
|
|
worklist.pop_back();
|
|
continue;
|
|
}
|
|
// Get graph edge to traverse.
|
|
Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
|
|
// Increment next output edge index for 'idAndIndex'.
|
|
++idAndIndex.second;
|
|
// Add node at 'edge.id' to worklist.
|
|
worklist.push_back({edge.id, 0});
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns the input edge count for node 'id' and 'memref' from src nodes
|
|
// which access 'memref' with a store operation.
|
|
unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
|
|
unsigned inEdgeCount = 0;
|
|
if (inEdges.count(id) > 0)
|
|
for (auto &inEdge : inEdges[id])
|
|
if (inEdge.value == memref) {
|
|
Node *srcNode = getNode(inEdge.id);
|
|
// Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
|
|
if (srcNode->getStoreOpCount(memref) > 0)
|
|
++inEdgeCount;
|
|
}
|
|
return inEdgeCount;
|
|
}
|
|
|
|
// Returns the output edge count for node 'id' and 'memref' (if non-null),
|
|
// otherwise returns the total output edge count from node 'id'.
|
|
unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
|
|
unsigned outEdgeCount = 0;
|
|
if (outEdges.count(id) > 0)
|
|
for (auto &outEdge : outEdges[id])
|
|
if (!memref || outEdge.value == memref)
|
|
++outEdgeCount;
|
|
return outEdgeCount;
|
|
}
|
|
|
|
/// Return all nodes which define SSA values used in node 'id'.
|
|
void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) {
|
|
for (MemRefDependenceGraph::Edge edge : inEdges[id])
|
|
// By definition of edge, if the edge value is a non-memref value,
|
|
// then the dependence is between a graph node which defines an SSA value
|
|
// and another graph node which uses the SSA value.
|
|
if (!edge.value.getType().isa<MemRefType>())
|
|
definingNodes.insert(edge.id);
|
|
}
|
|
|
|
// Computes and returns an insertion point operation, before which the
|
|
// the fused <srcId, dstId> loop nest can be inserted while preserving
|
|
// dependences. Returns nullptr if no such insertion point is found.
|
|
Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
|
|
if (outEdges.count(srcId) == 0)
|
|
return getNode(dstId)->op;
|
|
|
|
// Skip if there is any defining node of 'dstId' that depends on 'srcId'.
|
|
DenseSet<unsigned> definingNodes;
|
|
gatherDefiningNodes(dstId, definingNodes);
|
|
if (llvm::any_of(definingNodes, [&](unsigned id) {
|
|
return hasDependencePath(srcId, id);
|
|
})) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Can't fuse: a defining op with a user in the dst "
|
|
"loop has dependence from the src loop\n");
|
|
return nullptr;
|
|
}
|
|
|
|
// Build set of insts in range (srcId, dstId) which depend on 'srcId'.
|
|
SmallPtrSet<Operation *, 2> srcDepInsts;
|
|
for (auto &outEdge : outEdges[srcId])
|
|
if (outEdge.id != dstId)
|
|
srcDepInsts.insert(getNode(outEdge.id)->op);
|
|
|
|
// Build set of insts in range (srcId, dstId) on which 'dstId' depends.
|
|
SmallPtrSet<Operation *, 2> dstDepInsts;
|
|
for (auto &inEdge : inEdges[dstId])
|
|
if (inEdge.id != srcId)
|
|
dstDepInsts.insert(getNode(inEdge.id)->op);
|
|
|
|
Operation *srcNodeInst = getNode(srcId)->op;
|
|
Operation *dstNodeInst = getNode(dstId)->op;
|
|
|
|
// Computing insertion point:
|
|
// *) Walk all operation positions in Block operation list in the
|
|
// range (src, dst). For each operation 'op' visited in this search:
|
|
// *) Store in 'firstSrcDepPos' the first position where 'op' has a
|
|
// dependence edge from 'srcNode'.
|
|
// *) Store in 'lastDstDepPost' the last position where 'op' has a
|
|
// dependence edge to 'dstNode'.
|
|
// *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
|
|
// operation insertion point (or return null pointer if no such
|
|
// insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
|
|
SmallVector<Operation *, 2> depInsts;
|
|
Optional<unsigned> firstSrcDepPos;
|
|
Optional<unsigned> lastDstDepPos;
|
|
unsigned pos = 0;
|
|
for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
|
|
it != Block::iterator(dstNodeInst); ++it) {
|
|
Operation *op = &(*it);
|
|
if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
|
|
firstSrcDepPos = pos;
|
|
if (dstDepInsts.count(op) > 0)
|
|
lastDstDepPos = pos;
|
|
depInsts.push_back(op);
|
|
++pos;
|
|
}
|
|
|
|
if (firstSrcDepPos.hasValue()) {
|
|
if (lastDstDepPos.hasValue()) {
|
|
if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
|
|
// No valid insertion point exists which preserves dependences.
|
|
return nullptr;
|
|
}
|
|
}
|
|
// Return the insertion point at 'firstSrcDepPos'.
|
|
return depInsts[firstSrcDepPos.getValue()];
|
|
}
|
|
// No dependence targets in range (or only dst deps in range), return
|
|
// 'dstNodInst' insertion point.
|
|
return dstNodeInst;
|
|
}
|
|
|
|
// Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
|
|
// taking into account that:
|
|
// *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
|
|
// *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
|
|
// private memref.
|
|
void updateEdges(unsigned srcId, unsigned dstId,
|
|
const DenseSet<Value> &privateMemRefs, bool removeSrcId) {
|
|
// For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
|
|
if (inEdges.count(srcId) > 0) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
|
|
for (auto &inEdge : oldInEdges) {
|
|
// Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
|
|
if (privateMemRefs.count(inEdge.value) == 0)
|
|
addEdge(inEdge.id, dstId, inEdge.value);
|
|
}
|
|
}
|
|
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
|
|
// If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
|
|
if (outEdges.count(srcId) > 0) {
|
|
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
|
|
for (auto &outEdge : oldOutEdges) {
|
|
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
|
|
if (outEdge.id == dstId)
|
|
removeEdge(srcId, outEdge.id, outEdge.value);
|
|
else if (removeSrcId) {
|
|
addEdge(dstId, outEdge.id, outEdge.value);
|
|
removeEdge(srcId, outEdge.id, outEdge.value);
|
|
}
|
|
}
|
|
}
|
|
// Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
|
|
// replaced by a private memref). These edges could come from nodes
|
|
// other than 'srcId' which were removed in the previous step.
|
|
if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
|
|
for (auto &inEdge : oldInEdges)
|
|
if (privateMemRefs.count(inEdge.value) > 0)
|
|
removeEdge(inEdge.id, dstId, inEdge.value);
|
|
}
|
|
}
|
|
|
|
// Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
|
|
// of sibling node 'sibId' into node 'dstId'.
|
|
void updateEdges(unsigned sibId, unsigned dstId) {
|
|
// For each edge in 'inEdges[sibId]':
|
|
// *) Add new edge from source node 'inEdge.id' to 'dstNode'.
|
|
// *) Remove edge from source node 'inEdge.id' to 'sibNode'.
|
|
if (inEdges.count(sibId) > 0) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
|
|
for (auto &inEdge : oldInEdges) {
|
|
addEdge(inEdge.id, dstId, inEdge.value);
|
|
removeEdge(inEdge.id, sibId, inEdge.value);
|
|
}
|
|
}
|
|
|
|
// For each edge in 'outEdges[sibId]' to node 'id'
|
|
// *) Add new edge from 'dstId' to 'outEdge.id'.
|
|
// *) Remove edge from 'sibId' to 'outEdge.id'.
|
|
if (outEdges.count(sibId) > 0) {
|
|
SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
|
|
for (auto &outEdge : oldOutEdges) {
|
|
addEdge(dstId, outEdge.id, outEdge.value);
|
|
removeEdge(sibId, outEdge.id, outEdge.value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds ops in 'loads' and 'stores' to node at 'id'.
