llvm-project/llvm/lib/Target/ARM/ARMInstrThumb.td

1506 lines
55 KiB
TableGen

//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Thumb specific DAG Nodes.
//
def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def imm_sr_XFORM: SDNodeXForm<imm, [{
unsigned Imm = N->getZExtValue();
return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), MVT::i32);
}]>;
def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; }
def imm_sr : Operand<i32>, PatLeaf<(imm), [{
uint64_t Imm = N->getZExtValue();
return Imm > 0 && Imm <= 32;
}], imm_sr_XFORM> {
let PrintMethod = "printThumbSRImm";
let ParserMatchClass = ThumbSRImmAsmOperand;
}
def imm_comp_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
}]>;
def imm0_7_neg : PatLeaf<(i32 imm), [{
return (uint32_t)-N->getZExtValue() < 8;
}], imm_neg_XFORM>;
def imm0_255_comp : PatLeaf<(i32 imm), [{
return ~((uint32_t)N->getZExtValue()) < 256;
}]>;
def imm8_255 : ImmLeaf<i32, [{
return Imm >= 8 && Imm < 256;
}]>;
def imm8_255_neg : PatLeaf<(i32 imm), [{
unsigned Val = -N->getZExtValue();
return Val >= 8 && Val < 256;
}], imm_neg_XFORM>;
// Break imm's up into two pieces: an immediate + a left shift. This uses
// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
// to get the val/shift pieces.
def thumb_immshifted : PatLeaf<(imm), [{
return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
}]>;
def thumb_immshifted_val : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def thumb_immshifted_shamt : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
// Scaled 4 immediate.
def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
def t_imm0_1020s4 : Operand<i32> {
let PrintMethod = "printThumbS4ImmOperand";
let ParserMatchClass = t_imm0_1020s4_asmoperand;
let OperandType = "OPERAND_IMMEDIATE";
}
def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
def t_imm0_508s4 : Operand<i32> {
let PrintMethod = "printThumbS4ImmOperand";
let ParserMatchClass = t_imm0_508s4_asmoperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// Alias use only, so no printer is necessary.
def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
def t_imm0_508s4_neg : Operand<i32> {
let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// Define Thumb specific addressing modes.
// unsigned 8-bit, 2-scaled memory offset
class OperandUnsignedOffset_b8s2 : AsmOperandClass {
let Name = "UnsignedOffset_b8s2";
let PredicateMethod = "isUnsignedOffset<8, 2>";
}
def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;
// thumb style PC relative operand. signed, 8 bits magnitude,
// two bits shift. can be represented as either [pc, #imm], #imm,
// or relocatable expression...
def ThumbMemPC : AsmOperandClass {
let Name = "ThumbMemPC";
}
let OperandType = "OPERAND_PCREL" in {
def t_brtarget : Operand<OtherVT> {
let EncoderMethod = "getThumbBRTargetOpValue";
let DecoderMethod = "DecodeThumbBROperand";
}
// ADR instruction labels.
def t_adrlabel : Operand<i32> {
let EncoderMethod = "getThumbAdrLabelOpValue";
let PrintMethod = "printAdrLabelOperand<2>";
let ParserMatchClass = UnsignedOffset_b8s2;
}
def t_bcctarget : Operand<i32> {
let EncoderMethod = "getThumbBCCTargetOpValue";
let DecoderMethod = "DecodeThumbBCCTargetOperand";
}
def t_cbtarget : Operand<i32> {
let EncoderMethod = "getThumbCBTargetOpValue";
let DecoderMethod = "DecodeThumbCmpBROperand";
}
def t_bltarget : Operand<i32> {
let EncoderMethod = "getThumbBLTargetOpValue";
let DecoderMethod = "DecodeThumbBLTargetOperand";
}
def t_blxtarget : Operand<i32> {
let EncoderMethod = "getThumbBLXTargetOpValue";
let DecoderMethod = "DecodeThumbBLXOffset";
}
// t_addrmode_pc := <label> => pc + imm8 * 4
//
def t_addrmode_pc : MemOperand {
let EncoderMethod = "getAddrModePCOpValue";
let DecoderMethod = "DecodeThumbAddrModePC";
let PrintMethod = "printThumbLdrLabelOperand";
let ParserMatchClass = ThumbMemPC;
}
}
// t_addrmode_rr := reg + reg
//
def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
def t_addrmode_rr : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
let EncoderMethod = "getThumbAddrModeRegRegOpValue";
let PrintMethod = "printThumbAddrModeRROperand";
let DecoderMethod = "DecodeThumbAddrModeRR";
let ParserMatchClass = t_addrmode_rr_asm_operand;
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
// t_addrmode_rrs := reg + reg
//
// We use separate scaled versions because the Select* functions need
// to explicitly check for a matching constant and return false here so that
// the reg+imm forms will match instead. This is a horrible way to do that,
// as it forces tight coupling between the methods, but it's how selectiondag
// currently works.
