forked from OSchip/llvm-project
327 lines
12 KiB
C++
327 lines
12 KiB
C++
//===--------------------- TimelineView.cpp ---------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \brief
|
|
///
|
|
/// This file implements the TimelineView interface.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Views/TimelineView.h"
|
|
#include <numeric>
|
|
|
|
namespace llvm {
|
|
namespace mca {
|
|
|
|
TimelineView::TimelineView(const MCSubtargetInfo &sti, MCInstPrinter &Printer,
|
|
llvm::ArrayRef<llvm::MCInst> S, unsigned Iterations,
|
|
unsigned Cycles)
|
|
: InstructionView(sti, Printer, S), CurrentCycle(0),
|
|
MaxCycle(Cycles == 0 ? std::numeric_limits<unsigned>::max() : Cycles),
|
|
LastCycle(0), WaitTime(S.size()), UsedBuffer(S.size()) {
|
|
unsigned NumInstructions = getSource().size();
|
|
assert(Iterations && "Invalid number of iterations specified!");
|
|
NumInstructions *= Iterations;
|
|
Timeline.resize(NumInstructions);
|
|
TimelineViewEntry InvalidTVEntry = {-1, 0, 0, 0, 0};
|
|
std::fill(Timeline.begin(), Timeline.end(), InvalidTVEntry);
|
|
|
|
WaitTimeEntry NullWTEntry = {0, 0, 0};
|
|
std::fill(WaitTime.begin(), WaitTime.end(), NullWTEntry);
|
|
|
|
std::pair<unsigned, int> NullUsedBufferEntry = {/* Invalid resource ID*/ 0,
|
|
/* unknown buffer size */ -1};
|
|
std::fill(UsedBuffer.begin(), UsedBuffer.end(), NullUsedBufferEntry);
|
|
}
|
|
|
|
void TimelineView::onReservedBuffers(const InstRef &IR,
|
|
ArrayRef<unsigned> Buffers) {
|
|
if (IR.getSourceIndex() >= getSource().size())
|
|
return;
|
|
|
|
const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
|
|
std::pair<unsigned, int> BufferInfo = {0, -1};
|
|
for (const unsigned Buffer : Buffers) {
|
|
const MCProcResourceDesc &MCDesc = *SM.getProcResource(Buffer);
|
|
if (!BufferInfo.first || BufferInfo.second > MCDesc.BufferSize) {
|
|
BufferInfo.first = Buffer;
|
|
BufferInfo.second = MCDesc.BufferSize;
|
|
}
|
|
}
|
|
|
|
UsedBuffer[IR.getSourceIndex()] = BufferInfo;
|
|
}
|
|
|
|
void TimelineView::onEvent(const HWInstructionEvent &Event) {
|
|
const unsigned Index = Event.IR.getSourceIndex();
|
|
if (Index >= Timeline.size())
|
|
return;
|
|
|
|
switch (Event.Type) {
|
|
case HWInstructionEvent::Retired: {
|
|
TimelineViewEntry &TVEntry = Timeline[Index];
|
|
if (CurrentCycle < MaxCycle)
|
|
TVEntry.CycleRetired = CurrentCycle;
|
|
|
|
// Update the WaitTime entry which corresponds to this Index.