|
|
void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
|
|
const SmallVectorImpl<Operation *> &stores) {
|
|
Node *node = getNode(id);
|
|
for (auto *loadOpInst : loads)
|
|
node->loads.push_back(loadOpInst);
|
|
for (auto *storeOpInst : stores)
|
|
node->stores.push_back(storeOpInst);
|
|
}
|
|
|
|
void clearNodeLoadAndStores(unsigned id) {
|
|
Node *node = getNode(id);
|
|
node->loads.clear();
|
|
node->stores.clear();
|
|
}
|
|
|
|
// Calls 'callback' for each input edge incident to node 'id' which carries a
|
|
// memref dependence.
|
|
void forEachMemRefInputEdge(unsigned id,
|
|
const std::function<void(Edge)> &callback) {
|
|
if (inEdges.count(id) > 0)
|
|
forEachMemRefEdge(inEdges[id], callback);
|
|
}
|
|
|
|
// Calls 'callback' for each output edge from node 'id' which carries a
|
|
// memref dependence.
|
|
void forEachMemRefOutputEdge(unsigned id,
|
|
const std::function<void(Edge)> &callback) {
|
|
if (outEdges.count(id) > 0)
|
|
forEachMemRefEdge(outEdges[id], callback);
|
|
}
|
|
|
|
// Calls 'callback' for each edge in 'edges' which carries a memref
|
|
// dependence.
|
|
void forEachMemRefEdge(ArrayRef<Edge> edges,
|
|
const std::function<void(Edge)> &callback) {
|
|
for (const auto &edge : edges) {
|
|
// Skip if 'edge' is not a memref dependence edge.
|
|
if (!edge.value.getType().isa<MemRefType>())
|
|
continue;
|
|
assert(nodes.count(edge.id) > 0);
|
|
// Skip if 'edge.id' is not a loop nest.
|
|
if (!isa<AffineForOp>(getNode(edge.id)->op))
|
|
continue;
|
|
// Visit current input edge 'edge'.
|
|
callback(edge);
|
|
}
|
|
}
|
|
|
|
void print(raw_ostream &os) const {
|
|
os << "\nMemRefDependenceGraph\n";
|
|
os << "\nNodes:\n";
|
|
for (const auto &idAndNode : nodes) {
|
|
os << "Node: " << idAndNode.first << "\n";
|
|
auto it = inEdges.find(idAndNode.first);
|
|
if (it != inEdges.end()) {
|
|
for (const auto &e : it->second)
|
|
os << " InEdge: " << e.id << " " << e.value << "\n";
|
|
}
|
|
it = outEdges.find(idAndNode.first);
|
|
if (it != outEdges.end()) {
|
|
for (const auto &e : it->second)
|
|
os << " OutEdge: " << e.id << " " << e.value << "\n";
|
|
}
|
|
}
|
|
}
|
|
void dump() const { print(llvm::errs()); }
|
|
};
|
|
|
|
/// Returns true if node 'srcId' can be removed after fusing it with node
|
|
/// 'dstId'. The node can be removed if any of the following conditions are met:
|
|
/// 1. 'srcId' has no output dependences after fusion and no escaping memrefs.
|
|
/// 2. 'srcId' has no output dependences after fusion, has escaping memrefs
|
|
/// and the fusion slice is maximal.
|
|
/// 3. 'srcId' has output dependences after fusion, the fusion slice is
|
|
/// maximal and the fusion insertion point dominates all the dependences.
|
|
static bool canRemoveSrcNodeAfterFusion(
|
|
unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
|
|
Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
|
|
MemRefDependenceGraph *mdg) {
|
|
|
|
Operation *dstNodeOp = mdg->getNode(dstId)->op;
|
|
bool hasOutDepsAfterFusion = false;
|
|
|
|
for (auto &outEdge : mdg->outEdges[srcId]) {
|
|
Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
|
|
// Skip dependence with dstOp since it will be removed after fusion.
|
|
if (depNodeOp == dstNodeOp)
|
|
continue;
|
|
|
|
// Only fusion within the same block is supported. Use domination analysis
|
|
// when needed.
|
|
if (depNodeOp->getBlock() != dstNodeOp->getBlock())
|
|
return false;
|
|
|
|
// Check if the insertion point of the fused loop dominates the dependence.
|
|
// Otherwise, the src loop can't be removed.
|
|
if (fusedLoopInsPoint != depNodeOp &&
|
|
!fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
|
|
"dominate dependence\n");
|
|
return false;
|
|
}
|
|
|
|
hasOutDepsAfterFusion = true;
|
|
}
|
|
|
|
// If src loop has dependences after fusion or it writes to an live-out or
|
|
// escaping memref, we can only remove it if the fusion slice is maximal so
|
|
// that all the dependences are preserved.
|
|
if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
|
|
Optional<bool> isMaximal = fusionSlice.isMaximal();
|
|
if (!isMaximal.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
|
|
"if fusion is maximal\n");
|
|
return false;
|
|
}
|
|
|
|
if (!isMaximal.getValue()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Src loop can't be removed: fusion is not maximal\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
|
|
/// 'dstId'. Candidates are sorted by node id order. This order corresponds to
|
|
/// the program order when the 'mdg' is created. However, program order is not
|
|
/// guaranteed and must not be required by the client. Program order won't be
|
|
/// held if the 'mdg' is reused from a previous fusion step or if the node
|
|
/// creation order changes in the future to support more advance cases.
|
|
// TODO: Move this to a loop fusion utility once 'mdg' is also moved.
|
|
static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
|
|
SmallVectorImpl<unsigned> &srcIdCandidates) {
|
|
// Skip if no input edges along which to fuse.
|
|
if (mdg->inEdges.count(dstId) == 0)
|
|
return;
|
|
|
|
// Gather memrefs from loads in 'dstId'.
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
DenseSet<Value> consumedMemrefs;
|
|
for (Operation *load : dstNode->loads)
|
|
consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
|
|
|
|
// Traverse 'dstId' incoming edges and gather the nodes that contain a store
|
|
// to one of the consumed memrefs.
|
|
for (auto &srcEdge : mdg->inEdges[dstId]) {
|
|
auto *srcNode = mdg->getNode(srcEdge.id);
|
|
// Skip if 'srcNode' is not a loop nest.
|
|
if (!isa<AffineForOp>(srcNode->op))
|
|
continue;
|
|
|
|
if (any_of(srcNode->stores, [&](Operation *op) {
|
|
auto storeOp = cast<AffineWriteOpInterface>(op);
|
|
return consumedMemrefs.count(storeOp.getMemRef()) > 0;
|
|
}))
|
|
srcIdCandidates.push_back(srcNode->id);
|
|
}
|
|
|
|
std::sort(srcIdCandidates.begin(), srcIdCandidates.end());
|
|
srcIdCandidates.erase(
|
|
std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
|
|
srcIdCandidates.end());
|
|
}
|
|
|
|
/// Returns in 'producerConsumerMemrefs' the memrefs involved in a
|
|
/// producer-consumer dependence between 'srcId' and 'dstId'.
|
|
static void
|
|
gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
|
|
MemRefDependenceGraph *mdg,
|
|
DenseSet<Value> &producerConsumerMemrefs) {
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
auto *srcNode = mdg->getNode(srcId);
|
|
gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
|
|
producerConsumerMemrefs);
|
|
}
|
|
|
|
/// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
|
|
/// that escape the function. A memref escapes the function if either:
|
|
/// 1. It's a function argument, or
|
|
/// 2. It's used by a non-affine op (e.g., std load/store, std call, etc.)
|
|
void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
|
|
DenseSet<Value> &escapingMemRefs) {
|
|
auto *node = mdg->getNode(id);
|
|
for (auto *storeOpInst : node->stores) {
|
|
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
|
|
if (escapingMemRefs.count(memref))
|
|
continue;
|
|
// Check if 'memref' escapes because it's a block argument.
|
|
if (memref.isa<BlockArgument>()) {
|
|
escapingMemRefs.insert(memref);
|
|
continue;
|
|
}
|
|
// Check if 'memref' escapes through a non-affine op (e.g., std load/store,
|
|
// call op, etc.).
|
|
for (Operation *user : memref.getUsers())
|
|
if (!isa<AffineMapAccessInterface>(*user))
|
|
escapingMemRefs.insert(memref);
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Initializes the data dependence graph by walking operations in 'f'.
|
|
// Assigns each node in the graph a node id based on program order in 'f'.
|
|
// TODO: Add support for taking a Block arg to construct the
|
|
// dependence graph at a different depth.