def t_addrmode_rrs1 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
let EncoderMethod = "getThumbAddrModeRegRegOpValue";
let PrintMethod = "printThumbAddrModeRROperand";
let DecoderMethod = "DecodeThumbAddrModeRR";
let ParserMatchClass = t_addrmode_rr_asm_operand;
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
def t_addrmode_rrs2 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
let EncoderMethod = "getThumbAddrModeRegRegOpValue";
let DecoderMethod = "DecodeThumbAddrModeRR";
let PrintMethod = "printThumbAddrModeRROperand";
let ParserMatchClass = t_addrmode_rr_asm_operand;
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
def t_addrmode_rrs4 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
let EncoderMethod = "getThumbAddrModeRegRegOpValue";
let DecoderMethod = "DecodeThumbAddrModeRR";
let PrintMethod = "printThumbAddrModeRROperand";
let ParserMatchClass = t_addrmode_rr_asm_operand;
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
// t_addrmode_is4 := reg + imm5 * 4
//
def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
def t_addrmode_is4 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
let EncoderMethod = "getAddrModeISOpValue";
let DecoderMethod = "DecodeThumbAddrModeIS";
let PrintMethod = "printThumbAddrModeImm5S4Operand";
let ParserMatchClass = t_addrmode_is4_asm_operand;
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}
// t_addrmode_is2 := reg + imm5 * 2
//
def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
def t_addrmode_is2 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
let EncoderMethod = "getAddrModeISOpValue";
let DecoderMethod = "DecodeThumbAddrModeIS";
let PrintMethod = "printThumbAddrModeImm5S2Operand";
let ParserMatchClass = t_addrmode_is2_asm_operand;
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}
// t_addrmode_is1 := reg + imm5
//
def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
def t_addrmode_is1 : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
let EncoderMethod = "getAddrModeISOpValue";
let DecoderMethod = "DecodeThumbAddrModeIS";
let PrintMethod = "printThumbAddrModeImm5S1Operand";
let ParserMatchClass = t_addrmode_is1_asm_operand;
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}
// t_addrmode_sp := sp + imm8 * 4
//
// FIXME: This really shouldn't have an explicit SP operand at all. It should
// be implicit, just like in the instruction encoding itself.
def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
def t_addrmode_sp : MemOperand,
ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
let EncoderMethod = "getAddrModeThumbSPOpValue";
let DecoderMethod = "DecodeThumbAddrModeSP";
let PrintMethod = "printThumbAddrModeSPOperand";
let ParserMatchClass = t_addrmode_sp_asm_operand;
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def tADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
[(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
Requires<[IsThumb, IsThumb1Only]>;
def tADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
[(ARMcallseq_start imm:$amt)]>,
Requires<[IsThumb, IsThumb1Only]>;
}
class T1SystemEncoding<bits<8> opc>
: T1Encoding<0b101111> {
let Inst{9-8} = 0b11;
let Inst{7-0} = opc;
}
def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm",
[(int_arm_hint imm0_15:$imm)]>,
T1SystemEncoding<0x00>,
Requires<[IsThumb, HasV6M]> {
bits<4> imm;
let Inst{7-4} = imm;
}
class tHintAlias<string Asm, dag Result> : tInstAlias<Asm, Result> {
let Predicates = [IsThumb, HasV6M];
}
def : tHintAlias<"nop$p", (tHINT 0, pred:$p)>; // A8.6.110
def : tHintAlias<"yield$p", (tHINT 1, pred:$p)>; // A8.6.410
def : tHintAlias<"wfe$p", (tHINT 2, pred:$p)>; // A8.6.408
def : tHintAlias<"wfi$p", (tHINT 3, pred:$p)>; // A8.6.409
def : tHintAlias<"sev$p", (tHINT 4, pred:$p)>; // A8.6.157
def : tInstAlias<"sevl$p", (tHINT 5, pred:$p)> {
let Predicates = [IsThumb2, HasV8];
}
// The imm operand $val can be used by a debugger to store more information
// about the breakpoint.
def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
[]>,
T1Encoding<0b101111> {
let Inst{9-8} = 0b10;
// A8.6.22
bits<8> val;
let Inst{7-0} = val;
}
// default immediate for breakpoint mnemonic
def : InstAlias<"bkpt", (tBKPT 0)>, Requires<[IsThumb]>;
def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
[]>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> {
let Inst{9-6} = 0b1010;
bits<6> val;
let Inst{5-0} = val;
}
def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
[]>, T1Encoding<0b101101>, Requires<[IsNotMClass]>, Deprecated<HasV8Ops> {
bits<1> end;
// A8.6.156
let Inst{9-5} = 0b10010;
let Inst{4} = 1;
let Inst{3} = end;
let Inst{2-0} = 0b000;
}
// Change Processor State is a system instruction -- for disassembly only.
