llvm-project/clang/lib/CodeGen/CodeGenModule.cpp

6368 lines
240 KiB
C++

//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGOpenMPRuntimeAMDGCN.h"
#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "CodeGenPGO.h"
#include "ConstantEmitter.h"
#include "CoverageMappingGen.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/TimeProfiler.h"
using namespace clang;
using namespace CodeGen;
static llvm::cl::opt<bool> LimitedCoverage(
"limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
llvm::cl::init(false));
static const char AnnotationSection[] = "llvm.metadata";
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
switch (CGM.getTarget().getCXXABI().getKind()) {
case TargetCXXABI::AppleARM64:
case TargetCXXABI::Fuchsia:
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericARM:
case TargetCXXABI::iOS:
case TargetCXXABI::WatchOS:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::WebAssembly:
case TargetCXXABI::XL:
return CreateItaniumCXXABI(CGM);
case TargetCXXABI::Microsoft:
return CreateMicrosoftCXXABI(CGM);
}
llvm_unreachable("invalid C++ ABI kind");
}
CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
const PreprocessorOptions &PPO,
const CodeGenOptions &CGO, llvm::Module &M,
DiagnosticsEngine &diags,
CoverageSourceInfo *CoverageInfo)
: Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
VMContext(M.getContext()), Types(*this), VTables(*this),
SanitizerMD(new SanitizerMetadata(*this)) {
// Initialize the type cache.
llvm::LLVMContext &LLVMContext = M.getContext();
VoidTy = llvm::Type::getVoidTy(LLVMContext);
Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
HalfTy = llvm::Type::getHalfTy(LLVMContext);
BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
FloatTy = llvm::Type::getFloatTy(LLVMContext);
DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
PointerAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
SizeSizeInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
IntAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
CharTy =
llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
IntPtrTy = llvm::IntegerType::get(LLVMContext,
C.getTargetInfo().getMaxPointerWidth());
Int8PtrTy = Int8Ty->getPointerTo(0);
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
AllocaInt8PtrTy = Int8Ty->getPointerTo(
M.getDataLayout().getAllocaAddrSpace());
ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
if (LangOpts.ObjC)
createObjCRuntime();
if (LangOpts.OpenCL)
createOpenCLRuntime();
if (LangOpts.OpenMP)
createOpenMPRuntime();
if (LangOpts.CUDA)
createCUDARuntime();
// Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
(!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
getCXXABI().getMangleContext()));
// If debug info or coverage generation is enabled, create the CGDebugInfo
// object.
if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
DebugInfo.reset(new CGDebugInfo(*this));
Block.GlobalUniqueCount = 0;
if (C.getLangOpts().ObjC)
ObjCData.reset(new ObjCEntrypoints());
if (CodeGenOpts.hasProfileClangUse()) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
if (auto E = ReaderOrErr.takeError()) {
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"Could not read profile %0: %1");
llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
<< EI.message();
});
} else
PGOReader = std::move(ReaderOrErr.get());
}
// If coverage mapping generation is enabled, create the
// CoverageMappingModuleGen object.
if (CodeGenOpts.CoverageMapping)
CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
// Generate the module name hash here if needed.
if (CodeGenOpts.UniqueInternalLinkageNames &&
!getModule().getSourceFileName().empty()) {
std::string Path = getModule().getSourceFileName();
// Check if a path substitution is needed from the MacroPrefixMap.
for (const auto &Entry : PPO.MacroPrefixMap)
if (Path.rfind(Entry.first, 0) != std::string::npos) {
Path = Entry.second + Path.substr(Entry.first.size());
break;
}
llvm::MD5 Md5;
Md5.update(Path);
llvm::MD5::MD5Result R;
Md5.final(R);
SmallString<32> Str;
llvm::MD5::stringifyResult(R, Str);
// Convert MD5hash to Decimal. Demangler suffixes can either contain
// numbers or characters but not both.
llvm::APInt IntHash(128, Str.str(), 16);
// Prepend "__uniq" before the hash for tools like profilers to understand
// that this symbol is of internal linkage type. The "__uniq" is the
// pre-determined prefix that is used to tell tools that this symbol was
// created with -funique-internal-linakge-symbols and the tools can strip or
// keep the prefix as needed.
ModuleNameHash = (Twine(".__uniq.") +
Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
}
}
CodeGenModule::~CodeGenModule() {}
void CodeGenModule::createObjCRuntime() {
// This is just isGNUFamily(), but we want to force implementors of
// new ABIs to decide how best to do this.
switch (LangOpts.ObjCRuntime.getKind()) {
case ObjCRuntime::GNUstep:
case ObjCRuntime::GCC:
case ObjCRuntime::ObjFW:
ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
return;
case ObjCRuntime::FragileMacOSX:
case ObjCRuntime::MacOSX:
case ObjCRuntime::iOS:
case ObjCRuntime::WatchOS:
ObjCRuntime.reset(CreateMacObjCRuntime(*this));
return;
}
llvm_unreachable("bad runtime kind");
}
void CodeGenModule::createOpenCLRuntime() {
OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
}
void CodeGenModule::createOpenMPRuntime() {
// Select a specialized code generation class based on the target, if any.
// If it does not exist use the default implementation.
switch (getTriple().getArch()) {
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
assert(getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.");
OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
break;
case llvm::Triple::amdgcn:
assert(getLangOpts().OpenMPIsDevice &&
"OpenMP AMDGCN is only prepared to deal with device code.");
OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
break;
default:
if (LangOpts.OpenMPSimd)
OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
else
OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
break;
}
}
void CodeGenModule::createCUDARuntime() {
CUDARuntime.reset(CreateNVCUDARuntime(*this));
}
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
Replacements[Name] = C;
}
void CodeGenModule::applyReplacements() {
for (auto &I : Replacements) {
StringRef MangledName = I.first();
llvm::Constant *Replacement = I.second;
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (!Entry)
continue;
auto *OldF = cast<llvm::Function>(Entry);
auto *NewF = dyn_cast<llvm::Function>(Replacement);
if (!NewF) {
if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
} else {
auto *CE = cast<llvm::ConstantExpr>(Replacement);
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
CE->getOpcode() == llvm::Instruction::GetElementPtr);
NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
}
}
// Replace old with new, but keep the old order.
OldF->replaceAllUsesWith(Replacement);
if (NewF) {
NewF->removeFromParent();
OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
NewF);
}
OldF->eraseFromParent();
}
}
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
GlobalValReplacements.push_back(std::make_pair(GV, C));
}
void CodeGenModule::applyGlobalValReplacements() {
for (auto &I : GlobalValReplacements) {
llvm::GlobalValue *GV = I.first;
llvm::Constant *C = I.second;
GV->replaceAllUsesWith(C);
GV->eraseFromParent();
}
}
// This is only used in aliases that we created and we know they have a
// linear structure.
static const llvm::GlobalObject *getAliasedGlobal(
const llvm::GlobalIndirectSymbol &GIS) {
llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
const llvm::Constant *C = &GIS;
for (;;) {
C = C->stripPointerCasts();
if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
return GO;
// stripPointerCasts will not walk over weak aliases.
auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
if (!GIS2)
return nullptr;
if (!Visited.insert(GIS2).second)
return nullptr;
C = GIS2->getIndirectSymbol();
}
}
void CodeGenModule::checkAliases() {
// Check if the constructed aliases are well formed. It is really unfortunate
// that we have to do this in CodeGen, but we only construct mangled names
// and aliases during codegen.
bool Error = false;
DiagnosticsEngine &Diags = getDiags();
for (const GlobalDecl &GD : Aliases) {
const auto *D = cast<ValueDecl>(GD.getDecl());
SourceLocation Location;
bool IsIFunc = D->hasAttr<IFuncAttr>();
if (const Attr *A = D->getDefiningAttr())
Location = A->getLocation();
else
llvm_unreachable("Not an alias or ifunc?");
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
if (!GV) {
Error = true;
Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
} else if (GV->isDeclaration()) {
Error = true;
Diags.Report(Location, diag::err_alias_to_undefined)
<< IsIFunc << IsIFunc;
} else if (IsIFunc) {
// Check resolver function type.
llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
GV->getType()->getPointerElementType());
assert(FTy);
if (!FTy->getReturnType()->isPointerTy())
Diags.Report(Location, diag::err_ifunc_resolver_return);
}
llvm::Constant *Aliasee = Alias->getIndirectSymbol();
llvm::GlobalValue *AliaseeGV;
if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
else
AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
StringRef AliasSection = SA->getName();
if (AliasSection != AliaseeGV->getSection())
Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
<< AliasSection << IsIFunc << IsIFunc;
}
// We have to handle alias to weak aliases in here. LLVM itself disallows
// this since the object semantics would not match the IL one. For
// compatibility with gcc we implement it by just pointing the alias
// to its aliasee's aliasee. We also warn, since the user is probably
// expecting the link to be weak.
if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
if (GA->isInterposable()) {
Diags.Report(Location, diag::warn_alias_to_weak_alias)
<< GV->getName() << GA->getName() << IsIFunc;
Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GA->getIndirectSymbol(), Alias->getType());
Alias->setIndirectSymbol(Aliasee);
}
}
}
if (!Error)
return;
for (const GlobalDecl &GD : Aliases) {
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
Alias->eraseFromParent();
}
}
void CodeGenModule::clear() {
DeferredDeclsToEmit.clear();
if (OpenMPRuntime)
OpenMPRuntime->clear();
}
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
StringRef MainFile) {
if (!hasDiagnostics())
return;
if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
if (MainFile.empty())
MainFile = "<stdin>";
Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
} else {
if (Mismatched > 0)
Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
if (Missing > 0)
Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
}
}
static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
llvm::Module &M) {
if (!LO.VisibilityFromDLLStorageClass)
return;
llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
CodeGenModule::GetLLVMVisibility(
LO.getExternDeclNoDLLStorageClassVisibility());
for (llvm::GlobalValue &GV : M.global_values()) {
if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
continue;
// Reset DSO locality before setting the visibility. This removes
// any effects that visibility options and annotations may have
// had on the DSO locality. Setting the visibility will implicitly set
// appropriate globals to DSO Local; however, this will be pessimistic
// w.r.t. to the normal compiler IRGen.