|
|
bool MemRefDependenceGraph::init(FuncOp f) {
|
|
LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
|
|
DenseMap<Value, SetVector<unsigned>> memrefAccesses;
|
|
|
|
// TODO: support multi-block functions.
|
|
if (!llvm::hasSingleElement(f))
|
|
return false;
|
|
|
|
DenseMap<Operation *, unsigned> forToNodeMap;
|
|
for (auto &op : f.front()) {
|
|
if (auto forOp = dyn_cast<AffineForOp>(op)) {
|
|
// Create graph node 'id' to represent top-level 'forOp' and record
|
|
// all loads and store accesses it contains.
|
|
LoopNestStateCollector collector;
|
|
collector.collect(&op);
|
|
// Return false if a region holding op other than 'affine.for' and
|
|
// 'affine.if' was found (not currently supported).
|
|
if (collector.hasNonAffineRegionOp)
|
|
return false;
|
|
Node node(nextNodeId++, &op);
|
|
for (auto *opInst : collector.loadOpInsts) {
|
|
node.loads.push_back(opInst);
|
|
auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
}
|
|
for (auto *opInst : collector.storeOpInsts) {
|
|
node.stores.push_back(opInst);
|
|
auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
}
|
|
forToNodeMap[&op] = node.id;
|
|
nodes.insert({node.id, node});
|
|
} else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
|
|
// Create graph node for top-level load op.
|
|
Node node(nextNodeId++, &op);
|
|
node.loads.push_back(&op);
|
|
auto memref = cast<AffineReadOpInterface>(op).getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
nodes.insert({node.id, node});
|
|
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
|
|
// Create graph node for top-level store op.
|
|
Node node(nextNodeId++, &op);
|
|
node.stores.push_back(&op);
|
|
auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
nodes.insert({node.id, node});
|
|
} else if (op.getNumRegions() != 0) {
|
|
// Return false if another region is found (not currently supported).
|
|
return false;
|
|
} else if (op.getNumResults() > 0 && !op.use_empty()) {
|
|
// Create graph node for top-level producer of SSA values, which
|
|
// could be used by loop nest nodes.
|
|
Node node(nextNodeId++, &op);
|
|
nodes.insert({node.id, node});
|
|
} else if (isa<CallOpInterface>(op)) {
|
|
// Create graph node for top-level Call Op that takes any argument of
|
|
// memref type. Call Op that returns one or more memref type results
|
|
// is already taken care of, by the previous conditions.
|
|
if (llvm::any_of(op.getOperandTypes(),
|
|
[&](Type t) { return t.isa<MemRefType>(); })) {
|
|
Node node(nextNodeId++, &op);
|
|
nodes.insert({node.id, node});
|
|
}
|
|
} else if (auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op)) {
|
|
// Create graph node for top-level op, which could have a memory write
|
|
// side effect.
|
|
SmallVector<MemoryEffects::EffectInstance, 1> effects;
|
|
effectInterface.getEffects(effects);
|
|
if (llvm::any_of(effects, [](const MemoryEffects::EffectInstance &it) {
|
|
return isa<MemoryEffects::Write, MemoryEffects::Free>(
|
|
it.getEffect());
|
|
})) {
|
|
Node node(nextNodeId++, &op);
|
|
nodes.insert({node.id, node});
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &idAndNode : nodes) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
|
|
<< *(idAndNode.second.op) << "\n");
|
|
(void)idAndNode;
|
|
}
|
|
|
|
// Add dependence edges between nodes which produce SSA values and their
|
|
// users. Load ops can be considered as the ones producing SSA values.
|
|
for (auto &idAndNode : nodes) {
|
|
const Node &node = idAndNode.second;
|
|
// Stores don't define SSA values, skip them.
|
|
if (!node.stores.empty())
|
|
continue;
|
|
auto *opInst = node.op;
|
|
for (auto value : opInst->getResults()) {
|
|
for (auto *user : value.getUsers()) {
|
|
SmallVector<AffineForOp, 4> loops;
|
|
getLoopIVs(*user, &loops);
|
|
if (loops.empty())
|
|
continue;
|
|
assert(forToNodeMap.count(loops[0].getOperation()) > 0);
|
|
unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
|
|
addEdge(node.id, userLoopNestId, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Walk memref access lists and add graph edges between dependent nodes.
|
|
for (auto &memrefAndList : memrefAccesses) {
|
|
unsigned n = memrefAndList.second.size();
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
unsigned srcId = memrefAndList.second[i];
|
|
bool srcHasStore =
|
|
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
|
|
for (unsigned j = i + 1; j < n; ++j) {
|
|
unsigned dstId = memrefAndList.second[j];
|
|
bool dstHasStore =
|
|
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
|
|
if (srcHasStore || dstHasStore)
|
|
addEdge(srcId, dstId, memrefAndList.first);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Sinks all sequential loops to the innermost levels (while preserving
|
|
// relative order among them) and moves all parallel loops to the
|
|
// outermost (while again preserving relative order among them).
|
|
// This can increase the loop depth at which we can fuse a slice, since we are
|
|
// pushing loop carried dependence to a greater depth in the loop nest.
|
|
static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
|
|
assert(isa<AffineForOp>(node->op));
|
|
AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
|
|
node->op = newRootForOp.getOperation();
|
|
}
|
|
|
|
// TODO: improve/complete this when we have target data.
|
|
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
|
auto elementType = memRefType.getElementType();
|
|
|
|
unsigned sizeInBits;
|
|
if (elementType.isIntOrFloat()) {
|
|
sizeInBits = elementType.getIntOrFloatBitWidth();
|
|
} else {
|
|
auto vectorType = elementType.cast<VectorType>();
|
|
sizeInBits =
|
|
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
|
}
|
|
return llvm::divideCeil(sizeInBits, 8);
|
|
}
|
|
|
|
// Creates and returns a private (single-user) memref for fused loop rooted
|
|
// at 'forOp', with (potentially reduced) memref size based on the
|
|
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
// TODO: consider refactoring the common code from generateDma and
|
|
// this one.
|
|
static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
|
|
unsigned dstLoopDepth,
|
|
Optional<unsigned> fastMemorySpace,
|
|
uint64_t localBufSizeThreshold) {
|
|
auto *forInst = forOp.getOperation();
|
|
|
|
// Create builder to insert alloc op just before 'forOp'.
|
|
OpBuilder b(forInst);
|
|
// Builder to create constants at the top level.
|
|
OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
|
|
// Create new memref type based on slice bounds.
|
|
auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
|
|
auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
|
|
unsigned rank = oldMemRefType.getRank();
|
|
|
|
// Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
MemRefRegion region(srcStoreOpInst->getLoc());
|
|
bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
|
|
(void)validRegion;
|
|
assert(validRegion && "unexpected memref region failure");
|
|
SmallVector<int64_t, 4> newShape;
|
|
std::vector<SmallVector<int64_t, 4>> lbs;
|
|
SmallVector<int64_t, 8> lbDivisors;
|
|
lbs.reserve(rank);
|
|
// Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
|
|
// by 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
Optional<int64_t> numElements =
|
|
region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
|
|
assert(numElements.hasValue() &&
|
|
"non-constant number of elts in local buffer");
|
|
|
|
const FlatAffineValueConstraints *cst = region.getConstraints();
|
|
// 'outerIVs' holds the values that this memory region is symbolic/parametric
|
|
// on; this would correspond to loop IVs surrounding the level at which the
|
|
// slice is being materialized.
|
|
SmallVector<Value, 8> outerIVs;
|
|
cst->getValues(rank, cst->getNumIds(), &outerIVs);
|
|
|
|
// Build 'rank' AffineExprs from MemRefRegion 'lbs'
|
|
SmallVector<AffineExpr, 4> offsets;
|
|
offsets.reserve(rank);
|
|
for (unsigned d = 0; d < rank; ++d) {
|
|
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
|
|
|
|
AffineExpr offset = top.getAffineConstantExpr(0);
|
|
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
|
|
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
|
|
}
|
|
assert(lbDivisors[d] > 0);
|
|
offset =
|
|
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
|
|
offsets.push_back(offset);
|
|
}
|
|
|
|
// Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
|
|
// by 'srcStoreOpInst'.