def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
NoItinerary, "cps$imod $iflags", []>,
T1Misc<0b0110011> {
// A8.6.38 & B6.1.1
bit imod;
bits<3> iflags;
let Inst{4} = imod;
let Inst{3} = 0;
let Inst{2-0} = iflags;
let DecoderMethod = "DecodeThumbCPS";
}
// For both thumb1 and thumb2.
let isNotDuplicable = 1, isCodeGenOnly = 1 in
def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
[(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
// A8.6.6
bits<3> dst;
let Inst{6-3} = 0b1111; // Rm = pc
let Inst{2-0} = dst;
}
// ADD <Rd>, sp, #<imm8>
// FIXME: This should not be marked as having side effects, and it should be
// rematerializable. Clearing the side effect bit causes miscompilations,
// probably because the instruction can be moved around.
def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
// A6.2 & A8.6.8
bits<3> dst;
bits<8> imm;
let Inst{10-8} = dst;
let Inst{7-0} = imm;
let DecoderMethod = "DecodeThumbAddSpecialReg";
}
// Thumb1 frame lowering is rather fragile, we hope to be able to use
// tADDrSPi, but we may need to insert a sequence that clobbers CPSR.
def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset),
NoItinerary, []>,
Requires<[IsThumb, IsThumb1Only]> {
let Defs = [CPSR];
}
// ADD sp, sp, #<imm7>
def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
IIC_iALUi, "add", "\t$Rdn, $imm", []>,
T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
// A6.2.5 & A8.6.8
bits<7> imm;
let Inst{6-0} = imm;
let DecoderMethod = "DecodeThumbAddSPImm";
}
// SUB sp, sp, #<imm7>
// FIXME: The encoding and the ASM string don't match up.
def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
// A6.2.5 & A8.6.214
bits<7> imm;
let Inst{6-0} = imm;
let DecoderMethod = "DecodeThumbAddSPImm";
}
def : tInstAlias<"add${p} sp, $imm",
(tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
def : tInstAlias<"add${p} sp, sp, $imm",
(tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
// Can optionally specify SP as a three operand instruction.
def : tInstAlias<"add${p} sp, sp, $imm",
(tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
def : tInstAlias<"sub${p} sp, sp, $imm",
(tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;
// ADD <Rm>, sp
def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
"add", "\t$Rdn, $sp, $Rn", []>,
T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
// A8.6.9 Encoding T1
bits<4> Rdn;
let Inst{7} = Rdn{3};
let Inst{6-3} = 0b1101;
let Inst{2-0} = Rdn{2-0};
let DecoderMethod = "DecodeThumbAddSPReg";
}
// ADD sp, <Rm>
def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
"add", "\t$Rdn, $Rm", []>,
T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
// A8.6.9 Encoding T2
bits<4> Rm;
let Inst{7} = 1;
let Inst{6-3} = Rm;
let Inst{2-0} = 0b101;
let DecoderMethod = "DecodeThumbAddSPReg";
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
// A6.2.3 & A8.6.25
bits<4> Rm;
let Inst{6-3} = Rm;
let Inst{2-0} = 0b000;
let Unpredictable{2-0} = 0b111;
}
}
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
[(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;
// Alternative return instruction used by vararg functions.
def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
2, IIC_Br, [],
(tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
}
// All calls clobber the non-callee saved registers. SP is marked as a use to
// prevent stack-pointer assignments that appear immediately before calls from
// potentially appearing dead.
let isCall = 1,
Defs = [LR], Uses = [SP] in {
// Also used for Thumb2
def tBL : TIx2<0b11110, 0b11, 1,
(outs), (ins pred:$p, t_bltarget:$func), IIC_Br,
"bl${p}\t$func",
[(ARMtcall tglobaladdr:$func)]>,
Requires<[IsThumb]>, Sched<[WriteBrL]> {
bits<24> func;
let Inst{26} = func{23};
let Inst{25-16} = func{20-11};
let Inst{13} = func{22};
let Inst{11} = func{21};
let Inst{10-0} = func{10-0};
}
// ARMv5T and above, also used for Thumb2
def tBLXi : TIx2<0b11110, 0b11, 0,
(outs), (ins pred:$p, t_blxtarget:$func), IIC_Br,
"blx${p}\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> {
bits<24> func;
let Inst{26} = func{23};
let Inst{25-16} = func{20-11};
let Inst{13} = func{22};
let Inst{11} = func{21};
let Inst{10-1} = func{10-1};
let Inst{0} = 0; // func{0} is assumed zero
}
// Also used for Thumb2
def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
"blx${p}\t$func",
[(ARMtcall GPR:$func)]>,
Requires<[IsThumb, HasV5T]>,
T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
bits<4> func;
let Inst{6-3} = func;
let Inst{2-0} = 0b000;
}
// ARMv4T
def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
4, IIC_Br,
[(ARMcall_nolink tGPR:$func)]>,
Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;
}
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
let isPredicable = 1 in
def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
"b", "\t$target", [(br bb:$target)]>,
T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
bits<11> target;
let Inst{10-0} = target;
let AsmMatchConverter = "cvtThumbBranches";
}
// Far jump
// Just a pseudo for a tBL instruction. Needed to let regalloc know about
// the clobber of LR.