|
|
assert(TVEntry.CycleDispatched >= 0 && "Invalid TVEntry found!");
|
|
unsigned CycleDispatched = static_cast<unsigned>(TVEntry.CycleDispatched);
|
|
WaitTimeEntry &WTEntry = WaitTime[Index % getSource().size()];
|
|
WTEntry.CyclesSpentInSchedulerQueue +=
|
|
TVEntry.CycleIssued - CycleDispatched;
|
|
assert(CycleDispatched <= TVEntry.CycleReady &&
|
|
"Instruction cannot be ready if it hasn't been dispatched yet!");
|
|
WTEntry.CyclesSpentInSQWhileReady +=
|
|
TVEntry.CycleIssued - TVEntry.CycleReady;
|
|
if (CurrentCycle > TVEntry.CycleExecuted) {
|
|
WTEntry.CyclesSpentAfterWBAndBeforeRetire +=
|
|
(CurrentCycle - 1) - TVEntry.CycleExecuted;
|
|
}
|
|
break;
|
|
}
|
|
case HWInstructionEvent::Ready:
|
|
Timeline[Index].CycleReady = CurrentCycle;
|
|
break;
|
|
case HWInstructionEvent::Issued:
|
|
Timeline[Index].CycleIssued = CurrentCycle;
|
|
break;
|
|
case HWInstructionEvent::Executed:
|
|
Timeline[Index].CycleExecuted = CurrentCycle;
|
|
break;
|
|
case HWInstructionEvent::Dispatched:
|
|
// There may be multiple dispatch events. Microcoded instructions that are
|
|
// expanded into multiple uOps may require multiple dispatch cycles. Here,
|
|
// we want to capture the first dispatch cycle.
|
|
if (Timeline[Index].CycleDispatched == -1)
|
|
Timeline[Index].CycleDispatched = static_cast<int>(CurrentCycle);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if (CurrentCycle < MaxCycle)
|
|
LastCycle = std::max(LastCycle, CurrentCycle);
|
|
}
|
|
|
|
static raw_ostream::Colors chooseColor(unsigned CumulativeCycles,
|
|
unsigned Executions, int BufferSize) {
|
|
if (CumulativeCycles && BufferSize < 0)
|
|
return raw_ostream::MAGENTA;
|
|
unsigned Size = static_cast<unsigned>(BufferSize);
|
|
if (CumulativeCycles >= Size * Executions)
|
|
return raw_ostream::RED;
|
|
if ((CumulativeCycles * 2) >= Size * Executions)
|
|
return raw_ostream::YELLOW;
|
|
return raw_ostream::SAVEDCOLOR;
|
|
}
|
|
|
|
static void tryChangeColor(raw_ostream &OS, unsigned Cycles,
|
|
unsigned Executions, int BufferSize) {
|
|
if (!OS.has_colors())
|
|
return;
|
|
|
|
raw_ostream::Colors Color = chooseColor(Cycles, Executions, BufferSize);
|
|
if (Color == raw_ostream::SAVEDCOLOR) {
|
|
OS.resetColor();
|
|
return;
|
|
}
|
|
OS.changeColor(Color, /* bold */ true, /* BG */ false);
|
|
}
|
|
|
|
void TimelineView::printWaitTimeEntry(formatted_raw_ostream &OS,
|
|
const WaitTimeEntry &Entry,
|
|
unsigned SourceIndex,
|
|
unsigned Executions) const {
|
|
bool PrintingTotals = SourceIndex == getSource().size();
|
|
unsigned CumulativeExecutions = PrintingTotals ? Timeline.size() : Executions;
|
|
|
|
if (!PrintingTotals)
|
|
OS << SourceIndex << '.';
|
|
|
|
OS.PadToColumn(7);
|
|
|
|
double AverageTime1, AverageTime2, AverageTime3;
|
|
AverageTime1 =
|
|
(double)(Entry.CyclesSpentInSchedulerQueue * 10) / CumulativeExecutions;
|
|
AverageTime2 =
|
|
(double)(Entry.CyclesSpentInSQWhileReady * 10) / CumulativeExecutions;
|
|
AverageTime3 = (double)(Entry.CyclesSpentAfterWBAndBeforeRetire * 10) /
|
|
CumulativeExecutions;