|
|
uint64_t bufSize =
|
|
getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
|
|
unsigned newMemSpace;
|
|
if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
|
|
newMemSpace = fastMemorySpace.getValue();
|
|
} else {
|
|
newMemSpace = oldMemRefType.getMemorySpaceAsInt();
|
|
}
|
|
auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
|
|
{}, newMemSpace);
|
|
|
|
// Create new private memref for fused loop 'forOp'. 'newShape' is always
|
|
// a constant shape.
|
|
// TODO: Create/move alloc ops for private memrefs closer to their
|
|
// consumer loop nests to reduce their live range. Currently they are added
|
|
// at the beginning of the function, because loop nests can be reordered
|
|
// during the fusion pass.
|
|
Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
|
|
|
|
// Build an AffineMap to remap access functions based on lower bound offsets.
|
|
SmallVector<AffineExpr, 4> remapExprs;
|
|
remapExprs.reserve(rank);
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
|
|
|
|
auto remapExpr =
|
|
simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
|
|
remapExprs.push_back(remapExpr);
|
|
}
|
|
|
|
auto indexRemap =
|
|
AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
|
|
|
|
// Replace all users of 'oldMemRef' with 'newMemRef'.
|
|
LogicalResult res =
|
|
replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
|
|
/*extraOperands=*/outerIVs,
|
|
/*symbolOperands=*/{},
|
|
/*domInstFilter=*/&*forOp.getBody()->begin());
|
|
assert(succeeded(res) &&
|
|
"replaceAllMemrefUsesWith should always succeed here");
|
|
(void)res;
|
|
return newMemRef;
|
|
}
|
|
|
|
/// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
|
|
/// 'dstId'), if there is any non-affine operation accessing 'memref', return
|
|
/// true. Otherwise, return false.
|
|
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
|
|
Value memref,
|
|
MemRefDependenceGraph *mdg) {
|
|
auto *srcNode = mdg->getNode(srcId);
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
Value::user_range users = memref.getUsers();
|
|
// For each MemRefDependenceGraph's node that is between 'srcNode' and
|
|
// 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
|
|
// non-affine operation in the node accesses the 'memref'.
|
|
for (auto &idAndNode : mdg->nodes) {
|
|
Operation *op = idAndNode.second.op;
|
|
// Take care of operations between 'srcNode' and 'dstNode'.
|
|
if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
|
|
// Walk inside the operation to find any use of the memref.
|
|
// Interrupt the walk if found.
|
|
auto walkResult = op->walk([&](Operation *user) {
|
|
// Skip affine ops.
|
|
if (isa<AffineMapAccessInterface>(*user))
|
|
return WalkResult::advance();
|
|
// Find a non-affine op that uses the memref.
|
|
if (llvm::is_contained(users, user))
|
|
return WalkResult::interrupt();
|
|
return WalkResult::advance();
|
|
});
|
|
if (walkResult.wasInterrupted())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether a memref value in node 'srcId' has a non-affine that
|
|
/// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
|
|
/// 'dstNode').
|
|
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
|
|
MemRefDependenceGraph *mdg) {
|
|
// Collect memref values in node 'srcId'.
|
|
auto *srcNode = mdg->getNode(srcId);
|
|
llvm::SmallDenseSet<Value, 2> memRefValues;
|
|
srcNode->op->walk([&](Operation *op) {
|
|
// Skip affine ops.
|
|
if (isa<AffineForOp>(op))
|
|
return WalkResult::advance();
|
|
for (Value v : op->getOperands())
|
|
// Collect memref values only.
|
|
if (v.getType().isa<MemRefType>())
|
|
memRefValues.insert(v);
|
|
return WalkResult::advance();
|
|
});
|
|
// Looking for users between node 'srcId' and node 'dstId'.
|
|
for (Value memref : memRefValues)
|
|
if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Checks the profitability of fusing a backwards slice of the loop nest
|
|
// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
|
|
// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
|
|
// the memref being produced and consumed, which is an input to the cost model.
|
|
// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
|
|
// 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
|
|
// fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
|
|
// same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
|
|
// unique store op in the src node, which will be used to check that the write
|
|
// region is the same after input-reuse fusion. Computation slices are provided
|
|
// in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
|
|
// fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
|
|
// profitable to fuse the candidate loop nests. Returns false otherwise.
|
|
// `dstLoopDepth` is set to the most profitable depth at which to materialize
|
|
// the source loop nest slice.
|
|
// The profitability model executes the following steps:
|
|
// *) Computes the backward computation slice at 'srcOpInst'. This
|
|
// computation slice of the loop nest surrounding 'srcOpInst' is
|
|
// represented by modified src loop bounds in 'sliceState', which are
|
|
// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
|
|
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
|
|
// loop nest is the total number of dynamic operation instances in the loop
|
|
// nest).
|
|
// *) Computes the cost of fusing a slice of the src loop nest into the dst
|
|
// loop nest at various values of dst loop depth, attempting to fuse
|
|
// the largest computation slice at the maximal dst loop depth (closest to
|
|
// the load) to minimize reuse distance and potentially enable subsequent
|
|
// load/store forwarding.
|
|
// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
|
|
// nest, at which the src computation slice is inserted/fused.
|
|
// NOTE: We attempt to maximize the dst loop depth, but there are cases
|
|
// where a particular setting for 'dstLoopNest' might fuse an unsliced
|
|
// loop (within the src computation slice) at a depth which results in
|
|
// excessive recomputation (see unit tests for examples).
|
|
// *) Compares the total cost of the unfused loop nests to the min cost fused
|
|
// loop nest computed in the previous step, and returns true if the latter
|
|
// is lower.
|
|
// TODO: Extend profitability analysis to support scenarios with multiple
|
|
// stores.
|
|
static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
|
|
AffineForOp dstForOp,
|
|
ArrayRef<ComputationSliceState> depthSliceUnions,
|
|
unsigned maxLegalFusionDepth,
|
|
unsigned *dstLoopDepth,
|
|
double computeToleranceThreshold) {
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
|
|
llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
|
|
llvm::dbgs() << dstForOp << "\n";
|
|
});
|
|
|
|
if (maxLegalFusionDepth == 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
|
|
return false;
|
|
}
|
|
|
|
// Compute cost of sliced and unsliced src loop nest.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
|
|
// Walk src loop nest and collect stats.
|
|
LoopNestStats srcLoopNestStats;
|
|
if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
|
|
return false;
|
|
|
|
// Compute cost of dst loop nest.
|
|
LoopNestStats dstLoopNestStats;
|
|
if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
|
|
return false;
|
|
|
|
// Search for min cost value for 'dstLoopDepth'. At each value of
|
|
// 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
|
|
// bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
|
|
// of these bounds). Next the union slice bounds are used to calculate
|
|
// the cost of the slice and the cost of the slice inserted into the dst
|
|
// loop nest at 'dstLoopDepth'.
|
|
uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
|
|
double maxStorageReduction = 0.0;
|
|
Optional<uint64_t> sliceMemEstimate = None;
|
|
|
|
// The best loop depth at which to materialize the slice.
|
|
Optional<unsigned> bestDstLoopDepth = None;
|
|
|
|
// Compute op instance count for the src loop nest without iteration slicing.
|
|
uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
|
|
|
|
// Compute src loop nest write region size.
|
|
MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
|
|
if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute MemRefRegion for source operation\n.");
|
|
return false;
|
|
}
|
|
|
|
Optional<int64_t> maybeSrcWriteRegionSizeBytes =
|
|
srcWriteRegion.getRegionSize();
|
|
if (!maybeSrcWriteRegionSizeBytes.hasValue())
|
|
return false;
|
|
int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
|
|
|
|
// Compute op instance count for the src loop nest.
|
|
uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
|
|
|
|
// Evaluate all depth choices for materializing the slice in the destination
|
|
// loop nest.
|
|
for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
|
|
const ComputationSliceState &slice = depthSliceUnions[i - 1];
|
|
// Skip slice union if it wasn't computed for this depth.