let Defs = [LR] in
def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p),
4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>,
Sched<[WriteBrTbl]>;
def tBR_JTr : tPseudoInst<(outs),
(ins tGPR:$target, i32imm:$jt, i32imm:$id),
0, IIC_Br,
[(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>,
Sched<[WriteBrTbl]> {
list<Predicate> Predicates = [IsThumb, IsThumb1Only];
}
}
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br,
"b${p}\t$target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>,
T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
bits<4> p;
bits<8> target;
let Inst{11-8} = p;
let Inst{7-0} = target;
let AsmMatchConverter = "cvtThumbBranches";
}
// Tail calls
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
// IOS versions.
let Uses = [SP] in {
def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
4, IIC_Br, [],
(tBX GPR:$dst, (ops 14, zero_reg))>,
Requires<[IsThumb]>, Sched<[WriteBr]>;
}
// tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls
// on MachO), so it's in ARMInstrThumb2.td.
// Non-MachO version:
let Uses = [SP] in {
def tTAILJMPdND : tPseudoExpand<(outs),
(ins t_brtarget:$dst, pred:$p),
4, IIC_Br, [],
(tB t_brtarget:$dst, pred:$p)>,
Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>;
}
}
// A8.6.218 Supervisor Call (Software Interrupt)
// A8.6.16 B: Encoding T1
// If Inst{11-8} == 0b1111 then SEE SVC
let isCall = 1, Uses = [SP] in
def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
"svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
bits<8> imm;
let Inst{15-12} = 0b1101;
let Inst{11-8} = 0b1111;
let Inst{7-0} = imm;
}
// The assembler uses 0xDEFE for a trap instruction.
let isBarrier = 1, isTerminator = 1 in
def tTRAP : TI<(outs), (ins), IIC_Br,
"trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
let Inst = 0xdefe;
}
//===----------------------------------------------------------------------===//
// Load Store Instructions.
//
// Loads: reg/reg and reg/imm5
let canFoldAsLoad = 1, isReMaterializable = 1 in
multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
Operand AddrMode_r, Operand AddrMode_i,
AddrMode am, InstrItinClass itin_r,
InstrItinClass itin_i, string asm,
PatFrag opnode> {
def r : // reg/reg
T1pILdStEncode<reg_opc,
(outs tGPR:$Rt), (ins AddrMode_r:$addr),
am, itin_r, asm, "\t$Rt, $addr",
[(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
def i : // reg/imm5
T1pILdStEncodeImm<imm_opc, 1 /* Load */,
(outs tGPR:$Rt), (ins AddrMode_i:$addr),
am, itin_i, asm, "\t$Rt, $addr",
[(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
}
// Stores: reg/reg and reg/imm5
multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
Operand AddrMode_r, Operand AddrMode_i,
AddrMode am, InstrItinClass itin_r,
InstrItinClass itin_i, string asm,
PatFrag opnode> {
def r : // reg/reg
T1pILdStEncode<reg_opc,
(outs), (ins tGPR:$Rt, AddrMode_r:$addr),
am, itin_r, asm, "\t$Rt, $addr",
[(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
def i : // reg/imm5
T1pILdStEncodeImm<imm_opc, 0 /* Store */,
(outs), (ins tGPR:$Rt, AddrMode_i:$addr),
am, itin_i, asm, "\t$Rt, $addr",
[(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
}
// A8.6.57 & A8.6.60
defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rrs4,
t_addrmode_is4, AddrModeT1_4,
IIC_iLoad_r, IIC_iLoad_i, "ldr",
UnOpFrag<(load node:$Src)>>;
// A8.6.64 & A8.6.61
defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rrs1,
t_addrmode_is1, AddrModeT1_1,
IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
UnOpFrag<(zextloadi8 node:$Src)>>;
// A8.6.76 & A8.6.73
defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rrs2,
t_addrmode_is2, AddrModeT1_2,
IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
UnOpFrag<(zextloadi16 node:$Src)>>;
let AddedComplexity = 10 in
def tLDRSB : // A8.6.80
T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
AddrModeT1_1, IIC_iLoad_bh_r,
"ldrsb", "\t$Rt, $addr",
[(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>;
let AddedComplexity = 10 in
def tLDRSH : // A8.6.84
T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
AddrModeT1_2, IIC_iLoad_bh_r,
"ldrsh", "\t$Rt, $addr",
[(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>;
let canFoldAsLoad = 1 in
def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
"ldr", "\t$Rt, $addr",
[(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
T1LdStSP<{1,?,?}> {
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
let canFoldAsLoad = 1, isReMaterializable = 1 in
def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
"ldr", "\t$Rt, $addr",
[(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
T1Encoding<{0,1,0,0,1,?}> {
// A6.2 & A8.6.59
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
// A8.6.194 & A8.6.192
defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rrs4,
t_addrmode_is4, AddrModeT1_4,
IIC_iStore_r, IIC_iStore_i, "str",
BinOpFrag<(store node:$LHS, node:$RHS)>>;
// A8.6.197 & A8.6.195
defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rrs1,
t_addrmode_is1, AddrModeT1_1,
IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
// A8.6.207 & A8.6.205
defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rrs2,
t_addrmode_is2, AddrModeT1_2,
IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
"str", "\t$Rt, $addr",
[(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
T1LdStSP<{0,?,?}> {
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
// These require base address to be written back or one of the loaded regs.
let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
bits<3> Rn;
bits<8> regs;
let Inst{10-8} = Rn;
let Inst{7-0} = regs;
}