GV.setDSOLocal(false);
if (GV.isDeclarationForLinker()) {
GV.setVisibility(GV.getDLLStorageClass() ==
llvm::GlobalValue::DLLImportStorageClass
? ExternDeclDLLImportVisibility
: ExternDeclNoDLLStorageClassVisibility);
} else {
GV.setVisibility(GV.getDLLStorageClass() ==
llvm::GlobalValue::DLLExportStorageClass
? DLLExportVisibility
: NoDLLStorageClassVisibility);
}
GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
}
}
void CodeGenModule::Release() {
EmitDeferred();
EmitVTablesOpportunistically();
applyGlobalValReplacements();
applyReplacements();
checkAliases();
emitMultiVersionFunctions();
EmitCXXGlobalInitFunc();
EmitCXXGlobalCleanUpFunc();
registerGlobalDtorsWithAtExit();
EmitCXXThreadLocalInitFunc();
if (ObjCRuntime)
if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
AddGlobalCtor(ObjCInitFunction);
if (Context.getLangOpts().CUDA && CUDARuntime) {
if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
AddGlobalCtor(CudaCtorFunction);
}
if (OpenMPRuntime) {
if (llvm::Function *OpenMPRequiresDirectiveRegFun =
OpenMPRuntime->emitRequiresDirectiveRegFun()) {
AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
}
OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
OpenMPRuntime->clear();
}
if (PGOReader) {
getModule().setProfileSummary(
PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
llvm::ProfileSummary::PSK_Instr);
if (PGOStats.hasDiagnostics())
PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
}
EmitCtorList(GlobalCtors, "llvm.global_ctors");
EmitCtorList(GlobalDtors, "llvm.global_dtors");
EmitGlobalAnnotations();
EmitStaticExternCAliases();
EmitDeferredUnusedCoverageMappings();
if (CoverageMapping)
CoverageMapping->emit();
if (CodeGenOpts.SanitizeCfiCrossDso) {
CodeGenFunction(*this).EmitCfiCheckFail();
CodeGenFunction(*this).EmitCfiCheckStub();
}
emitAtAvailableLinkGuard();
if (Context.getTargetInfo().getTriple().isWasm() &&
!Context.getTargetInfo().getTriple().isOSEmscripten()) {
EmitMainVoidAlias();
}
emitLLVMUsed();
if (SanStats)
SanStats->finish();
if (CodeGenOpts.Autolink &&
(Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
EmitModuleLinkOptions();
}
// On ELF we pass the dependent library specifiers directly to the linker
// without manipulating them. This is in contrast to other platforms where
// they are mapped to a specific linker option by the compiler. This
// difference is a result of the greater variety of ELF linkers and the fact
// that ELF linkers tend to handle libraries in a more complicated fashion
// than on other platforms. This forces us to defer handling the dependent
// libs to the linker.
//
// CUDA/HIP device and host libraries are different. Currently there is no
// way to differentiate dependent libraries for host or device. Existing
// usage of #pragma comment(lib, *) is intended for host libraries on
// Windows. Therefore emit llvm.dependent-libraries only for host.
if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
for (auto *MD : ELFDependentLibraries)
NMD->addOperand(MD);
}
// Record mregparm value now so it is visible through rest of codegen.
if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
CodeGenOpts.NumRegisterParameters);
if (CodeGenOpts.DwarfVersion) {
getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
CodeGenOpts.DwarfVersion);
}
if (CodeGenOpts.Dwarf64)
getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
if (Context.getLangOpts().SemanticInterposition)
// Require various optimization to respect semantic interposition.
getModule().setSemanticInterposition(1);
if (CodeGenOpts.EmitCodeView) {
// Indicate that we want CodeView in the metadata.
getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
}
if (CodeGenOpts.CodeViewGHash) {
getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
}
if (CodeGenOpts.ControlFlowGuard) {
// Function ID tables and checks for Control Flow Guard (cfguard=2).
getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
} else if (CodeGenOpts.ControlFlowGuardNoChecks) {
// Function ID tables for Control Flow Guard (cfguard=1).
getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
}
if (CodeGenOpts.EHContGuard) {
// Function ID tables for EH Continuation Guard.
getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
}
if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
// We don't support LTO with 2 with different StrictVTablePointers
// FIXME: we could support it by stripping all the information introduced
// by StrictVTablePointers.
getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
llvm::Metadata *Ops[2] = {
llvm::MDString::get(VMContext, "StrictVTablePointers"),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 1))};
getModule().addModuleFlag(llvm::Module::Require,
"StrictVTablePointersRequirement",
llvm::MDNode::get(VMContext, Ops));
}
if (getModuleDebugInfo())
// We support a single version in the linked module. The LLVM
// parser will drop debug info with a different version number
// (and warn about it, too).
getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
llvm::DEBUG_METADATA_VERSION);
// We need to record the widths of enums and wchar_t, so that we can generate
// the correct build attributes in the ARM backend. wchar_size is also used by
// TargetLibraryInfo.
uint64_t WCharWidth =
Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
if ( Arch == llvm::Triple::arm
|| Arch == llvm::Triple::armeb
|| Arch == llvm::Triple::thumb
|| Arch == llvm::Triple::thumbeb) {
// The minimum width of an enum in bytes
uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
}
if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
StringRef ABIStr = Target.getABI();
llvm::LLVMContext &Ctx = TheModule.getContext();
getModule().addModuleFlag(llvm::Module::Error, "target-abi",
llvm::MDString::get(Ctx, ABIStr));
}
if (CodeGenOpts.SanitizeCfiCrossDso) {
// Indicate that we want cross-DSO control flow integrity checks.
getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
}
if (CodeGenOpts.WholeProgramVTables) {
// Indicate whether VFE was enabled for this module, so that the
// vcall_visibility metadata added under whole program vtables is handled
// appropriately in the optimizer.
getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
CodeGenOpts.VirtualFunctionElimination);
}
if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
getModule().addModuleFlag(llvm::Module::Override,
"CFI Canonical Jump Tables",
CodeGenOpts.SanitizeCfiCanonicalJumpTables);
}
if (CodeGenOpts.CFProtectionReturn &&
Target.checkCFProtectionReturnSupported(getDiags())) {
// Indicate that we want to instrument return control flow protection.
getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
1);
}
if (CodeGenOpts.CFProtectionBranch &&
Target.checkCFProtectionBranchSupported(getDiags())) {
// Indicate that we want to instrument branch control flow protection.
getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
1);
}
if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
Arch == llvm::Triple::aarch64_be) {
getModule().addModuleFlag(llvm::Module::Error,
"branch-target-enforcement",
LangOpts.BranchTargetEnforcement);
getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
LangOpts.hasSignReturnAddress());
getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
LangOpts.isSignReturnAddressScopeAll());
getModule().addModuleFlag(llvm::Module::Error,
"sign-return-address-with-bkey",
!LangOpts.isSignReturnAddressWithAKey());
}
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
llvm::LLVMContext &Ctx = TheModule.getContext();
getModule().addModuleFlag(
llvm::Module::Error, "MemProfProfileFilename",
llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
}
if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
// Indicate whether __nvvm_reflect should be configured to flush denormal
// floating point values to 0. (This corresponds to its "__CUDA_FTZ"
// property.)
getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
CodeGenOpts.FP32DenormalMode.Output !=
llvm::DenormalMode::IEEE);
}
// Emit OpenCL specific module metadata: OpenCL/SPIR version.
if (LangOpts.OpenCL) {
EmitOpenCLMetadata();
// Emit SPIR version.
if (getTriple().isSPIR()) {
// SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
// opencl.spir.version named metadata.
// C++ is backwards compatible with OpenCL v2.0.
auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
llvm::Metadata *SPIRVerElts[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, Version / 100)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, (Version / 100 > 1) ? 0 : 2))};
llvm::NamedMDNode *SPIRVerMD =
TheModule.getOrInsertNamedMetadata("opencl.spir.version");
llvm::LLVMContext &Ctx = TheModule.getContext();
SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
}
}
if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
assert(PLevel < 3 && "Invalid PIC Level");
getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
if (Context.getLangOpts().PIE)
getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
}
if (getCodeGenOpts().CodeModel.size() > 0) {
unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
.Case("tiny", llvm::CodeModel::Tiny)
.Case("small", llvm::CodeModel::Small)
.Case("kernel", llvm::CodeModel::Kernel)
.Case("medium", llvm::CodeModel::Medium)
.Case("large", llvm::CodeModel::Large)
.Default(~0u);
if (CM != ~0u) {
llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
getModule().setCodeModel(codeModel);
}
}
if (CodeGenOpts.NoPLT)
getModule().setRtLibUseGOT();
SimplifyPersonality();
if (getCodeGenOpts().EmitDeclMetadata)
EmitDeclMetadata();
if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
EmitCoverageFile();
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->finalize();
if (getCodeGenOpts().EmitVersionIdentMetadata)
EmitVersionIdentMetadata();
if (!getCodeGenOpts().RecordCommandLine.empty())
EmitCommandLineMetadata();
getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
EmitBackendOptionsMetadata(getCodeGenOpts());
// Set visibility from DLL storage class
// We do this at the end of LLVM IR generation; after any operation
// that might affect the DLL storage class or the visibility, and
// before anything that might act on these.
setVisibilityFromDLLStorageClass(LangOpts, getModule());
}
void CodeGenModule::EmitOpenCLMetadata() {
// SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
// opencl.ocl.version named metadata node.
// C++ is backwards compatible with OpenCL v2.0.