|
|
if (slice.isEmpty())
|
|
continue;
|
|
|
|
int64_t fusedLoopNestComputeCost;
|
|
if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
|
|
dstLoopNestStats, slice,
|
|
&fusedLoopNestComputeCost)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
|
|
continue;
|
|
}
|
|
|
|
double additionalComputeFraction =
|
|
fusedLoopNestComputeCost /
|
|
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
|
|
1;
|
|
|
|
// Determine what the slice write MemRefRegion would be, if the src loop
|
|
// nest slice 'slice' were to be inserted into the dst loop nest at loop
|
|
// depth 'i'.
|
|
MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
|
|
if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
|
|
&slice))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Failed to compute slice write region at loopDepth: " << i
|
|
<< "\n");
|
|
continue;
|
|
}
|
|
|
|
Optional<int64_t> maybeSliceWriteRegionSizeBytes =
|
|
sliceWriteRegion.getRegionSize();
|
|
if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
|
|
maybeSliceWriteRegionSizeBytes.getValue() == 0) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Failed to get slice write region size at loopDepth: " << i
|
|
<< "\n");
|
|
continue;
|
|
}
|
|
int64_t sliceWriteRegionSizeBytes =
|
|
maybeSliceWriteRegionSizeBytes.getValue();
|
|
|
|
// If we are fusing for reuse, check that write regions remain the same.
|
|
// TODO: Write region check should check sizes and offsets in
|
|
// each dimension, so that we are sure they are covering the same memref
|
|
// region. Also, move this out to a isMemRefRegionSuperSet helper function.
|
|
if (srcOpInst != srcStoreOpInst &&
|
|
sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
|
|
continue;
|
|
|
|
double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
|
|
static_cast<double>(sliceWriteRegionSizeBytes);
|
|
|
|
LLVM_DEBUG({
|
|
std::stringstream msg;
|
|
msg << " evaluating fusion profitability at depth : " << i << "\n"
|
|
<< std::fixed << std::setprecision(2)
|
|
<< " additional compute fraction: "
|
|
<< 100.0 * additionalComputeFraction << "%\n"
|
|
<< " storage reduction factor: " << storageReduction << "x\n"
|
|
<< " fused nest cost: " << fusedLoopNestComputeCost << "\n"
|
|
<< " src write region size: " << srcWriteRegionSizeBytes << "\n"
|
|
<< " slice write region size: " << sliceWriteRegionSizeBytes
|
|
<< "\n";
|
|
llvm::dbgs() << msg.str();
|
|
});
|
|
|
|
// TODO: This is a placeholder cost model.
|
|
// Among all choices that add an acceptable amount of redundant computation
|
|
// (as per computeToleranceThreshold), we will simply pick the one that
|
|
// reduces the intermediary size the most.
|
|
if ((storageReduction > maxStorageReduction) &&
|
|
(additionalComputeFraction < computeToleranceThreshold)) {
|
|
maxStorageReduction = storageReduction;
|
|
bestDstLoopDepth = i;
|
|
minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
|
|
sliceMemEstimate = sliceWriteRegionSizeBytes;
|
|
}
|
|
}
|
|
|
|
// A simple cost model: fuse if it reduces the memory footprint.
|
|
|
|
if (!bestDstLoopDepth.hasValue()) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "All fusion choices involve more than the threshold amount of "
|
|
"redundant computation; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!bestDstLoopDepth.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
|
|
return false;
|
|
}
|
|
|
|
// Set dstLoopDepth based on best values from search.
|
|
*dstLoopDepth = bestDstLoopDepth.getValue();
|
|
|
|
LLVM_DEBUG(
|
|
llvm::dbgs() << " LoopFusion fusion stats:"
|
|
<< "\n best loop depth: " << bestDstLoopDepth
|
|
<< "\n src loop nest compute cost: " << srcLoopNestCost
|
|
<< "\n dst loop nest compute cost: " << dstLoopNestCost
|
|
<< "\n fused loop nest compute cost: "
|
|
<< minFusedLoopNestComputeCost << "\n");
|
|
|
|
auto dstMemSize = getMemoryFootprintBytes(dstForOp);
|
|
auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
|
|
|
|
Optional<double> storageReduction = None;
|
|
|
|
if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " fusion memory benefit cannot be evaluated; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
|
|
auto srcMemSizeVal = srcMemSize.getValue();
|
|
auto dstMemSizeVal = dstMemSize.getValue();
|
|
|
|
assert(sliceMemEstimate.hasValue() && "expected value");
|
|
auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
|
|
<< " dst mem: " << dstMemSizeVal << "\n"
|
|
<< " fused mem: " << fusedMem << "\n"
|
|
<< " slice mem: " << sliceMemEstimate << "\n");
|
|
|
|
if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
storageReduction =
|
|
100.0 *
|
|
(1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
|
|
|
|
double additionalComputeFraction =
|
|
100.0 * (minFusedLoopNestComputeCost /
|
|
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
|
|
1);
|
|
(void)additionalComputeFraction;
|
|
LLVM_DEBUG({
|
|
std::stringstream msg;
|
|
msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
|
|
<< std::setprecision(2) << additionalComputeFraction
|
|
<< "% redundant computation and a ";
|
|
msg << (storageReduction.hasValue()
|
|
? std::to_string(storageReduction.getValue())
|
|
: "<unknown>");
|
|
msg << "% storage reduction.\n";
|
|
llvm::dbgs() << msg.str();
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// GreedyFusion greedily fuses loop nests which have a producer/consumer or
|
|
// input-reuse relationship on a memref, with the goal of improving locality.
|
|
//
|
|
// The steps of the producer-consumer fusion algorithm are as follows:
|
|
//
|
|
// *) A worklist is initialized with node ids from the dependence graph.
|
|
// *) For each node id in the worklist:
|
|
// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
|
|
// candidate destination AffineForOp into which fusion will be attempted.
|
|
// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
|
|
// *) For each LoadOp in 'dstLoadOps' do:
|
|
// *) Look up dependent loop nests which have a single store op to the same
|
|
// memref.
|
|
// *) Check if dependences would be violated by the fusion.
|
|
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
|
|
// bounds to be functions of 'dstLoopNest' IVs and symbols.
|
|
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
|
|
// at a loop depth determined by the cost model in 'isFusionProfitable'.
|
|
// *) Add the newly fused load/store operations to the state,
|
|
// and also add newly fused load ops to 'dstLoopOps' to be considered
|
|
// as fusion dst load ops in another iteration.
|
|
// *) Remove old src loop nest and its associated state.
|
|
//
|
|
// The steps of the input-reuse fusion algorithm are as follows:
|
|
//
|
|
// *) Initialize 'worklist' with node ids from the dependence graph.
|
|
// *) For each 'dstNode' in the worklist:
|
|
// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
|
|
// loads from the same memref, but which has no dependence paths to/from.
|
|
// *) Get a computation slice of 'sibLoopNest', which adjusts its loop
|
|
// bounds to be functions of 'dstLoopNest' IVs and symbols.
|
|
// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
|
|
// at a loop depth determined by the cost model in 'isFusionProfitable'.
|
|
// This function also checks that the memref write region of 'sibLoopNest',
|
|
// is preserved in the fused loop nest.
|
|
// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
|
|
//
|
|
// Given a graph where top-level operations are vertices in the set 'V' and
|
|
// edges in the set 'E' are dependences between vertices, this algorithm
|
|
// takes O(V) time for initialization, and has runtime O(V + E).
|
|
//
|
|
// This greedy algorithm is not 'maximal' due to the current restriction of
|
|
// fusing along single producer consumer edges, but there is a TODO: to fix
|
|
// this.
|
|
//
|
|
// TODO: Experiment with other fusion policies.
|
|
struct GreedyFusion {
|
|
public:
|
|
// The data dependence graph to traverse during fusion.
|
|
MemRefDependenceGraph *mdg;
|
|
// Worklist of graph nodes visited during the fusion pass.
|
|
SmallVector<unsigned, 8> worklist;
|
|
// Parameter for local buffer size threshold.
|
|
unsigned localBufSizeThreshold;
|
|
// Parameter for fast memory space.
|
|
Optional<unsigned> fastMemorySpace;
|
|
// If true, ignore any additional (redundant) computation tolerance threshold
|
|
// that would have prevented fusion.
|
|
bool maximalFusion;
|
|
// The amount of additional computation that is tolerated while fusing
|
|
// pair-wise as a fraction of the total computation.