|
|
|
|
OS << Executions;
|
|
OS.PadToColumn(13);
|
|
|
|
int BufferSize = PrintingTotals ? 0 : UsedBuffer[SourceIndex].second;
|
|
if (!PrintingTotals)
|
|
tryChangeColor(OS, Entry.CyclesSpentInSchedulerQueue, CumulativeExecutions,
|
|
BufferSize);
|
|
OS << format("%.1f", floor(AverageTime1 + 0.5) / 10);
|
|
OS.PadToColumn(20);
|
|
if (!PrintingTotals)
|
|
tryChangeColor(OS, Entry.CyclesSpentInSQWhileReady, CumulativeExecutions,
|
|
BufferSize);
|
|
OS << format("%.1f", floor(AverageTime2 + 0.5) / 10);
|
|
OS.PadToColumn(27);
|
|
if (!PrintingTotals)
|
|
tryChangeColor(OS, Entry.CyclesSpentAfterWBAndBeforeRetire,
|
|
CumulativeExecutions,
|
|
getSubTargetInfo().getSchedModel().MicroOpBufferSize);
|
|
OS << format("%.1f", floor(AverageTime3 + 0.5) / 10);
|
|
|
|
if (OS.has_colors())
|
|
OS.resetColor();
|
|
OS.PadToColumn(34);
|
|
}
|
|
|
|
void TimelineView::printAverageWaitTimes(raw_ostream &OS) const {
|
|
std::string Header =
|
|
"\n\nAverage Wait times (based on the timeline view):\n"
|
|
"[0]: Executions\n"
|
|
"[1]: Average time spent waiting in a scheduler's queue\n"
|
|
"[2]: Average time spent waiting in a scheduler's queue while ready\n"
|
|
"[3]: Average time elapsed from WB until retire stage\n\n"
|
|
" [0] [1] [2] [3]\n";
|
|
OS << Header;
|
|
formatted_raw_ostream FOS(OS);
|
|
unsigned Executions = Timeline.size() / getSource().size();
|
|
unsigned IID = 0;
|
|
for (const MCInst &Inst : getSource()) {
|
|
printWaitTimeEntry(FOS, WaitTime[IID], IID, Executions);
|
|
FOS << " " << printInstructionString(Inst) << '\n';
|
|
FOS.flush();
|
|
++IID;
|
|
}
|
|
|
|
// If the timeline contains more than one instruction,
|
|
// let's also print global averages.
|
|
if (getSource().size() != 1) {
|
|
WaitTimeEntry TotalWaitTime = std::accumulate(
|
|
WaitTime.begin(), WaitTime.end(), WaitTimeEntry{0, 0, 0},
|
|
[](const WaitTimeEntry &A, const WaitTimeEntry &B) {
|
|
return WaitTimeEntry{
|
|
A.CyclesSpentInSchedulerQueue + B.CyclesSpentInSchedulerQueue,
|
|
A.CyclesSpentInSQWhileReady + B.CyclesSpentInSQWhileReady,
|
|
A.CyclesSpentAfterWBAndBeforeRetire +
|
|
B.CyclesSpentAfterWBAndBeforeRetire};
|
|
});
|
|
printWaitTimeEntry(FOS, TotalWaitTime, IID, Executions);
|
|
FOS << " "
|
|
<< "<total>" << '\n';
|
|
FOS.flush();
|
|
}
|
|
}
|
|
|
|
void TimelineView::printTimelineViewEntry(formatted_raw_ostream &OS,
|
|
const TimelineViewEntry &Entry,
|
|
unsigned Iteration,
|
|
unsigned SourceIndex) const {
|
|
if (Iteration == 0 && SourceIndex == 0)
|
|
OS << '\n';
|
|
OS << '[' << Iteration << ',' << SourceIndex << ']';
|
|
OS.PadToColumn(10);
|
|
assert(Entry.CycleDispatched >= 0 && "Invalid TimelineViewEntry!");
|
|
unsigned CycleDispatched = static_cast<unsigned>(Entry.CycleDispatched);
|
|
for (unsigned I = 0, E = CycleDispatched; I < E; ++I)
|
|
OS << ((I % 5 == 0) ? '.' : ' ');
|
|
OS << TimelineView::DisplayChar::Dispatched;
|
|
if (CycleDispatched != Entry.CycleExecuted) {
|
|
// Zero latency instructions have the same value for CycleDispatched,
|
|
// CycleIssued and CycleExecuted.