// FIXME: We might need to add CXX version at some point too?
auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
llvm::Metadata *OCLVerElts[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, Version / 100)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
Int32Ty, (Version % 100) / 10))};
llvm::NamedMDNode *OCLVerMD =
TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
llvm::LLVMContext &Ctx = TheModule.getContext();
OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
}
void CodeGenModule::EmitBackendOptionsMetadata(
const CodeGenOptions CodeGenOpts) {
switch (getTriple().getArch()) {
default:
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
CodeGenOpts.SmallDataLimit);
break;
}
}
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
// Make sure that this type is translated.
Types.UpdateCompletedType(TD);
}
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
// Make sure that this type is translated.
Types.RefreshTypeCacheForClass(RD);
}
llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTypeInfo(QTy);
}
TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
if (!TBAA)
return TBAAAccessInfo();
if (getLangOpts().CUDAIsDevice) {
// As CUDA builtin surface/texture types are replaced, skip generating TBAA
// access info.
if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
nullptr)
return TBAAAccessInfo();
} else if (AccessType->isCUDADeviceBuiltinTextureType()) {
if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
nullptr)
return TBAAAccessInfo();
}
}
return TBAA->getAccessInfo(AccessType);
}
TBAAAccessInfo
CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->getVTablePtrAccessInfo(VTablePtrType);
}
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTBAAStructInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getBaseTypeInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
if (!TBAA)
return nullptr;
return TBAA->getAccessTagInfo(Info);
}
TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
TBAAAccessInfo TargetInfo) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
}
TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
TBAAAccessInfo InfoB) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
}
TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
TBAAAccessInfo SrcInfo) {
if (!TBAA)
return TBAAAccessInfo();
return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
}
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
TBAAAccessInfo TBAAInfo) {
if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
}
void CodeGenModule::DecorateInstructionWithInvariantGroup(
llvm::Instruction *I, const CXXRecordDecl *RD) {
I->setMetadata(llvm::LLVMContext::MD_invariant_group,
llvm::MDNode::get(getLLVMContext(), {}));
}
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
getDiags().Report(Context.getFullLoc(loc), diagID) << message;
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
<< Msg << S->getSourceRange();
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified decl yet.
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
}
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
return llvm::ConstantInt::get(SizeTy, size.getQuantity());
}
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
const NamedDecl *D) const {
if (GV->hasDLLImportStorageClass())
return;
// Internal definitions always have default visibility.
if (GV->hasLocalLinkage()) {
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
return;
}
if (!D)
return;
// Set visibility for definitions, and for declarations if requested globally
// or set explicitly.
LinkageInfo LV = D->getLinkageAndVisibility();
if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
!GV->isDeclarationForLinker())
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
}
static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
llvm::GlobalValue *GV) {
if (GV->hasLocalLinkage())
return true;
if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
return true;
// DLLImport explicitly marks the GV as external.
if (GV->hasDLLImportStorageClass())
return false;
const llvm::Triple &TT = CGM.getTriple();
if (TT.isWindowsGNUEnvironment()) {
// In MinGW, variables without DLLImport can still be automatically
// imported from a DLL by the linker; don't mark variables that
// potentially could come from another DLL as DSO local.
if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
!GV->isThreadLocal())
return false;
}
// On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
// remain unresolved in the link, they can be resolved to zero, which is
// outside the current DSO.
if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
return false;
// Every other GV is local on COFF.
// Make an exception for windows OS in the triple: Some firmware builds use
// *-win32-macho triples. This (accidentally?) produced windows relocations
// without GOT tables in older clang versions; Keep this behaviour.
// FIXME: even thread local variables?
if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
return true;
// Only handle COFF and ELF for now.
if (!TT.isOSBinFormatELF())
return false;
// If this is not an executable, don't assume anything is local.
const auto &CGOpts = CGM.getCodeGenOpts();
llvm::Reloc::Model RM = CGOpts.RelocationModel;
const auto &LOpts = CGM.getLangOpts();
if (RM != llvm::Reloc::Static && !LOpts.PIE) {
// On ELF, if -fno-semantic-interposition is specified and the target
// supports local aliases, there will be neither CC1
// -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
// dso_local if using a local alias is preferable (can avoid GOT
// indirection).
if (!GV->canBenefitFromLocalAlias())
return false;
return !(CGM.getLangOpts().SemanticInterposition ||
CGM.getLangOpts().HalfNoSemanticInterposition);
}
// A definition cannot be preempted from an executable.
if (!GV->isDeclarationForLinker())
return true;
// Most PIC code sequences that assume that a symbol is local cannot produce a
// 0 if it turns out the symbol is undefined. While this is ABI and relocation
// depended, it seems worth it to handle it here.
if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
return false;
// PowerPC64 prefers TOC indirection to avoid copy relocations.
if (TT.isPPC64())
return false;
if (CGOpts.DirectAccessExternalData) {
// If -fdirect-access-external-data (default for -fno-pic), set dso_local
// for non-thread-local variables. If the symbol is not defined in the
// executable, a copy relocation will be needed at link time. dso_local is
// excluded for thread-local variables because they generally don't support
// copy relocations.
if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
if (!Var->isThreadLocal())
return true;
// -fno-pic sets dso_local on a function declaration to allow direct
// accesses when taking its address (similar to a data symbol). If the
// function is not defined in the executable, a canonical PLT entry will be
// needed at link time. -fno-direct-access-external-data can avoid the
// canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
// it could just cause trouble without providing perceptible benefits.
if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
return true;
}
// If we can use copy relocations we can assume it is local.
// Otherwise don't assume it is local.
return false;
}
void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
}
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
GlobalDecl GD) const {
const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
// C++ destructors have a few C++ ABI specific special cases.
if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
return;
}
setDLLImportDLLExport(GV, D);
}
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
const NamedDecl *D) const {
if (D && D->isExternallyVisible()) {
if (D->hasAttr<DLLImportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
}
}
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
GlobalDecl GD) const {
setDLLImportDLLExport(GV, GD);
setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
}
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
const NamedDecl *D) const {
setDLLImportDLLExport(GV, D);
setGVPropertiesAux(GV, D);
}
void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
const NamedDecl *D) const {
setGlobalVisibility(GV, D);
setDSOLocal(GV);
GV->setPartition(CodeGenOpts.SymbolPartition);
}
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
.Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
.Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
.Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
.Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
}
llvm::GlobalVariable::ThreadLocalMode
CodeGenModule::GetDefaultLLVMTLSModel() const {
switch (CodeGenOpts.getDefaultTLSModel()) {
case CodeGenOptions::GeneralDynamicTLSModel:
return llvm::GlobalVariable::GeneralDynamicTLSModel;
case CodeGenOptions::LocalDynamicTLSModel:
return llvm::GlobalVariable::LocalDynamicTLSModel;
case CodeGenOptions::InitialExecTLSModel:
return llvm::GlobalVariable::InitialExecTLSModel;
case CodeGenOptions::LocalExecTLSModel:
return llvm::GlobalVariable::LocalExecTLSModel;
}
llvm_unreachable("Invalid TLS model!");
}
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
llvm::GlobalValue::ThreadLocalMode TLM;
TLM = GetDefaultLLVMTLSModel();
// Override the TLS model if it is explicitly specified.
if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
TLM = GetLLVMTLSModel(Attr->getModel());
}
GV->setThreadLocalMode(TLM);
}
static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
StringRef Name) {
const TargetInfo &Target = CGM.getTarget();
return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
}
static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
const CPUSpecificAttr *Attr,
unsigned CPUIndex,
raw_ostream &Out) {
// cpu_specific gets the current name, dispatch gets the resolver if IFunc is
// supported.
if (Attr)
Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
else if (CGM.getTarget().supportsIFunc())
Out << ".resolver";
}
static void AppendTargetMangling(const CodeGenModule &CGM,
const TargetAttr *Attr, raw_ostream &Out) {
if (Attr->isDefaultVersion())
return;
Out << '.';
const TargetInfo &Target = CGM.getTarget();
ParsedTargetAttr Info =
Attr->parse([&Target](StringRef LHS, StringRef RHS) {
// Multiversioning doesn't allow "no-${feature}", so we can
// only have "+" prefixes here.
assert(LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.");
return Target.multiVersionSortPriority(LHS.substr(1)) >
Target.multiVersionSortPriority(RHS.substr(1));
});
bool IsFirst = true;
if (!Info.Architecture.empty()) {
IsFirst = false;
Out << "arch_" << Info.Architecture;
}
for (StringRef Feat : Info.Features) {
if (!IsFirst)
Out << '_';
IsFirst = false;
Out << Feat.substr(1);
}
}
// Returns true if GD is a function decl with internal linkage and
// needs a unique suffix after the mangled name.
static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
CodeGenModule &CGM) {
const Decl *D = GD.getDecl();
return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
(CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
}
static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
const NamedDecl *ND,
bool OmitMultiVersionMangling = false) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
MangleContext &MC = CGM.getCXXABI().getMangleContext();
if (!CGM.getModuleNameHash().empty())
MC.needsUniqueInternalLinkageNames();
bool ShouldMangle = MC.shouldMangleDeclName(ND);
if (ShouldMangle)
MC.mangleName(GD.getWithDecl(ND), Out);
else {
IdentifierInfo *II = ND->getIdentifier();
assert(II && "Attempt to mangle unnamed decl.");
const auto *FD = dyn_cast<FunctionDecl>(ND);
if (FD &&
FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
Out << "__regcall3__" << II->getName();
} else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
Out << "__device_stub__" << II->getName();
} else {
Out << II->getName();
}
}
// Check if the module name hash should be appended for internal linkage
// symbols. This should come before multi-version target suffixes are
// appended. This is to keep the name and module hash suffix of the
// internal linkage function together. The unique suffix should only be
// added when name mangling is done to make sure that the final name can
// be properly demangled. For example, for C functions without prototypes,
// name mangling is not done and the unique suffix should not be appeneded
// then.