|
|
double computeToleranceThreshold;
|
|
|
|
using Node = MemRefDependenceGraph::Node;
|
|
|
|
GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
|
|
Optional<unsigned> fastMemorySpace, bool maximalFusion,
|
|
double computeToleranceThreshold)
|
|
: mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
|
|
fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
|
|
computeToleranceThreshold(computeToleranceThreshold) {}
|
|
|
|
/// Initializes 'worklist' with nodes from 'mdg'.
|
|
void init() {
|
|
// TODO: Add a priority queue for prioritizing nodes by different
|
|
// metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
|
|
worklist.clear();
|
|
for (auto &idAndNode : mdg->nodes) {
|
|
const Node &node = idAndNode.second;
|
|
worklist.push_back(node.id);
|
|
}
|
|
}
|
|
|
|
// Run the GreedyFusion pass.
|
|
// *) First pass through the nodes fuses single-use producer nodes into their
|
|
// unique consumer.
|
|
// *) Second pass fuses sibling nodes which share no dependence edges.
|
|
// *) Third pass fuses any remaining producer nodes into their users.
|
|
void run() {
|
|
// TODO: Run this repeatedly until a fixed-point is reached.
|
|
fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
|
|
fuseSiblingNodes();
|
|
fuseProducerConsumerNodes(
|
|
/*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
|
|
eraseUnusedMemRefAllocations();
|
|
}
|
|
|
|
void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
|
|
LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
|
|
init();
|
|
while (!worklist.empty()) {
|
|
unsigned dstId = worklist.back();
|
|
worklist.pop_back();
|
|
|
|
// Skip if this node was removed (fused into another node).
|
|
if (mdg->nodes.count(dstId) == 0)
|
|
continue;
|
|
// Get 'dstNode' into which to attempt fusion.
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
// Skip if 'dstNode' is not a loop nest.
|
|
if (!isa<AffineForOp>(dstNode->op))
|
|
continue;
|
|
// Skip if 'dstNode' is a loop nest returning values.
|
|
// TODO: support loop nests that return values.
|
|
if (dstNode->op->getNumResults() > 0)
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
|
|
|
|
// Sink sequential loops in 'dstNode' (and thus raise parallel loops)
|
|
// while preserving relative order. This can increase the maximum loop
|
|
// depth at which we can fuse a slice of a producer loop nest into a
|
|
// consumer loop nest.
|
|
sinkSequentialLoops(dstNode);
|
|
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
|
|
|
|
// Try to fuse 'dstNode' with candidate producer loops until a fixed point
|
|
// is reached. Fusing two loops may expose new fusion opportunities.
|
|
bool dstNodeChanged;
|
|
do {
|
|
// Gather src loop candidates for 'dstNode' and visit them in "quasi"
|
|
// reverse program order to minimize the number of iterations needed to
|
|
// reach the fixed point. Note that this is a best effort approach since
|
|
// 'getProducerCandidates' does not always guarantee that program order
|
|
// in 'srcIdCandidates'.
|
|
dstNodeChanged = false;
|
|
SmallVector<unsigned, 16> srcIdCandidates;
|
|
getProducerCandidates(dstId, mdg, srcIdCandidates);
|
|
|
|
for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
|
|
// Get 'srcNode' from which to attempt fusion into 'dstNode'.
|
|
auto *srcNode = mdg->getNode(srcId);
|
|
auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
|
|
LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
|
|
<< " for dst loop " << dstId << "\n");
|
|
|
|
// Skip if 'srcNode' is a loop nest returning values.
|
|
// TODO: support loop nests that return values.
|
|
if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
|
|
continue;
|
|
|
|
DenseSet<Value> producerConsumerMemrefs;
|
|
gatherProducerConsumerMemrefs(srcId, dstId, mdg,
|
|
producerConsumerMemrefs);
|
|
|
|
// Skip if 'srcNode' out edge count on any memref is greater than
|
|
// 'maxSrcUserCount'.
|
|
if (any_of(producerConsumerMemrefs, [&](Value memref) {
|
|
return mdg->getOutEdgeCount(srcNode->id, memref) >
|
|
maxSrcUserCount;
|
|
}))
|
|
continue;
|
|
|
|
// Gather memrefs in 'srcNode' that are written and escape to the
|
|
// function (e.g., memref function arguments, returned memrefs,
|
|
// memrefs passed to function calls, etc.).
|
|
DenseSet<Value> srcEscapingMemRefs;
|
|
gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
|
|
|
|
// Skip if there are non-affine operations in between the 'srcNode'
|
|
// and 'dstNode' using their memrefs. If so, we wouldn't be able to
|
|
// compute a legal insertion point for now. 'srcNode' and 'dstNode'
|
|
// memrefs with non-affine operation users would be considered
|
|
// escaping memrefs so we can limit this check to only scenarios with
|
|
// escaping memrefs.
|
|
if (!srcEscapingMemRefs.empty() &&
|
|
hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Can't fuse: non-affine users in between the loops\n.");
|
|
continue;
|
|
}
|
|
|
|
// Compute an operation list insertion point for the fused loop
|
|
// nest which preserves dependences.
|
|
Operation *fusedLoopInsPoint =
|
|
mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
|
|
if (fusedLoopInsPoint == nullptr)
|
|
continue;
|
|
|
|
// Compute the innermost common loop depth for dstNode
|
|
// producer-consumer loads/stores.
|
|
SmallVector<Operation *, 2> dstMemrefOps;
|
|
for (Operation *op : dstNode->loads)
|
|
if (producerConsumerMemrefs.count(
|
|
cast<AffineReadOpInterface>(op).getMemRef()) > 0)
|
|
dstMemrefOps.push_back(op);
|
|
for (Operation *op : dstNode->stores)
|
|
if (producerConsumerMemrefs.count(
|
|
cast<AffineWriteOpInterface>(op).getMemRef()))
|
|
dstMemrefOps.push_back(op);
|
|
unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
|
|
|
|
// Check the feasibility of fusing src loop nest into dst loop nest
|
|
// at loop depths in range [1, dstLoopDepthTest].
|
|
unsigned maxLegalFusionDepth = 0;
|
|
SmallVector<ComputationSliceState, 8> depthSliceUnions;
|
|
depthSliceUnions.resize(dstLoopDepthTest);
|
|
FusionStrategy strategy(FusionStrategy::ProducerConsumer);
|
|
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
|
|
FusionResult result = mlir::canFuseLoops(
|
|
srcAffineForOp, dstAffineForOp,
|
|
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
|
|
|
|
if (result.value == FusionResult::Success)
|
|
maxLegalFusionDepth = i;
|
|
}
|
|
|
|
if (maxLegalFusionDepth == 0) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Can't fuse: fusion is not legal at any depth\n");
|
|
continue;
|
|
}
|
|
|
|
// Check if fusion would be profitable. We skip profitability analysis
|
|
// for maximal fusion since we already know the maximal legal depth to
|
|
// fuse.
|
|
unsigned bestDstLoopDepth = maxLegalFusionDepth;
|
|
if (!maximalFusion) {
|
|
// Retrieve producer stores from the src loop.
|
|
SmallVector<Operation *, 2> producerStores;
|
|
for (Operation *op : srcNode->stores)
|
|
if (producerConsumerMemrefs.count(
|
|
cast<AffineWriteOpInterface>(op).getMemRef()))
|
|
producerStores.push_back(op);
|
|
|
|
// TODO: Suppport multiple producer stores in profitability
|
|
// analysis. We limit profitability analysis to only scenarios with
|
|
// a single producer store for now. Note that some multi-store
|
|
// producer scenarios will still go through profitability analysis
|
|
// if only one of the stores is involved the producer-consumer
|
|
// relationship of the candidate loops.
|
|
assert(producerStores.size() > 0 && "Expected producer store");
|
|
if (producerStores.size() > 1)
|
|
LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
|
|
"supported for this case\n");
|
|
else if (!isFusionProfitable(producerStores[0], producerStores[0],
|
|
dstAffineForOp, depthSliceUnions,
|
|
maxLegalFusionDepth, &bestDstLoopDepth,
|
|
computeToleranceThreshold))
|
|
continue;
|
|
}
|
|
|
|
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
|
|
ComputationSliceState &bestSlice =
|
|
depthSliceUnions[bestDstLoopDepth - 1];
|
|
assert(!bestSlice.isEmpty() && "Missing slice union for depth");
|
|
|
|
// Determine if 'srcId' can be removed after fusion, taking into
|
|
// account remaining dependences, escaping memrefs and the fusion
|
|
// insertion point.