// Writeback version is just a pseudo, as there's no encoding difference.
// Writeback happens iff the base register is not in the destination register
// list.
def tLDMIA_UPD :
InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
"$Rn = $wb", IIC_iLoad_mu>,
PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
let Size = 2;
let OutOperandList = (outs GPR:$wb);
let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops);
let Pattern = [];
let isCodeGenOnly = 1;
let isPseudo = 1;
list<Predicate> Predicates = [IsThumb];
}
// There is no non-writeback version of STM for Thumb.
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
def tSTMIA_UPD : Thumb1I<(outs GPR:$wb),
(ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
AddrModeNone, 2, IIC_iStore_mu,
"stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
T1Encoding<{1,1,0,0,0,?}> {
bits<3> Rn;
bits<8> regs;
let Inst{10-8} = Rn;
let Inst{7-0} = regs;
}
} // hasSideEffects
def : InstAlias<"ldm${p} $Rn!, $regs",
(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>,
Requires<[IsThumb, IsThumb1Only]>;
let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
IIC_iPop,
"pop${p}\t$regs", []>,
T1Misc<{1,1,0,?,?,?,?}> {
bits<16> regs;
let Inst{8} = regs{15};
let Inst{7-0} = regs{7-0};
}
let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
IIC_iStore_m,
"push${p}\t$regs", []>,
T1Misc<{0,1,0,?,?,?,?}> {
bits<16> regs;
let Inst{8} = regs{14};
let Inst{7-0} = regs{7-0};
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
// Helper classes for encoding T1pI patterns:
class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1pI<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rm;
bits<3> Rn;
let Inst{5-3} = Rm;
let Inst{2-0} = Rn;
}
class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1pI<oops, iops, itin, opc, asm, pattern>,
T1Misc<opA> {
bits<3> Rm;
bits<3> Rd;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
// Helper classes for encoding T1sI patterns:
class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rd;
bits<3> Rn;
let Inst{5-3} = Rn;
let Inst{2-0} = Rd;
}
class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rm;
bits<3> Rn;
bits<3> Rd;
let Inst{8-6} = Rm;
let Inst{5-3} = Rn;
let Inst{2-0} = Rd;
}
class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rd;
bits<3> Rm;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
// Helper classes for encoding T1sIt patterns:
class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sIt<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rdn;
bits<3> Rm;
let Inst{5-3} = Rm;
let Inst{2-0} = Rdn;
}
class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sIt<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rdn;
bits<8> imm8;
let Inst{10-8} = Rdn;
let Inst{7-0} = imm8;
}
// Add with carry register
let isCommutable = 1, Uses = [CPSR] in
def tADC : // A8.6.2
T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
"adc", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// Add immediate
def tADDi3 : // A8.6.4 T1
T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
IIC_iALUi,
"add", "\t$Rd, $Rm, $imm3",
[(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
Sched<[WriteALU]> {
bits<3> imm3;
let Inst{8-6} = imm3;
}
def tADDi8 : // A8.6.4 T2
T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
(ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
"add", "\t$Rdn, $imm8",
[(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
Sched<[WriteALU]>;
// Add register
let isCommutable = 1 in
def tADDrr : // A8.6.6 T1
T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"add", "\t$Rd, $Rn, $Rm",
[(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
let hasSideEffects = 0 in
def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
"add", "\t$Rdn, $Rm", []>,
T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
// A8.6.6 T2
bits<4> Rdn;
bits<4> Rm;
let Inst{7} = Rdn{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rdn{2-0};
}
// AND register
let isCommutable = 1 in
def tAND : // A8.6.12
T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"and", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// ASR immediate
def tASRri : // A8.6.14
T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
IIC_iMOVsi,
"asr", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
Sched<[WriteALU]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// ASR register
def tASRrr : // A8.6.15
T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"asr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// BIC register
def tBIC : // A8.6.20
T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"bic", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
Sched<[WriteALU]>;
// CMN register
let isCompare = 1, Defs = [CPSR] in {
//FIXME: Disable CMN, as CCodes are backwards from compare expectations
// Compare-to-zero still works out, just not the relationals
//def tCMN : // A8.6.33
// T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
// IIC_iCMPr,
// "cmn", "\t$lhs, $rhs",
// [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
def tCMNz : // A8.6.33
T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iCMPr,
"cmn", "\t$Rn, $Rm",
[(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;
} // isCompare = 1, Defs = [CPSR]
// CMP immediate
let isCompare = 1, Defs = [CPSR] in {
def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
"cmp", "\t$Rn, $imm8",
[(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
// A8.6.35
bits<3> Rn;
bits<8> imm8;
let Inst{10-8} = Rn;
let Inst{7-0} = imm8;
}
// CMP register
def tCMPr : // A8.6.36 T1
T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iCMPr,