if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
"Hash computed when not explicitly requested");
Out << CGM.getModuleNameHash();
}
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
switch (FD->getMultiVersionKind()) {
case MultiVersionKind::CPUDispatch:
case MultiVersionKind::CPUSpecific:
AppendCPUSpecificCPUDispatchMangling(CGM,
FD->getAttr<CPUSpecificAttr>(),
GD.getMultiVersionIndex(), Out);
break;
case MultiVersionKind::Target:
AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
break;
case MultiVersionKind::None:
llvm_unreachable("None multiversion type isn't valid here");
}
}
// Make unique name for device side static file-scope variable for HIP.
if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
CGM.getLangOpts().GPURelocatableDeviceCode &&
CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
CGM.printPostfixForExternalizedStaticVar(Out);
return std::string(Out.str());
}
void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
const FunctionDecl *FD) {
if (!FD->isMultiVersion())
return;
// Get the name of what this would be without the 'target' attribute. This
// allows us to lookup the version that was emitted when this wasn't a
// multiversion function.
std::string NonTargetName =
getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
GlobalDecl OtherGD;
if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
assert(OtherGD.getCanonicalDecl()
.getDecl()
->getAsFunction()
->isMultiVersion() &&
"Other GD should now be a multiversioned function");
// OtherFD is the version of this function that was mangled BEFORE
// becoming a MultiVersion function. It potentially needs to be updated.
const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
.getDecl()
->getAsFunction()
->getMostRecentDecl();
std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
// This is so that if the initial version was already the 'default'
// version, we don't try to update it.
if (OtherName != NonTargetName) {
// Remove instead of erase, since others may have stored the StringRef
// to this.
const auto ExistingRecord = Manglings.find(NonTargetName);
if (ExistingRecord != std::end(Manglings))
Manglings.remove(&(*ExistingRecord));
auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
Entry->setName(OtherName);
}
}
}
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
GlobalDecl CanonicalGD = GD.getCanonicalDecl();
// Some ABIs don't have constructor variants. Make sure that base and
// complete constructors get mangled the same.
if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
if (!getTarget().getCXXABI().hasConstructorVariants()) {
CXXCtorType OrigCtorType = GD.getCtorType();
assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
if (OrigCtorType == Ctor_Base)
CanonicalGD = GlobalDecl(CD, Ctor_Complete);
}
}
// In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
// static device variable depends on whether the variable is referenced by
// a host or device host function. Therefore the mangled name cannot be
// cached.
if (!LangOpts.CUDAIsDevice ||
!getContext().mayExternalizeStaticVar(GD.getDecl())) {
auto FoundName = MangledDeclNames.find(CanonicalGD);
if (FoundName != MangledDeclNames.end())
return FoundName->second;
}
// Keep the first result in the case of a mangling collision.
const auto *ND = cast<NamedDecl>(GD.getDecl());
std::string MangledName = getMangledNameImpl(*this, GD, ND);
// Ensure either we have different ABIs between host and device compilations,
// says host compilation following MSVC ABI but device compilation follows
// Itanium C++ ABI or, if they follow the same ABI, kernel names after
// mangling should be the same after name stubbing. The later checking is
// very important as the device kernel name being mangled in host-compilation
// is used to resolve the device binaries to be executed. Inconsistent naming
// result in undefined behavior. Even though we cannot check that naming
// directly between host- and device-compilations, the host- and
// device-mangling in host compilation could help catching certain ones.
assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
getLangOpts().CUDAIsDevice ||
(getContext().getAuxTargetInfo() &&
(getContext().getAuxTargetInfo()->getCXXABI() !=
getContext().getTargetInfo().getCXXABI())) ||
getCUDARuntime().getDeviceSideName(ND) ==
getMangledNameImpl(
*this,
GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
ND));
auto Result = Manglings.insert(std::make_pair(MangledName, GD));
return MangledDeclNames[CanonicalGD] = Result.first->first();
}
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
const BlockDecl *BD) {
MangleContext &MangleCtx = getCXXABI().getMangleContext();
const Decl *D = GD.getDecl();
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (!D)
MangleCtx.mangleGlobalBlock(BD,
dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
else
MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
return Result.first->first();
}
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
return getModule().getNamedValue(Name);
}
/// AddGlobalCtor - Add a function to the list that will be called before
/// main() runs.
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
llvm::Constant *AssociatedData) {
// FIXME: Type coercion of void()* types.
GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
}
/// AddGlobalDtor - Add a function to the list that will be called
/// when the module is unloaded.
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
bool IsDtorAttrFunc) {
if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
(!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
DtorsUsingAtExit[Priority].push_back(Dtor);
return;
}
// FIXME: Type coercion of void()* types.
GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
}
void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
if (Fns.empty()) return;
// Ctor function type is void()*.
llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
TheModule.getDataLayout().getProgramAddressSpace());
// Get the type of a ctor entry, { i32, void ()*, i8* }.
llvm::StructType *CtorStructTy = llvm::StructType::get(
Int32Ty, CtorPFTy, VoidPtrTy);
// Construct the constructor and destructor arrays.
ConstantInitBuilder builder(*this);
auto ctors = builder.beginArray(CtorStructTy);
for (const auto &I : Fns) {
auto ctor = ctors.beginStruct(CtorStructTy);
ctor.addInt(Int32Ty, I.Priority);
ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
if (I.AssociatedData)
ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
else
ctor.addNullPointer(VoidPtrTy);
ctor.finishAndAddTo(ctors);
}
auto list =
ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
/*constant*/ false,
llvm::GlobalValue::AppendingLinkage);
// The LTO linker doesn't seem to like it when we set an alignment
// on appending variables. Take it off as a workaround.
list->setAlignment(llvm::None);
Fns.clear();
}
llvm::GlobalValue::LinkageTypes
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
if (isa<CXXConstructorDecl>(D) &&
cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
// Our approach to inheriting constructors is fundamentally different from
// that used by the MS ABI, so keep our inheriting constructor thunks
// internal rather than trying to pick an unambiguous mangling for them.
return llvm::GlobalValue::InternalLinkage;
}
return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
}
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
if (!MDS) return nullptr;
return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
}
void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
const CGFunctionInfo &Info,
llvm::Function *F) {
unsigned CallingConv;
llvm::AttributeList PAL;
ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
F->setAttributes(PAL);
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
}
static void removeImageAccessQualifier(std::string& TyName) {
std::string ReadOnlyQual("__read_only");
std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
if (ReadOnlyPos != std::string::npos)
// "+ 1" for the space after access qualifier.
TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
else {
std::string WriteOnlyQual("__write_only");
std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
if (WriteOnlyPos != std::string::npos)
TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
else {
std::string ReadWriteQual("__read_write");
std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
if (ReadWritePos != std::string::npos)
TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
}
}
}
// Returns the address space id that should be produced to the
// kernel_arg_addr_space metadata. This is always fixed to the ids
// as specified in the SPIR 2.0 specification in order to differentiate
// for example in clGetKernelArgInfo() implementation between the address
// spaces with targets without unique mapping to the OpenCL address spaces
// (basically all single AS CPUs).
static unsigned ArgInfoAddressSpace(LangAS AS) {
switch (AS) {
case LangAS::opencl_global:
return 1;
case LangAS::opencl_constant:
return 2;
case LangAS::opencl_local:
return 3;
case LangAS::opencl_generic:
return 4; // Not in SPIR 2.0 specs.
case LangAS::opencl_global_device:
return 5;
case LangAS::opencl_global_host:
return 6;
default:
return 0; // Assume private.
}
}
void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
const FunctionDecl *FD,
CodeGenFunction *CGF) {
assert(((FD && CGF) || (!FD && !CGF)) &&
"Incorrect use - FD and CGF should either be both null or not!");
// Create MDNodes that represent the kernel arg metadata.
// Each MDNode is a list in the form of "key", N number of values which is
// the same number of values as their are kernel arguments.
const PrintingPolicy &Policy = Context.getPrintingPolicy();
// MDNode for the kernel argument address space qualifiers.
SmallVector<llvm::Metadata *, 8> addressQuals;
// MDNode for the kernel argument access qualifiers (images only).
SmallVector<llvm::Metadata *, 8> accessQuals;
// MDNode for the kernel argument type names.
SmallVector<llvm::Metadata *, 8> argTypeNames;
// MDNode for the kernel argument base type names.
SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
// MDNode for the kernel argument type qualifiers.
SmallVector<llvm::Metadata *, 8> argTypeQuals;
// MDNode for the kernel argument names.
SmallVector<llvm::Metadata *, 8> argNames;
if (FD && CGF)
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
const ParmVarDecl *parm = FD->getParamDecl(i);
QualType ty = parm->getType();
std::string typeQuals;
// Get image and pipe access qualifier:
if (ty->isImageType() || ty->isPipeType()) {
const Decl *PDecl = parm;
if (auto *TD = dyn_cast<TypedefType>(ty))
PDecl = TD->getDecl();
const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
if (A && A->isWriteOnly())
accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
else if (A && A->isReadWrite())
accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
else
accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
} else
accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
// Get argument name.
argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
auto getTypeSpelling = [&](QualType Ty) {
auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
if (Ty.isCanonical()) {
StringRef typeNameRef = typeName;
// Turn "unsigned type" to "utype"
if (typeNameRef.consume_front("unsigned "))
return std::string("u") + typeNameRef.str();
if (typeNameRef.consume_front("signed "))
return typeNameRef.str();
}
return typeName;
};
if (ty->isPointerType()) {
QualType pointeeTy = ty->getPointeeType();
// Get address qualifier.
addressQuals.push_back(
llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
// Get argument type name.
std::string typeName = getTypeSpelling(pointeeTy) + "*";
std::string baseTypeName =
getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
argBaseTypeNames.push_back(
llvm::MDString::get(VMContext, baseTypeName));
// Get argument type qualifiers:
if (ty.isRestrictQualified())
typeQuals = "restrict";
if (pointeeTy.isConstQualified() ||
(pointeeTy.getAddressSpace() == LangAS::opencl_constant))
typeQuals += typeQuals.empty() ? "const" : " const";
if (pointeeTy.isVolatileQualified())
typeQuals += typeQuals.empty() ? "volatile" : " volatile";
} else {
uint32_t AddrSpc = 0;
bool isPipe = ty->isPipeType();
if (ty->isImageType() || isPipe)
AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
addressQuals.push_back(
llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
// Get argument type name.
ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
std::string typeName = getTypeSpelling(ty);
std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
// Remove access qualifiers on images
// (as they are inseparable from type in clang implementation,
// but OpenCL spec provides a special query to get access qualifier
// via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
if (ty->isImageType()) {
removeImageAccessQualifier(typeName);
removeImageAccessQualifier(baseTypeName);
}
argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
argBaseTypeNames.push_back(
llvm::MDString::get(VMContext, baseTypeName));
if (isPipe)
typeQuals = "pipe";
}
argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
}
Fn->setMetadata("kernel_arg_addr_space",
llvm::MDNode::get(VMContext, addressQuals));
Fn->setMetadata("kernel_arg_access_qual",
llvm::MDNode::get(VMContext, accessQuals));
Fn->setMetadata("kernel_arg_type",
llvm::MDNode::get(VMContext, argTypeNames));
Fn->setMetadata("kernel_arg_base_type",
llvm::MDNode::get(VMContext, argBaseTypeNames));
Fn->setMetadata("kernel_arg_type_qual",
llvm::MDNode::get(VMContext, argTypeQuals));
if (getCodeGenOpts().EmitOpenCLArgMetadata)
Fn->setMetadata("kernel_arg_name",
llvm::MDNode::get(VMContext, argNames));
}
/// Determines whether the language options require us to model
/// unwind exceptions. We treat -fexceptions as mandating this
/// except under the fragile ObjC ABI with only ObjC exceptions
/// enabled. This means, for example, that C with -fexceptions
/// enables this.
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
// If exceptions are completely disabled, obviously this is false.
if (!LangOpts.Exceptions) return false;
// If C++ exceptions are enabled, this is true.
if (LangOpts.CXXExceptions) return true;
// If ObjC exceptions are enabled, this depends on the ABI.
if (LangOpts.ObjCExceptions) {
return LangOpts.ObjCRuntime.hasUnwindExceptions();
}
return true;
}
static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
const CXXMethodDecl *MD) {
// Check that the type metadata can ever actually be used by a call.
if (!CGM.getCodeGenOpts().LTOUnit ||
!CGM.HasHiddenLTOVisibility(MD->getParent()))
return false;
// Only functions whose address can be taken with a member function pointer
// need this sort of type metadata.
return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
!isa<CXXDestructorDecl>(MD);
}
std::vector<const CXXRecordDecl *>
CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
llvm::SetVector<const CXXRecordDecl *> MostBases;
std::function<void (const CXXRecordDecl *)> CollectMostBases;
CollectMostBases = [&](const CXXRecordDecl *RD) {
if (RD->getNumBases() == 0)
MostBases.insert(RD);
for (const CXXBaseSpecifier &B : RD->bases())
CollectMostBases(B.getType()->getAsCXXRecordDecl());
};
CollectMostBases(RD);
return MostBases.takeVector();
}
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
llvm::Function *F) {
llvm::AttrBuilder B;
if (CodeGenOpts.UnwindTables)
B.addAttribute(llvm::Attribute::UWTable);
if (CodeGenOpts.StackClashProtector)
B.addAttribute("probe-stack", "inline-asm");
if (!hasUnwindExceptions(LangOpts))
B.addAttribute(llvm::Attribute::NoUnwind);
if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
B.addAttribute(llvm::Attribute::StackProtect);
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
B.addAttribute(llvm::Attribute::StackProtectStrong);
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
B.addAttribute(llvm::Attribute::StackProtectReq);
}
if (!D) {
// If we don't have a declaration to control inlining, the function isn't
// explicitly marked as alwaysinline for semantic reasons, and inlining is
// disabled, mark the function as noinline.
if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
B.addAttribute(llvm::Attribute::NoInline);
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
return;
}
// Track whether we need to add the optnone LLVM attribute,
// starting with the default for this optimization level.
bool ShouldAddOptNone =
!CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
// We can't add optnone in the following cases, it won't pass the verifier.
ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
// Add optnone, but do so only if the function isn't always_inline.
if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
B.addAttribute(llvm::Attribute::OptimizeNone);
// OptimizeNone implies noinline; we should not be inlining such functions.
B.addAttribute(llvm::Attribute::NoInline);
// We still need to handle naked functions even though optnone subsumes
// much of their semantics.
if (D->hasAttr<NakedAttr>())
B.addAttribute(llvm::Attribute::Naked);
// OptimizeNone wins over OptimizeForSize and MinSize.
F->removeFnAttr(llvm::Attribute::OptimizeForSize);
F->removeFnAttr(llvm::Attribute::MinSize);
} else if (D->hasAttr<NakedAttr>()) {
// Naked implies noinline: we should not be inlining such functions.
B.addAttribute(llvm::Attribute::Naked);
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<NoDuplicateAttr>()) {
B.addAttribute(llvm::Attribute::NoDuplicate);
} else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
// Add noinline if the function isn't always_inline.
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<AlwaysInlineAttr>() &&
!F->hasFnAttribute(llvm::Attribute::NoInline)) {
// (noinline wins over always_inline, and we can't specify both in IR)
B.addAttribute(llvm::Attribute::AlwaysInline);
} else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
// If we're not inlining, then force everything that isn't always_inline to
// carry an explicit noinline attribute.
if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
B.addAttribute(llvm::Attribute::NoInline);
} else {
// Otherwise, propagate the inline hint attribute and potentially use its
// absence to mark things as noinline.
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// Search function and template pattern redeclarations for inline.
auto CheckForInline = [](const FunctionDecl *FD) {
auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
return Redecl->isInlineSpecified();
};
if (any_of(FD->redecls(), CheckRedeclForInline))
return true;
const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
if (!Pattern)
return false;
return any_of(Pattern->redecls(), CheckRedeclForInline);
};
if (CheckForInline(FD)) {
B.addAttribute(llvm::Attribute::InlineHint);
} else if (CodeGenOpts.getInlining() ==
CodeGenOptions::OnlyHintInlining &&
!FD->isInlined() &&
!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
B.addAttribute(llvm::Attribute::NoInline);
}
}
}
// Add other optimization related attributes if we are optimizing this
// function.
if (!D->hasAttr<OptimizeNoneAttr>()) {
if (D->hasAttr<ColdAttr>()) {
if (!ShouldAddOptNone)
B.addAttribute(llvm::Attribute::OptimizeForSize);
B.addAttribute(llvm::Attribute::Cold);
}
if (D->hasAttr<HotAttr>())
B.addAttribute(llvm::Attribute::Hot);
if (D->hasAttr<MinSizeAttr>())
B.addAttribute(llvm::Attribute::MinSize);
}
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
if (alignment)
F->setAlignment(llvm::Align(alignment));
if (!D->hasAttr<AlignedAttr>())
if (LangOpts.FunctionAlignment)
F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
// Some C++ ABIs require 2-byte alignment for member functions, in order to
// reserve a bit for differentiating between virtual and non-virtual member
// functions. If the current target's C++ ABI requires this and this is a
// member function, set its alignment accordingly.
if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
F->setAlignment(llvm::Align(2));
}
// In the cross-dso CFI mode with canonical jump tables, we want !type
// attributes on definitions only.
if (CodeGenOpts.SanitizeCfiCrossDso &&
CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// Skip available_externally functions. They won't be codegen'ed in the
// current module anyway.
if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
CreateFunctionTypeMetadataForIcall(FD, F);
}
}
// Emit type metadata on member functions for member function pointer checks.
// These are only ever necessary on definitions; we're guaranteed that the
// definition will be present in the LTO unit as a result of LTO visibility.
auto *MD = dyn_cast<CXXMethodDecl>(D);
if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
llvm::Metadata *Id =
CreateMetadataIdentifierForType(Context.getMemberPointerType(
MD->getType(), Context.getRecordType(Base).getTypePtr()));
F->addTypeMetadata(0, Id);
}
}
}
void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
llvm::Function *F) {
if (D->hasAttr<StrictFPAttr>()) {
llvm::AttrBuilder FuncAttrs;
FuncAttrs.addAttribute("strictfp");
F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
}
}
void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
const Decl *D = GD.getDecl();
if (dyn_cast_or_null<NamedDecl>(D))
setGVProperties(GV, GD);
else
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
if (D && D->hasAttr<UsedAttr>())
addUsedOrCompilerUsedGlobal(GV);
if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
const auto *VD = cast<VarDecl>(D);
if (VD->getType().isConstQualified() &&
VD->getStorageDuration() == SD_Static)
addUsedOrCompilerUsedGlobal(GV);
}
}
bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
llvm::AttrBuilder &Attrs) {
// Add target-cpu and target-features attributes to functions. If
// we have a decl for the function and it has a target attribute then
// parse that and add it to the feature set.
StringRef TargetCPU = getTarget().getTargetOpts().CPU;
StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
std::vector<std::string> Features;
const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
FD = FD ? FD->getMostRecentDecl() : FD;
const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
bool AddedAttr = false;
if (TD || SD) {
llvm::StringMap<bool> FeatureMap;
getContext().getFunctionFeatureMap(FeatureMap, GD);
// Produce the canonical string for this set of features.
for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
// Now add the target-cpu and target-features to the function.
// While we populated the feature map above, we still need to
// get and parse the target attribute so we can get the cpu for
// the function.
if (TD) {
ParsedTargetAttr ParsedAttr = TD->parse();
if (!ParsedAttr.Architecture.empty() &&
getTarget().isValidCPUName(ParsedAttr.Architecture)) {
TargetCPU = ParsedAttr.Architecture;
TuneCPU = ""; // Clear the tune CPU.