|
|
bool removeSrcNode = canRemoveSrcNodeAfterFusion(
|
|
srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
|
|
mdg);
|
|
|
|
DenseSet<Value> privateMemrefs;
|
|
for (Value memref : producerConsumerMemrefs) {
|
|
// If `memref` is an escaping one, do not create a private memref
|
|
// for the below scenarios, since doing so will leave the escaping
|
|
// memref unmodified as all the writes originally meant for the
|
|
// escaping memref would be performed on the private memref:
|
|
// 1. The source is to be removed after fusion,
|
|
// OR
|
|
// 2. The destination writes to `memref`.
|
|
if (srcEscapingMemRefs.count(memref) > 0 &&
|
|
(removeSrcNode || dstNode->getStoreOpCount(memref) > 0))
|
|
continue;
|
|
|
|
// Don't create a private memref if 'srcNode' has in edges on
|
|
// 'memref' or 'dstNode' has out edges on 'memref'.
|
|
if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 ||
|
|
mdg->getOutEdgeCount(dstId, memref) > 0)
|
|
continue;
|
|
|
|
// If 'srcNode' will be removed but it has out edges on 'memref' to
|
|
// nodes other than 'dstNode', we have to preserve dependences and
|
|
// cannot create a private memref.
|
|
if (removeSrcNode &&
|
|
any_of(mdg->outEdges[srcId], [&](const auto &edge) {
|
|
return edge.value == memref && edge.id != dstId;
|
|
}))
|
|
continue;
|
|
|
|
// Create a private version of this memref.
|
|
privateMemrefs.insert(memref);
|
|
}
|
|
|
|
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
|
|
fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
|
|
dstNodeChanged = true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Fused src loop " << srcId << " into dst loop " << dstId
|
|
<< " at depth " << bestDstLoopDepth << ":\n"
|
|
<< dstAffineForOp << "\n");
|
|
|
|
// Move 'dstAffineForOp' before 'insertPointInst' if needed.
|
|
if (fusedLoopInsPoint != dstAffineForOp.getOperation())
|
|
dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint);
|
|
|
|
// Update edges between 'srcNode' and 'dstNode'.
|
|
mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
|
|
removeSrcNode);
|
|
|
|
// Create private memrefs.
|
|
if (!privateMemrefs.empty()) {
|
|
// Gather stores for all the private-to-be memrefs.
|
|
DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
|
|
dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
|
|
Value storeMemRef = storeOp.getMemRef();
|
|
if (privateMemrefs.count(storeMemRef) > 0)
|
|
privateMemRefToStores[storeMemRef].push_back(
|
|
storeOp.getOperation());
|
|
});
|
|
|
|
// Replace original memrefs with private memrefs. Note that all the
|
|
// loads and stores on these memrefs will be replaced with a new
|
|
// loads and stores. Any reference to the original ones becomes
|
|
// invalid after this point.
|
|
for (auto &memrefToStoresPair : privateMemRefToStores) {
|
|
// TODO: Use union of memref write regions to compute
|
|
// private memref footprint.
|
|
SmallVector<Operation *, 4> &storesForMemref =
|
|
memrefToStoresPair.second;
|
|
Value newMemRef = createPrivateMemRef(
|
|
dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
|
|
fastMemorySpace, localBufSizeThreshold);
|
|
// Create new node in dependence graph for 'newMemRef' alloc op.
|
|
unsigned newMemRefNodeId =
|
|
mdg->addNode(newMemRef.getDefiningOp());
|
|
// Add edge from 'newMemRef' node to dstNode.
|
|
mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
|
|
}
|
|
// One or more entries for 'newMemRef' alloc op are inserted into
|
|
// the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
|
|
// reallocate, update dstNode.
|
|
dstNode = mdg->getNode(dstId);
|
|
}
|
|
|
|
// Collect dst loop stats after memref privatization transformation.
|
|
LoopNestStateCollector dstLoopCollector;
|
|
dstLoopCollector.collect(dstAffineForOp.getOperation());
|
|
|
|
// Clear and add back loads and stores.
|
|
mdg->clearNodeLoadAndStores(dstNode->id);
|
|
mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
|
|
dstLoopCollector.storeOpInsts);
|
|
|
|
if (removeSrcNode) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Removing src loop " << srcId << " after fusion\n");
|
|
// srcNode is no longer valid after it is removed from mdg.
|
|
srcAffineForOp.erase();
|
|
mdg->removeNode(srcId);
|
|
srcNode = nullptr;
|
|
}
|
|
}
|
|
} while (dstNodeChanged);
|
|
}
|
|
}
|
|
|
|
// Visits each node in the graph, and for each node, attempts to fuse it with
|
|
// its sibling nodes (nodes which share a parent, but no dependence edges).
|
|
void fuseSiblingNodes() {
|
|
LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
|
|
init();
|
|
while (!worklist.empty()) {
|
|
unsigned dstId = worklist.back();
|
|
worklist.pop_back();
|
|
|
|
// Skip if this node was removed (fused into another node).
|
|
if (mdg->nodes.count(dstId) == 0)
|
|
continue;
|
|
// Get 'dstNode' into which to attempt fusion.
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
// Skip if 'dstNode' is not a loop nest.
|
|
if (!isa<AffineForOp>(dstNode->op))
|
|
continue;
|
|
// Attempt to fuse 'dstNode' with its sibling nodes in the graph.
|
|
fuseWithSiblingNodes(dstNode);
|
|
}
|
|
}
|
|
|
|
// Attempt to fuse 'dstNode' with sibling nodes in the graph.
|
|
void fuseWithSiblingNodes(Node *dstNode) {
|
|
DenseSet<unsigned> visitedSibNodeIds;
|
|
std::pair<unsigned, Value> idAndMemref;
|
|
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
|
|
|
|
while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
|
|
unsigned sibId = idAndMemref.first;
|
|
Value memref = idAndMemref.second;
|
|
// TODO: Check that 'sibStoreOpInst' post-dominates all other
|
|
// stores to the same memref in 'sibNode' loop nest.
|
|
auto *sibNode = mdg->getNode(sibId);
|
|
// Compute an operation list insertion point for the fused loop
|
|
// nest which preserves dependences.
|
|
assert(sibNode->op->getBlock() == dstNode->op->getBlock());
|
|
Operation *insertPointInst =
|
|
sibNode->op->isBeforeInBlock(dstNode->op)
|
|
? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
|
|
: mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
|
|
if (insertPointInst == nullptr)
|
|
continue;
|
|
|
|
// Check if fusion would be profitable and at what depth.
|
|
|
|
// Get unique 'sibNode' load op to 'memref'.
|
|
SmallVector<Operation *, 2> sibLoadOpInsts;
|
|
sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
|
|
// Currently findSiblingNodeToFuse searches for siblings with one load.
|
|
assert(sibLoadOpInsts.size() == 1);
|
|
Operation *sibLoadOpInst = sibLoadOpInsts[0];
|
|
assert(!sibNode->stores.empty());
|
|
// TODO: Choose the store which postdominates all other stores.
|
|
auto *sibStoreOpInst = sibNode->stores.back();
|
|
|
|
// Gather 'dstNode' load ops to 'memref'.
|
|
SmallVector<Operation *, 2> dstLoadOpInsts;
|
|
dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
|
|
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
|
|
unsigned dstLoopDepthTest = dstLoopIVs.size();
|
|
auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
|
|
|
|
// Compute loop depth and slice union for fusion.
|
|
SmallVector<ComputationSliceState, 8> depthSliceUnions;
|
|
depthSliceUnions.resize(dstLoopDepthTest);
|
|
unsigned maxLegalFusionDepth = 0;
|
|
FusionStrategy strategy(memref);
|
|
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
|
|
FusionResult result = mlir::canFuseLoops(
|
|
sibAffineForOp, dstAffineForOp,
|
|
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
|
|
|
|
if (result.value == FusionResult::Success)
|
|
maxLegalFusionDepth = i;
|
|
}
|
|
|
|
// Skip if fusion is not feasible at any loop depths.