"cmp", "\t$Rn, $Rm",
[(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;
def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
"cmp", "\t$Rn, $Rm", []>,
T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
// A8.6.36 T2
bits<4> Rm;
bits<4> Rn;
let Inst{7} = Rn{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rn{2-0};
}
} // isCompare = 1, Defs = [CPSR]
// XOR register
let isCommutable = 1 in
def tEOR : // A8.6.45
T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"eor", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// LSL immediate
def tLSLri : // A8.6.88
T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
IIC_iMOVsi,
"lsl", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
Sched<[WriteALU]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// LSL register
def tLSLrr : // A8.6.89
T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"lsl", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// LSR immediate
def tLSRri : // A8.6.90
T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
IIC_iMOVsi,
"lsr", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
Sched<[WriteALU]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// LSR register
def tLSRrr : // A8.6.91
T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"lsr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// Move register
let isMoveImm = 1 in
def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
"mov", "\t$Rd, $imm8",
[(set tGPR:$Rd, imm0_255:$imm8)]>,
T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
// A8.6.96
bits<3> Rd;
bits<8> imm8;
let Inst{10-8} = Rd;
let Inst{7-0} = imm8;
}
// Because we have an explicit tMOVSr below, we need an alias to handle
// the immediate "movs" form here. Blech.
def : tInstAlias <"movs $Rdn, $imm",
(tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;
// A7-73: MOV(2) - mov setting flag.
let hasSideEffects = 0 in {
def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
2, IIC_iMOVr,
"mov", "\t$Rd, $Rm", "", []>,
T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
// A8.6.97
bits<4> Rd;
bits<4> Rm;
let Inst{7} = Rd{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rd{2-0};
}
let Defs = [CPSR] in
def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
"movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
// A8.6.97
bits<3> Rd;
bits<3> Rm;
let Inst{15-6} = 0b0000000000;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
} // hasSideEffects
// Multiply register
let isCommutable = 1 in
def tMUL : // A8.6.105 T1
Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
[(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
T1DataProcessing<0b1101> {
bits<3> Rd;
bits<3> Rn;
let Inst{5-3} = Rn;
let Inst{2-0} = Rd;
let AsmMatchConverter = "cvtThumbMultiply";
}
def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
pred:$p)>;
// Move inverse register
def tMVN : // A8.6.107
T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
"mvn", "\t$Rd, $Rn",
[(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;
// Bitwise or register
let isCommutable = 1 in
def tORR : // A8.6.114
T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"orr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
// Swaps
def tREV : // A8.6.134
T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"rev", "\t$Rd, $Rm",
[(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
def tREV16 : // A8.6.135
T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"rev16", "\t$Rd, $Rm",
[(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
def tREVSH : // A8.6.136
T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"revsh", "\t$Rd, $Rm",
[(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
// Rotate right register
def tROR : // A8.6.139
T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"ror", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
Sched<[WriteALU]>;
// Negate register
def tRSB : // A8.6.141
T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
IIC_iALUi,
"rsb", "\t$Rd, $Rn, #0",
[(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;
// Subtract with carry register
let Uses = [CPSR] in
def tSBC : // A8.6.151
T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"sbc", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>,
Sched<[WriteALU]>;
// Subtract immediate
def tSUBi3 : // A8.6.210 T1
T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
IIC_iALUi,
"sub", "\t$Rd, $Rm, $imm3",
[(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
Sched<[WriteALU]> {
bits<3> imm3;
let Inst{8-6} = imm3;
}
def tSUBi8 : // A8.6.210 T2
T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
(ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
"sub", "\t$Rdn, $imm8",
[(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
Sched<[WriteALU]>;
// Subtract register
def tSUBrr : // A8.6.212
T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"sub", "\t$Rd, $Rn, $Rm",
[(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
Sched<[WriteALU]>;
// Sign-extend byte
def tSXTB : // A8.6.222
T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"sxtb", "\t$Rd, $Rm",
[(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>,
Sched<[WriteALU]>;
// Sign-extend short
def tSXTH : // A8.6.224
T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"sxth", "\t$Rd, $Rm",
[(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>,
Sched<[WriteALU]>;
// Test
let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
def tTST : // A8.6.230
T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
"tst", "\t$Rn, $Rm",
[(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
Sched<[WriteALU]>;
// A8.8.247 UDF - Undefined (Encoding T1)