}
if (!ParsedAttr.Tune.empty() &&
getTarget().isValidCPUName(ParsedAttr.Tune))
TuneCPU = ParsedAttr.Tune;
}
} else {
// Otherwise just add the existing target cpu and target features to the
// function.
Features = getTarget().getTargetOpts().Features;
}
if (!TargetCPU.empty()) {
Attrs.addAttribute("target-cpu", TargetCPU);
AddedAttr = true;
}
if (!TuneCPU.empty()) {
Attrs.addAttribute("tune-cpu", TuneCPU);
AddedAttr = true;
}
if (!Features.empty()) {
llvm::sort(Features);
Attrs.addAttribute("target-features", llvm::join(Features, ","));
AddedAttr = true;
}
return AddedAttr;
}
void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
llvm::GlobalObject *GO) {
const Decl *D = GD.getDecl();
SetCommonAttributes(GD, GO);
if (D) {
if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
if (D->hasAttr<RetainAttr>())
addUsedGlobal(GV);
if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
GV->addAttribute("bss-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
GV->addAttribute("data-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
GV->addAttribute("rodata-section", SA->getName());
if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
GV->addAttribute("relro-section", SA->getName());
}
if (auto *F = dyn_cast<llvm::Function>(GO)) {
if (D->hasAttr<RetainAttr>())
addUsedGlobal(F);
if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
if (!D->getAttr<SectionAttr>())
F->addFnAttr("implicit-section-name", SA->getName());
llvm::AttrBuilder Attrs;
if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
// We know that GetCPUAndFeaturesAttributes will always have the
// newest set, since it has the newest possible FunctionDecl, so the
// new ones should replace the old.
llvm::AttrBuilder RemoveAttrs;
RemoveAttrs.addAttribute("target-cpu");
RemoveAttrs.addAttribute("target-features");
RemoveAttrs.addAttribute("tune-cpu");
F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
}
}
if (const auto *CSA = D->getAttr<CodeSegAttr>())
GO->setSection(CSA->getName());
else if (const auto *SA = D->getAttr<SectionAttr>())
GO->setSection(SA->getName());
}
getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
}
void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
llvm::Function *F,
const CGFunctionInfo &FI) {
const Decl *D = GD.getDecl();
SetLLVMFunctionAttributes(GD, FI, F);
SetLLVMFunctionAttributesForDefinition(D, F);
F->setLinkage(llvm::Function::InternalLinkage);
setNonAliasAttributes(GD, F);
}
static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
// Set linkage and visibility in case we never see a definition.
LinkageInfo LV = ND->getLinkageAndVisibility();
// Don't set internal linkage on declarations.
// "extern_weak" is overloaded in LLVM; we probably should have
// separate linkage types for this.
if (isExternallyVisible(LV.getLinkage()) &&
(ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
}
void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
llvm::Function *F) {
// Only if we are checking indirect calls.
if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
return;
// Non-static class methods are handled via vtable or member function pointer
// checks elsewhere.
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
return;
llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
F->addTypeMetadata(0, MD);
F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
// Emit a hash-based bit set entry for cross-DSO calls.
if (CodeGenOpts.SanitizeCfiCrossDso)
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
}
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
bool IsIncompleteFunction,
bool IsThunk) {
if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
// If this is an intrinsic function, set the function's attributes
// to the intrinsic's attributes.
F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
return;
}
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (!IsIncompleteFunction)
SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
// Add the Returned attribute for "this", except for iOS 5 and earlier
// where substantial code, including the libstdc++ dylib, was compiled with
// GCC and does not actually return "this".
if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
!(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
assert(!F->arg_empty() &&
F->arg_begin()->getType()
->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return");
F->addAttribute(1, llvm::Attribute::Returned);
}
// Only a few attributes are set on declarations; these may later be
// overridden by a definition.
setLinkageForGV(F, FD);
setGVProperties(F, FD);
// Setup target-specific attributes.
if (!IsIncompleteFunction && F->isDeclaration())
getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
if (const auto *CSA = FD->getAttr<CodeSegAttr>())
F->setSection(CSA->getName());
else if (const auto *SA = FD->getAttr<SectionAttr>())
F->setSection(SA->getName());
// If we plan on emitting this inline builtin, we can't treat it as a builtin.
if (FD->isInlineBuiltinDeclaration()) {
const FunctionDecl *FDBody;
bool HasBody = FD->hasBody(FDBody);
(void)HasBody;
assert(HasBody && "Inline builtin declarations should always have an "
"available body!");
if (shouldEmitFunction(FDBody))
F->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoBuiltin);
}
if (FD->isReplaceableGlobalAllocationFunction()) {
// A replaceable global allocation function does not act like a builtin by
// default, only if it is invoked by a new-expression or delete-expression.
F->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoBuiltin);
}
if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
if (MD->isVirtual())
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
// Don't emit entries for function declarations in the cross-DSO mode. This
// is handled with better precision by the receiving DSO. But if jump tables
// are non-canonical then we need type metadata in order to produce the local
// jump table.
if (!CodeGenOpts.SanitizeCfiCrossDso ||
!CodeGenOpts.SanitizeCfiCanonicalJumpTables)
CreateFunctionTypeMetadataForIcall(FD, F);
if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
if (const auto *CB = FD->getAttr<CallbackAttr>()) {
// Annotate the callback behavior as metadata:
// - The callback callee (as argument number).
// - The callback payloads (as argument numbers).
llvm::LLVMContext &Ctx = F->getContext();
llvm::MDBuilder MDB(Ctx);
// The payload indices are all but the first one in the encoding. The first
// identifies the callback callee.
int CalleeIdx = *CB->encoding_begin();
ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
F->addMetadata(llvm::LLVMContext::MD_callback,
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
CalleeIdx, PayloadIndices,
/* VarArgsArePassed */ false)}));
}
}
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.");
LLVMUsed.emplace_back(GV);
}
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
assert(!GV->isDeclaration() &&
"Only globals with definition can force usage.");
LLVMCompilerUsed.emplace_back(GV);
}
void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.");
if (getTriple().isOSBinFormatELF())
LLVMCompilerUsed.emplace_back(GV);
else
LLVMUsed.emplace_back(GV);
}
static void emitUsed(CodeGenModule &CGM, StringRef Name,
std::vector<llvm::WeakTrackingVH> &List) {
// Don't create llvm.used if there is no need.
if (List.empty())
return;
// Convert List to what ConstantArray needs.
SmallVector<llvm::Constant*, 8> UsedArray;
UsedArray.resize(List.size());
for (unsigned i = 0, e = List.size(); i != e; ++i) {
UsedArray[i] =
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
}
if (UsedArray.empty())
return;
llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, UsedArray), Name);
GV->setSection("llvm.metadata");
}
void CodeGenModule::emitLLVMUsed() {
emitUsed(*this, "llvm.used", LLVMUsed);
emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
}
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
llvm::SmallString<32> Opt;
getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
if (Opt.empty())
return;
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDependentLib(StringRef Lib) {
auto &C = getLLVMContext();
if (getTarget().getTriple().isOSBinFormatELF()) {
ELFDependentLibraries.push_back(
llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
return;
}
llvm::SmallString<24> Opt;
getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
}
/// Add link options implied by the given module, including modules
/// it depends on, using a postorder walk.
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
SmallVectorImpl<llvm::MDNode *> &Metadata,
llvm::SmallPtrSet<Module *, 16> &Visited) {
// Import this module's parent.
if (Mod->Parent && Visited.insert(Mod->Parent).second) {
addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
}
// Import this module's dependencies.
for (unsigned I = Mod->Imports.size(); I > 0; --I) {
if (Visited.insert(Mod->Imports[I - 1]).second)
addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
}
// Add linker options to link against the libraries/frameworks
// described by this module.
llvm::LLVMContext &Context = CGM.getLLVMContext();
bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
// For modules that use export_as for linking, use that module
// name instead.
if (Mod->UseExportAsModuleLinkName)
return;
for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
// Link against a framework. Frameworks are currently Darwin only, so we
// don't to ask TargetCodeGenInfo for the spelling of the linker option.
if (Mod->LinkLibraries[I-1].IsFramework) {
llvm::Metadata *Args[2] = {
llvm::MDString::get(Context, "-framework"),
llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
Metadata.push_back(llvm::MDNode::get(Context, Args));
continue;
}
// Link against a library.
if (IsELF) {
llvm::Metadata *Args[2] = {
llvm::MDString::get(Context, "lib"),
llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
};
Metadata.push_back(llvm::MDNode::get(Context, Args));
} else {
llvm::SmallString<24> Opt;
CGM.getTargetCodeGenInfo().getDependentLibraryOption(
Mod->LinkLibraries[I - 1].Library, Opt);
auto *OptString = llvm::MDString::get(Context, Opt);
Metadata.push_back(llvm::MDNode::get(Context, OptString));
}
}
}
void CodeGenModule::EmitModuleLinkOptions() {
// Collect the set of all of the modules we want to visit to emit link
// options, which is essentially the imported modules and all of their
// non-explicit child modules.
llvm::SetVector<clang::Module *> LinkModules;
llvm::SmallPtrSet<clang::Module *, 16> Visited;
SmallVector<clang::Module *, 16> Stack;
// Seed the stack with imported modules.
for (Module *M : ImportedModules) {
// Do not add any link flags when an implementation TU of a module imports
// a header of that same module.
if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
!getLangOpts().isCompilingModule())
continue;
if (Visited.insert(M).second)
Stack.push_back(M);
}
// Find all of the modules to import, making a little effort to prune
// non-leaf modules.
while (!Stack.empty()) {
clang::Module *Mod = Stack.pop_back_val();
bool AnyChildren = false;
// Visit the submodules of this module.
for (const auto &SM : Mod->submodules()) {
// Skip explicit children; they need to be explicitly imported to be
// linked against.
if (SM->IsExplicit)
continue;
if (Visited.insert(SM).second) {
Stack.push_back(SM);
AnyChildren = true;
}
}
// We didn't find any children, so add this module to the list of
// modules to link against.
if (!AnyChildren) {
LinkModules.insert(Mod);
}
}
// Add link options for all of the imported modules in reverse topological
// order. We don't do anything to try to order import link flags with respect
// to linker options inserted by things like #pragma comment().