|
|
if (maxLegalFusionDepth == 0)
|
|
continue;
|
|
|
|
unsigned bestDstLoopDepth = maxLegalFusionDepth;
|
|
if (!maximalFusion) {
|
|
// Check if fusion would be profitable.
|
|
if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp,
|
|
depthSliceUnions, maxLegalFusionDepth,
|
|
&bestDstLoopDepth, computeToleranceThreshold))
|
|
continue;
|
|
}
|
|
|
|
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
|
|
assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
|
|
"Fusion depth has no computed slice union");
|
|
// Check if source loop is being inserted in the innermost
|
|
// destination loop. Based on this, the fused loop may be optimized
|
|
// further inside `fuseLoops`.
|
|
bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
|
|
// Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
|
|
mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
|
|
depthSliceUnions[bestDstLoopDepth - 1],
|
|
isInnermostInsertion);
|
|
|
|
auto dstForInst = cast<AffineForOp>(dstNode->op);
|
|
// Update operation position of fused loop nest (if needed).
|
|
if (insertPointInst != dstForInst.getOperation()) {
|
|
dstForInst->moveBefore(insertPointInst);
|
|
}
|
|
// Update data dependence graph state post fusion.
|
|
updateStateAfterSiblingFusion(sibNode, dstNode);
|
|
}
|
|
}
|
|
|
|
// Searches function argument uses and the graph from 'dstNode' looking for a
|
|
// fusion candidate sibling node which shares no dependences with 'dstNode'
|
|
// but which loads from the same memref. Returns true and sets
|
|
// 'idAndMemrefToFuse' on success. Returns false otherwise.
|
|
bool findSiblingNodeToFuse(Node *dstNode,
|
|
DenseSet<unsigned> *visitedSibNodeIds,
|
|
std::pair<unsigned, Value> *idAndMemrefToFuse) {
|
|
// Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
|
|
// on 'memref'.
|
|
auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
|
|
// Skip if 'outEdge' is not a read-after-write dependence.
|
|
// TODO: Remove restrict to single load op restriction.
|
|
if (sibNode->getLoadOpCount(memref) != 1)
|
|
return false;
|
|
// Skip if there exists a path of dependent edges between
|
|
// 'sibNode' and 'dstNode'.
|
|
if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
|
|
mdg->hasDependencePath(dstNode->id, sibNode->id))
|
|
return false;
|
|
// Skip sib node if it loads to (and stores from) the same memref on
|
|
// which it also has an input dependence edge.
|
|
DenseSet<Value> loadAndStoreMemrefSet;
|
|
sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
|
|
if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
|
|
return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
|
|
}))
|
|
return false;
|
|
|
|
// Check that all stores are to the same memref.
|
|
DenseSet<Value> storeMemrefs;
|
|
for (auto *storeOpInst : sibNode->stores) {
|
|
storeMemrefs.insert(
|
|
cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
|
|
}
|
|
if (storeMemrefs.size() != 1)
|
|
return false;
|
|
|
|
// Skip if a memref value in one node is used by a non-affine memref
|
|
// access that lies between 'dstNode' and 'sibNode'.
|
|
if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
|
|
hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
// Search for siblings which load the same memref function argument.
|
|
auto fn = dstNode->op->getParentOfType<FuncOp>();
|
|
for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
|
|
for (auto *user : fn.getArgument(i).getUsers()) {
|
|
if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
|
|
// Gather loops surrounding 'use'.
|
|
SmallVector<AffineForOp, 4> loops;
|
|
getLoopIVs(*user, &loops);
|
|
// Skip 'use' if it is not within a loop nest.
|
|
if (loops.empty())
|
|
continue;
|
|
Node *sibNode = mdg->getForOpNode(loops[0]);
|
|
assert(sibNode != nullptr);
|
|
// Skip 'use' if it not a sibling to 'dstNode'.
|
|
if (sibNode->id == dstNode->id)
|
|
continue;
|
|
// Skip 'use' if it has been visited.
|
|
if (visitedSibNodeIds->count(sibNode->id) > 0)
|
|
continue;
|
|
// Skip 'use' if it does not load from the same memref as 'dstNode'.
|
|
auto memref = loadOp.getMemRef();
|
|
if (dstNode->getLoadOpCount(memref) == 0)
|
|
continue;
|
|
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
|
|
if (canFuseWithSibNode(sibNode, memref)) {
|
|
visitedSibNodeIds->insert(sibNode->id);
|
|
idAndMemrefToFuse->first = sibNode->id;
|
|
idAndMemrefToFuse->second = memref;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for siblings by following edges through an intermediate src node.
|
|
// Collect candidate 'dstNode' input edges in 'inEdges'.
|
|
SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
|
|
mdg->forEachMemRefInputEdge(
|
|
dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
|
|
// Add 'inEdge' if it is a read-after-write dependence.
|
|
if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
|
|
mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
|
|
inEdges.push_back(inEdge);
|
|
});
|
|
|
|
// Search for sibling nodes to fuse by visiting output edges from each input
|
|
// edge in 'inEdges'.
|
|
for (auto &inEdge : inEdges) {
|
|
// Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
|
|
SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
|
|
mdg->forEachMemRefOutputEdge(
|
|
inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
|
|
unsigned sibNodeId = outEdge.id;
|
|
if (visitedSibNodeIds->count(sibNodeId) > 0)
|
|
return;
|
|
// Skip output edge if not a sibling using the same memref.
|
|
if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
|
|
return;
|
|
auto *sibNode = mdg->getNode(sibNodeId);
|
|
if (!isa<AffineForOp>(sibNode->op))
|
|
return;
|
|
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
|
|
if (canFuseWithSibNode(sibNode, outEdge.value)) {
|
|
// Add candidate 'outEdge' to sibling node.
|
|
outEdges.push_back(outEdge);
|
|
}
|
|
});
|
|
|
|
// Add first candidate if any were returned.
|
|
if (!outEdges.empty()) {
|
|
visitedSibNodeIds->insert(outEdges[0].id);
|
|
idAndMemrefToFuse->first = outEdges[0].id;
|
|
idAndMemrefToFuse->second = outEdges[0].value;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Update data dependence graph state to reflect sibling fusion of 'sibNode'
|
|
/// into 'dstNode'.
|
|
void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
|
|
// Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
|
|
mdg->updateEdges(sibNode->id, dstNode->id);
|
|
|
|
// Collect dst loop stats after memref privatization transformation.
|
|
auto dstForInst = cast<AffineForOp>(dstNode->op);
|
|
LoopNestStateCollector dstLoopCollector;
|
|
dstLoopCollector.collect(dstForInst.getOperation());
|
|
// Clear and add back loads and stores
|
|
mdg->clearNodeLoadAndStores(dstNode->id);
|
|
mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
|
|
dstLoopCollector.storeOpInsts);
|
|
// Remove old sibling loop nest if it no longer has outgoing dependence
|
|
// edges, and it does not write to a memref which escapes the
|
|
// function.
|
|
if (mdg->getOutEdgeCount(sibNode->id) == 0) {
|
|
mdg->removeNode(sibNode->id);
|
|
sibNode->op->erase();
|
|
}
|
|
}
|
|
|
|
// Clean up any allocs with no users.
|
|
void eraseUnusedMemRefAllocations() {
|
|
for (auto &pair : mdg->memrefEdgeCount) {
|
|
if (pair.second > 0)
|
|
continue;
|
|
auto memref = pair.first;
|
|
// Skip if there exist other uses (return operation or function calls).
|
|
if (!memref.use_empty())
|
|
continue;
|
|
// Use list expected to match the dep graph info.
|
|
auto *op = memref.getDefiningOp();
|
|
if (isa_and_nonnull<memref::AllocOp>(op))
|
|
op->erase();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void LoopFusion::runOnFunction() {
|
|
MemRefDependenceGraph g;
|
|
if (!g.init(getFunction()))
|
|
return;
|
|
|
|
Optional<unsigned> fastMemorySpaceOpt;
|
|
if (fastMemorySpace.hasValue())
|
|
fastMemorySpaceOpt = fastMemorySpace;
|
|
unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
|
|
GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
|
|
maximalFusion, computeToleranceThreshold);
|
|
fusion.run();
|
|
}
|