def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8",
[(int_arm_undefined imm0_255:$imm8)]>, Encoding16 {
bits<8> imm8;
let Inst{15-12} = 0b1101;
let Inst{11-8} = 0b1110;
let Inst{7-0} = imm8;
}
// Zero-extend byte
def tUXTB : // A8.6.262
T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"uxtb", "\t$Rd, $Rm",
[(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>,
Sched<[WriteALU]>;
// Zero-extend short
def tUXTH : // A8.6.264
T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"uxth", "\t$Rd, $Rm",
[(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
// Expanded after instruction selection into a branch sequence.
let usesCustomInserter = 1 in // Expanded after instruction selection.
def tMOVCCr_pseudo :
PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p),
NoItinerary,
[(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>;
// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.
def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
bits<3> Rd;
bits<8> addr;
let Inst{10-8} = Rd;
let Inst{7-0} = addr;
let DecoderMethod = "DecodeThumbAddSpecialReg";
}
let hasSideEffects = 0, isReMaterializable = 1 in
def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
2, IIC_iALUi, []>, Sched<[WriteALU]>;
let hasSideEffects = 1 in
def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
(ins i32imm:$label, nohash_imm:$id, pred:$p),
2, IIC_iALUi, []>, Sched<[WriteALU]>;
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
// This is a pseudo inst so that we can get the encoding right,
// complete with fixup for the aeabi_read_tp function.
let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
[(set R0, ARMthread_pointer)]>,
Sched<[WriteBr]>;
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
//
// eh_sjlj_setjmp() is an instruction sequence to store the return address and
// save #0 in R0 for the non-longjmp case. Since by its nature we may be coming
// from some other function to get here, and we're using the stack frame for the
// containing function to save/restore registers, we can't keep anything live in
// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
// tromped upon when we get here from a longjmp(). We force everything out of
// registers except for our own input by listing the relevant registers in
// Defs. By doing so, we also cause the prologue/epilogue code to actively
// preserve all of the callee-saved resgisters, which is exactly what we want.
// $val is a scratch register for our use.
let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ],
hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
usesCustomInserter = 1 in
def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
AddrModeNone, 0, NoItinerary, "","",
[(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
// FIXME: Non-IOS version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
Defs = [ R7, LR, SP ] in
def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
AddrModeNone, 0, IndexModeNone,
Pseudo, NoItinerary, "", "",
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsThumb]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// Comparisons
def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
(tCMPi8 tGPR:$Rn, imm0_255:$imm8)>;
def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
(tCMPr tGPR:$Rn, tGPR:$Rm)>;
// Add with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs),
(tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs),
(tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs),
(tADDrr tGPR:$lhs, tGPR:$rhs)>;
// Subtract with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
(tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
(tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs),
(tSUBrr tGPR:$lhs, tGPR:$rhs)>;
// Bswap 16 with load/store
def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rrs2:$addr)), (i32 16)),
(tREV16 (tLDRHr t_addrmode_rrs2:$addr))>;
def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)),
(tREV16 (tLDRHi t_addrmode_is2:$addr))>;
def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
t_addrmode_rrs2:$addr),
(tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rrs2:$addr)>;
def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)),
t_addrmode_is2:$addr),
(tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>;
// ConstantPool
def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
// GlobalAddress
def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr),
IIC_iLoadiALU,
[(set tGPR:$dst,
(ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsThumb, DontUseMovt]>;
def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src),
IIC_iLoad_i,
[(set tGPR:$dst,
(ARMWrapper tglobaladdr:$src))]>,
Requires<[IsThumb, DontUseMovt]>;
// JumpTable
def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(tLEApcrelJT tjumptable:$dst, imm:$id)>;
// Direct calls
def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
Requires<[IsThumb]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
Requires<[IsThumb, HasV5T, IsNotMClass]>;
// Indirect calls to ARM routines
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
Requires<[IsThumb, HasV5T]>;
// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_rrs1:$addr),
(tLDRBr t_addrmode_rrs1:$addr)>;
def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
(tLDRBi t_addrmode_is1:$addr)>;
// extload from the stack -> word load from the stack, as it avoids having to
// materialize the base in a separate register. This only works when a word
// load puts the byte/halfword value in the same place in the register that the
// byte/halfword load would, i.e. when little-endian.