|
|
for (unsigned I = CycleDispatched + 1, E = Entry.CycleIssued; I < E; ++I)
|
|
OS << TimelineView::DisplayChar::Waiting;
|
|
if (Entry.CycleIssued == Entry.CycleExecuted)
|
|
OS << TimelineView::DisplayChar::DisplayChar::Executed;
|
|
else {
|
|
if (CycleDispatched != Entry.CycleIssued)
|
|
OS << TimelineView::DisplayChar::Executing;
|
|
for (unsigned I = Entry.CycleIssued + 1, E = Entry.CycleExecuted; I < E;
|
|
++I)
|
|
OS << TimelineView::DisplayChar::Executing;
|
|
OS << TimelineView::DisplayChar::Executed;
|
|
}
|
|
}
|
|
|
|
for (unsigned I = Entry.CycleExecuted + 1, E = Entry.CycleRetired; I < E; ++I)
|
|
OS << TimelineView::DisplayChar::RetireLag;
|
|
if (Entry.CycleExecuted < Entry.CycleRetired)
|
|
OS << TimelineView::DisplayChar::Retired;
|
|
|
|
// Skip other columns.
|
|
for (unsigned I = Entry.CycleRetired + 1, E = LastCycle; I <= E; ++I)
|
|
OS << ((I % 5 == 0 || I == LastCycle) ? '.' : ' ');
|
|
}
|
|
|
|
static void printTimelineHeader(formatted_raw_ostream &OS, unsigned Cycles) {
|
|
OS << "\n\nTimeline view:\n";
|
|
if (Cycles >= 10) {
|
|
OS.PadToColumn(10);
|
|
for (unsigned I = 0; I <= Cycles; ++I) {
|
|
if (((I / 10) & 1) == 0)
|
|
OS << ' ';
|
|
else
|
|
OS << I % 10;
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
OS << "Index";
|
|
OS.PadToColumn(10);
|
|
for (unsigned I = 0; I <= Cycles; ++I) {
|
|
if (((I / 10) & 1) == 0)
|
|
OS << I % 10;
|
|
else
|
|
OS << ' ';
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
void TimelineView::printTimeline(raw_ostream &OS) const {
|
|
formatted_raw_ostream FOS(OS);
|
|
printTimelineHeader(FOS, LastCycle);
|
|
FOS.flush();
|
|
|
|
unsigned IID = 0;
|
|
ArrayRef<llvm::MCInst> Source = getSource();
|
|
const unsigned Iterations = Timeline.size() / Source.size();
|
|
for (unsigned Iteration = 0; Iteration < Iterations; ++Iteration) {
|
|
for (const MCInst &Inst : Source) {
|
|
const TimelineViewEntry &Entry = Timeline[IID];
|
|
// When an instruction is retired after timeline-max-cycles,
|
|
// its CycleRetired is left at 0. However, it's possible for
|
|
// a 0 latency instruction to be retired during cycle 0 and we
|
|
// don't want to early exit in that case. The CycleExecuted
|
|
// attribute is set correctly whether or not it is greater
|
|
// than timeline-max-cycles so we can use that to ensure
|
|
// we don't early exit because of a 0 latency instruction.
|
|
if (Entry.CycleRetired == 0 && Entry.CycleExecuted != 0)
|
|
return;
|
|
|
|
unsigned SourceIndex = IID % Source.size();
|
|
printTimelineViewEntry(FOS, Entry, Iteration, SourceIndex);
|
|
FOS << " " << printInstructionString(Inst) << '\n';
|
|
FOS.flush();
|
|
|
|
++IID;
|
|
}
|
|
}
|
|
}
|
|
|
|
json::Value TimelineView::toJSON() const {
|
|
json::Array TimelineInfo;
|
|
|
|
for (const TimelineViewEntry &TLE : Timeline) {
|
|
TimelineInfo.push_back(
|
|
json::Object({{"CycleDispatched", TLE.CycleDispatched},
|
|
{"CycleReady", TLE.CycleReady},
|
|
{"CycleIssued", TLE.CycleIssued},
|
|
{"CycleExecuted", TLE.CycleExecuted},
|
|
{"CycleRetired", TLE.CycleRetired}}));
|
|
}
|
|
return json::Object({{"TimelineInfo", std::move(TimelineInfo)}});
|
|
}
|
|
} // namespace mca
|
|
} // namespace llvm
|