def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
Requires<[IsThumb, IsThumb1Only, IsLE]>;
def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
Requires<[IsThumb, IsThumb1Only, IsLE]>;
def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>,
Requires<[IsThumb, IsThumb1Only, IsLE]>;
// extload -> zextload
def : T1Pat<(extloadi1 t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_rrs2:$addr), (tLDRHr t_addrmode_rrs2:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>;
// If it's impossible to use [r,r] address mode for sextload, select to
// ldr{b|h} + sxt{b|h} instead.
def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
(tSXTB (tLDRBi t_addrmode_is1:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
(tSXTB (tLDRBr t_addrmode_rrs1:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
(tSXTH (tLDRHi t_addrmode_is2:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
(tSXTH (tLDRHr t_addrmode_rrs2:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
(tASRri (tLSLri (tLDRBr t_addrmode_rrs1:$addr), 24), 24)>;
def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
(tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
(tASRri (tLSLri (tLDRHr t_addrmode_rrs2:$addr), 16), 16)>;
def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
(tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
(tLDRBi t_addrmode_is1:$src)>;
def : T1Pat<(atomic_load_8 t_addrmode_rrs1:$src),
(tLDRBr t_addrmode_rrs1:$src)>;
def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
(tLDRHi t_addrmode_is2:$src)>;
def : T1Pat<(atomic_load_16 t_addrmode_rrs2:$src),
(tLDRHr t_addrmode_rrs2:$src)>;
def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
(tLDRi t_addrmode_is4:$src)>;
def : T1Pat<(atomic_load_32 t_addrmode_rrs4:$src),
(tLDRr t_addrmode_rrs4:$src)>;
def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
(tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
def : T1Pat<(atomic_store_8 t_addrmode_rrs1:$ptr, tGPR:$val),
(tSTRBr tGPR:$val, t_addrmode_rrs1:$ptr)>;
def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
(tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
def : T1Pat<(atomic_store_16 t_addrmode_rrs2:$ptr, tGPR:$val),
(tSTRHr tGPR:$val, t_addrmode_rrs2:$ptr)>;
def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
(tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
def : T1Pat<(atomic_store_32 t_addrmode_rrs4:$ptr, tGPR:$val),
(tSTRr tGPR:$val, t_addrmode_rrs4:$ptr)>;
// Large immediate handling.
// Two piece imms.
def : T1Pat<(i32 thumb_immshifted:$src),
(tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
(thumb_immshifted_shamt imm:$src))>;
def : T1Pat<(i32 imm0_255_comp:$src),
(tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
// Pseudo instruction that combines ldr from constpool and add pc. This should
// be expanded into two instructions late to allow if-conversion and
// scheduling.
let isReMaterializable = 1 in
def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
NoItinerary,
[(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
imm:$cp))]>,
Requires<[IsThumb, IsThumb1Only]>;
// Pseudo-instruction for merged POP and return.
// FIXME: remove when we have a way to marking a MI with these properties.
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1 in
def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
2, IIC_iPop_Br, [],
(tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;
// Indirect branch using "mov pc, $Rm"
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
2, IIC_Br, [(brind GPR:$Rm)],
(tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
}
// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
// encoding is available on ARMv6K, but we don't differentiate that finely.
def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>;
// For round-trip assembly/disassembly, we have to handle a CPS instruction
// without any iflags. That's not, strictly speaking, valid syntax, but it's
// a useful extension and assembles to defined behaviour (the insn does
// nothing).
def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
// "neg" is and alias for "rsb rd, rn, #0"
def : tInstAlias<"neg${s}${p} $Rd, $Rm",
(tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;
// Implied destination operand forms for shifts.
def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
(tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
(tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
def : tInstAlias<"asr${s}${p} $Rdm, $imm",
(tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;