SmallVector<llvm::MDNode *, 16> MetadataArgs;
Visited.clear();
for (Module *M : LinkModules)
if (Visited.insert(M).second)
addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
std::reverse(MetadataArgs.begin(), MetadataArgs.end());
LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
// Add the linker options metadata flag.
auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
for (auto *MD : LinkerOptionsMetadata)
NMD->addOperand(MD);
}
void CodeGenModule::EmitDeferred() {
// Emit deferred declare target declarations.
if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
getOpenMPRuntime().emitDeferredTargetDecls();
// Emit code for any potentially referenced deferred decls. Since a
// previously unused static decl may become used during the generation of code
// for a static function, iterate until no changes are made.
if (!DeferredVTables.empty()) {
EmitDeferredVTables();
// Emitting a vtable doesn't directly cause more vtables to
// become deferred, although it can cause functions to be
// emitted that then need those vtables.
assert(DeferredVTables.empty());
}
// Emit CUDA/HIP static device variables referenced by host code only.
if (getLangOpts().CUDA)
for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
DeferredDeclsToEmit.push_back(V);
// Stop if we're out of both deferred vtables and deferred declarations.
if (DeferredDeclsToEmit.empty())
return;
// Grab the list of decls to emit. If EmitGlobalDefinition schedules more
// work, it will not interfere with this.
std::vector<GlobalDecl> CurDeclsToEmit;
CurDeclsToEmit.swap(DeferredDeclsToEmit);
for (GlobalDecl &D : CurDeclsToEmit) {
// We should call GetAddrOfGlobal with IsForDefinition set to true in order
// to get GlobalValue with exactly the type we need, not something that
// might had been created for another decl with the same mangled name but
// different type.
llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
GetAddrOfGlobal(D, ForDefinition));
// In case of different address spaces, we may still get a cast, even with
// IsForDefinition equal to true. Query mangled names table to get
// GlobalValue.
if (!GV)
GV = GetGlobalValue(getMangledName(D));
// Make sure GetGlobalValue returned non-null.
assert(GV);
// Check to see if we've already emitted this. This is necessary
// for a couple of reasons: first, decls can end up in the
// deferred-decls queue multiple times, and second, decls can end
// up with definitions in unusual ways (e.g. by an extern inline
// function acquiring a strong function redefinition). Just
// ignore these cases.
if (!GV->isDeclaration())
continue;
// If this is OpenMP, check if it is legal to emit this global normally.
if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
continue;
// Otherwise, emit the definition and move on to the next one.
EmitGlobalDefinition(D, GV);
// If we found out that we need to emit more decls, do that recursively.
// This has the advantage that the decls are emitted in a DFS and related
// ones are close together, which is convenient for testing.
if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
EmitDeferred();
assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
}
}
}
void CodeGenModule::EmitVTablesOpportunistically() {
// Try to emit external vtables as available_externally if they have emitted
// all inlined virtual functions. It runs after EmitDeferred() and therefore
// is not allowed to create new references to things that need to be emitted
// lazily. Note that it also uses fact that we eagerly emitting RTTI.
assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
&& "Only emit opportunistic vtables with optimizations");
for (const CXXRecordDecl *RD : OpportunisticVTables) {
assert(getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables");
if (getCXXABI().canSpeculativelyEmitVTable(RD))
VTables.GenerateClassData(RD);
}
OpportunisticVTables.clear();
}
void CodeGenModule::EmitGlobalAnnotations() {
if (Annotations.empty())
return;
// Create a new global variable for the ConstantStruct in the Module.
llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
Annotations[0]->getType(), Annotations.size()), Annotations);
auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
llvm::GlobalValue::AppendingLinkage,
Array, "llvm.global.annotations");
gv->setSection(AnnotationSection);
}
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
llvm::Constant *&AStr = AnnotationStrings[Str];
if (AStr)
return AStr;
// Not found yet, create a new global.
llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
auto *gv =
new llvm::GlobalVariable(getModule(), s->getType(), true,
llvm::GlobalValue::PrivateLinkage, s, ".str");
gv->setSection(AnnotationSection);
gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
AStr = gv;
return gv;
}
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
if (PLoc.isValid())
return EmitAnnotationString(PLoc.getFilename());
return EmitAnnotationString(SM.getBufferName(Loc));
}
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(L);
unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
SM.getExpansionLineNumber(L);
return llvm::ConstantInt::get(Int32Ty, LineNo);
}
llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
if (Exprs.empty())
return llvm::ConstantPointerNull::get(Int8PtrTy);
llvm::FoldingSetNodeID ID;
for (Expr *E : Exprs) {
ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
}
llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
if (Lookup)
return Lookup;
llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
LLVMArgs.reserve(Exprs.size());
ConstantEmitter ConstEmiter(*this);
llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
const auto *CE = cast<clang::ConstantExpr>(E);
return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
CE->getType());
});
auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
llvm::GlobalValue::PrivateLinkage, Struct,
".args");
GV->setSection(AnnotationSection);
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
Lookup = Bitcasted;
return Bitcasted;
}
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
const AnnotateAttr *AA,
SourceLocation L) {
// Get the globals for file name, annotation, and the line number.
llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
*UnitGV = EmitAnnotationUnit(L),
*LineNoCst = EmitAnnotationLineNo(L),
*Args = EmitAnnotationArgs(AA);
llvm::Constant *ASZeroGV = GV;
if (GV->getAddressSpace() != 0) {
ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
GV, GV->getValueType()->getPointerTo(0));
}
// Create the ConstantStruct for the global annotation.
llvm::Constant *Fields[] = {
llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
LineNoCst,
Args,
};
return llvm::ConstantStruct::getAnon(Fields);
}
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
llvm::GlobalValue *GV) {
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
// Get the struct elements for these annotations.
for (const auto *I : D->specific_attrs<AnnotateAttr>())
Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
}
bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
SourceLocation Loc) const {
const auto &NoSanitizeL = getContext().getNoSanitizeList();
// NoSanitize by function name.
if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
return true;
// NoSanitize by location.
if (Loc.isValid())
return NoSanitizeL.containsLocation(Kind, Loc);
// If location is unknown, this may be a compiler-generated function. Assume
// it's located in the main file.
auto &SM = Context.getSourceManager();
if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
return NoSanitizeL.containsFile(Kind, MainFile->getName());
}
return false;
}
bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
SourceLocation Loc, QualType Ty,
StringRef Category) const {
// For now globals can be ignored only in ASan and KASan.
const SanitizerMask EnabledAsanMask =
LangOpts.Sanitize.Mask &
(SanitizerKind::Address | SanitizerKind::KernelAddress |
SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
SanitizerKind::MemTag);
if (!EnabledAsanMask)
return false;
const auto &NoSanitizeL = getContext().getNoSanitizeList();
if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
return true;
if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
return true;
// Check global type.
if (!Ty.isNull()) {
// Drill down the array types: if global variable of a fixed type is
// not sanitized, we also don't instrument arrays of them.
while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
Ty = AT->getElementType();
Ty = Ty.getCanonicalType().getUnqualifiedType();
// Only record types (classes, structs etc.) are ignored.
if (Ty->isRecordType()) {
std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
return true;
}
}
return false;
}
bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
StringRef Category) const {
const auto &XRayFilter = getContext().getXRayFilter();
using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
auto Attr = ImbueAttr::NONE;
if (Loc.isValid())
Attr = XRayFilter.shouldImbueLocation(Loc, Category);
if (Attr == ImbueAttr::NONE)
Attr = XRayFilter.shouldImbueFunction(Fn->getName());
switch (Attr) {
case ImbueAttr::NONE:
return false;
case ImbueAttr::ALWAYS:
Fn->addFnAttr("function-instrument", "xray-always");
break;
case ImbueAttr::ALWAYS_ARG1:
Fn->addFnAttr("function-instrument", "xray-always");
Fn->addFnAttr("xray-log-args", "1");
break;
case ImbueAttr::NEVER:
Fn->addFnAttr("function-instrument", "xray-never");
break;
}
return true;
}
bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
SourceLocation Loc) const {
const auto &ProfileList = getContext().getProfileList();
// If the profile list is empty, then instrument everything.
if (ProfileList.isEmpty())
return false;
CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
// First, check the function name.
Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
if (V.hasValue())
return *V;
// Next, check the source location.
if (Loc.isValid()) {
Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
if (V.hasValue())
return *V;
}
// If location is unknown, this may be a compiler-generated function. Assume
// it's located in the main file.
auto &SM = Context.getSourceManager();
if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
if (V.hasValue())
return *V;
}
return ProfileList.getDefault();
}
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
// Never defer when EmitAllDecls is specified.
if (LangOpts.EmitAllDecls)
return true;
if (CodeGenOpts.KeepStaticConsts) {
const auto *VD = dyn_cast<VarDecl>(Global);
if (VD && VD->getType().isConstQualified() &&
VD->getStorageDuration() == SD_Static)
return true;
}
return getContext().DeclMustBeEmitted(Global);
}
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
// Implicit template instantiations may change linkage if they are later
// explicitly instantiated, so they should not be emitted eagerly.
return false;
// In OpenMP 5.0 function may be marked as device_type(nohost) and we should
// not emit them eagerly unless we sure that the function must be emitted on
// the host.
if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
!LangOpts.OpenMPIsDevice &&
!OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
!FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
return false;
}
if (const auto *VD = dyn_cast<VarDecl>(Global))
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::WeakUnknown)
// A definition of an inline constexpr static data member may change
// linkage later if it's redeclared outside the class.
return false;
// If OpenMP is enabled and threadprivates must be generated like TLS, delay
// codegen for global variables, because they may be marked as threadprivate.
if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
!isTypeConstant(Global->getType(), false) &&
!OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
return false;
return true;
}
ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
StringRef Name = getMangledName(GD);
// The UUID descriptor should be pointer aligned.
CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
// Look for an existing global.
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
return ConstantAddress(GV, Alignment);
ConstantEmitter Emitter(*this);
llvm::Constant *Init;
APValue &V = GD->getAsAPValue();
if (!V.isAbsent()) {
// If possible, emit the APValue version of the initializer. In particular,
// this gets the type of the constant right.
Init = Emitter.emitForInitializer(
GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
} else {
// As a fallback, directly construct the constant.
// FIXME: This may get padding wrong under esoteric struct layout rules.
// MSVC appears to create a complete type 'struct __s_GUID' that it
// presumably uses to represent these constants.
MSGuidDecl::Parts Parts = GD->getParts();
llvm::Constant *Fields[4] = {
llvm::ConstantInt::get(Int32Ty, Parts.Part1),
llvm::ConstantInt::get(Int16Ty, Parts.Part2),
llvm::ConstantInt::get(Int16Ty, Parts.Part3),
llvm::ConstantDataArray::getRaw(
StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
Int8Ty)};
Init = llvm::ConstantStruct::getAnon(Fields);
}
auto *GV = new llvm::GlobalVariable(
getModule(), Init->getType(),
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
if (supportsCOMDAT())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
setDSOLocal(GV);
llvm::Constant *Addr = GV;
if (!V.isAbsent()) {
Emitter.finalize(GV);
} else {
llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
Addr = llvm::ConstantExpr::getBitCast(
GV, Ty->getPointerTo(GV->getAddressSpace()));
}
return ConstantAddress(Addr, Alignment);
}
ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
const TemplateParamObjectDecl *TPO) {
StringRef Name = getMangledName(TPO);
CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
return ConstantAddress(GV, Alignment);
ConstantEmitter Emitter(*this);
llvm::Constant *Init = Emitter.emitForInitializer(
TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
if (!Init) {
ErrorUnsupported(TPO, "template parameter object");
return ConstantAddress::invalid();
}
auto *GV = new llvm::GlobalVariable(
getModule(), Init->getType(),
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
if (supportsCOMDAT())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
Emitter.finalize(GV);
return ConstantAddress(GV, Alignment);
}
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
const AliasAttr *AA = VD->getAttr<AliasAttr>();
assert(AA && "No alias?");
CharUnits Alignment = getContext().getDeclAlign(VD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
// See if there is already something with the target's name in the module.
llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
if (Entry) {
unsigned AS = getContext().getTargetAddressSpace(VD->getType());
auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
return ConstantAddress(Ptr, Alignment);
}
llvm::Constant *Aliasee;
if (isa<llvm::FunctionType>(DeclTy))
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
GlobalDecl(cast<FunctionDecl>(VD)),
/*ForVTable=*/false);
else
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
llvm::PointerType::getUnqual(DeclTy),
nullptr);
auto *F = cast<llvm::GlobalValue>(Aliasee);
F->setLinkage(llvm::Function::ExternalWeakLinkage);
WeakRefReferences.insert(F);
return ConstantAddress(Aliasee, Alignment);
}
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
const auto *Global = cast<ValueDecl>(GD.getDecl());
// Weak references don't produce any output by themselves.
if (Global->hasAttr<WeakRefAttr>())
return;
// If this is an alias definition (which otherwise looks like a declaration)
// emit it now.
if (Global->hasAttr<AliasAttr>())
return EmitAliasDefinition(GD);
// IFunc like an alias whose value is resolved at runtime by calling resolver.
if (Global->hasAttr<IFuncAttr>())
return emitIFuncDefinition(GD);
// If this is a cpu_dispatch multiversion function, emit the resolver.
if (Global->hasAttr<CPUDispatchAttr>())
return emitCPUDispatchDefinition(GD);
// If this is CUDA, be selective about which declarations we emit.
if (LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (!Global->hasAttr<CUDADeviceAttr>() &&
!Global->hasAttr<CUDAGlobalAttr>() &&
!Global->hasAttr<CUDAConstantAttr>() &&
!Global->hasAttr<CUDASharedAttr>() &&
!Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
!Global->getType()->isCUDADeviceBuiltinTextureType())
return;
} else {
// We need to emit host-side 'shadows' for all global
// device-side variables because the CUDA runtime needs their
// size and host-side address in order to provide access to
// their device-side incarnations.
// So device-only functions are the only things we skip.
if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
Global->hasAttr<CUDADeviceAttr>())
return;
assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
"Expected Variable or Function");
}
}
if (LangOpts.OpenMP) {
// If this is OpenMP, check if it is legal to emit this global normally.
if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
return;
if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
if (MustBeEmitted(Global))
EmitOMPDeclareReduction(DRD);
return;
} else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
if (MustBeEmitted(Global))
EmitOMPDeclareMapper(DMD);
return;
}
}
// Ignore declarations, they will be emitted on their first use.
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
// Forward declarations are emitted lazily on first use.
if (!FD->doesThisDeclarationHaveABody()) {
if (!FD->doesDeclarationForceExternallyVisibleDefinition())
return;
StringRef MangledName = getMangledName(GD);
// Compute the function info and LLVM type.
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::Type *Ty = getTypes().GetFunctionType(FI);
GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
/*DontDefer=*/false);
return;
}
} else {
const auto *VD = cast<VarDecl>(Global);
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
!Context.isMSStaticDataMemberInlineDefinition(VD)) {
if (LangOpts.OpenMP) {
// Emit declaration of the must-be-emitted declare target variable.
if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
bool UnifiedMemoryEnabled =
getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
!UnifiedMemoryEnabled) {
(void)GetAddrOfGlobalVar(VD);
} else {
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
UnifiedMemoryEnabled)) &&
"Link clause or to clause with unified memory expected.");
(void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
return;
}
}
// If this declaration may have caused an inline variable definition to
// change linkage, make sure that it's emitted.
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::Strong)
GetAddrOfGlobalVar(VD);
return;
}
}
// Defer code generation to first use when possible, e.g. if this is an inline
// function. If the global must always be emitted, do it eagerly if possible
// to benefit from cache locality.
if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
// Emit the definition if it can't be deferred.
EmitGlobalDefinition(GD);
return;
}
// If we're deferring emission of a C++ variable with an
// initializer, remember the order in which it appeared in the file.
if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
cast<VarDecl>(Global)->hasInit()) {
DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
CXXGlobalInits.push_back(nullptr);
}
StringRef MangledName = getMangledName(GD);
if (GetGlobalValue(MangledName) != nullptr) {
// The value has already been used and should therefore be emitted.
addDeferredDeclToEmit(GD);
} else if (MustBeEmitted(Global)) {
// The value must be emitted, but cannot be emitted eagerly.
assert(!MayBeEmittedEagerly(Global));
addDeferredDeclToEmit(GD);
} else {
// Otherwise, remember that we saw a deferred decl with this name. The
// first use of the mangled name will cause it to move into
// DeferredDeclsToEmit.
DeferredDecls[MangledName] = GD;
}
}
// Check if T is a class type with a destructor that's not dllimport.
static bool HasNonDllImportDtor(QualType T) {
if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
return true;
return false;
}
namespace {
struct FunctionIsDirectlyRecursive
: public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
const StringRef Name;
const Builtin::Context &BI;
FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
: Name(N), BI(C) {}
bool VisitCallExpr(const CallExpr *E) {
const FunctionDecl *FD = E->getDirectCallee();
if (!FD)
return false;
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (Attr && Name == Attr->getLabel())
return true;
unsigned BuiltinID = FD->getBuiltinID();
if (!BuiltinID || !BI.isLibFunction(BuiltinID))
return false;
StringRef BuiltinName = BI.getName(BuiltinID);
if (BuiltinName.startswith("__builtin_") &&
Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
return true;
}
return false;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children())
if (Child && this->Visit(Child))
return true;
return false;
}
};
// Make sure we're not referencing non-imported vars or functions.
struct DLLImportFunctionVisitor
: public RecursiveASTVisitor<DLLImportFunctionVisitor> {
bool SafeToInline = true;
bool shouldVisitImplicitCode() const { return true; }
bool VisitVarDecl(VarDecl *VD) {
if (VD->getTLSKind()) {
// A thread-local variable cannot be imported.
SafeToInline = false;
return SafeToInline;
}
// A variable definition might imply a destructor call.
if (VD->isThisDeclarationADefinition())
SafeToInline = !HasNonDllImportDtor(VD->getType());
return SafeToInline;
}
bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
if (const auto *D = E->getTemporary()->getDestructor())
SafeToInline = D->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitDeclRefExpr(DeclRefExpr *E) {
ValueDecl *VD = E->getDecl();
if (isa<FunctionDecl>(VD))
SafeToInline = VD->hasAttr<DLLImportAttr>();
else if (VarDecl *V = dyn_cast<VarDecl>(VD))
SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
CXXMethodDecl *M = E->getMethodDecl();
if (!M) {
// Call through a pointer to member function. This is safe to inline.
SafeToInline = true;
} else {
SafeToInline = M->hasAttr<DLLImportAttr>();
}
return SafeToInline;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXNewExpr(CXXNewExpr *E) {
SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
};
}
// isTriviallyRecursive - Check if this function calls another
// decl that, because of the asm attribute or the other decl being a builtin,
// ends up pointing to itself.
bool
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
StringRef Name;
if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
// asm labels are a special kind of mangling we have to support.
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (!Attr)
return false;
Name = Attr->getLabel();
} else {
Name = FD->getName();
}
FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
const Stmt *Body = FD->getBody();
return Body ? Walker.Visit(Body) : false;
}
bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
return true;
const auto *F = cast<FunctionDecl>(GD.getDecl());
if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
return false;
if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
// Check whether it would be safe to inline this dllimport function.
DLLImportFunctionVisitor Visitor;
Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
if (!Visitor.SafeToInline)
return false;
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
// Implicit destructor invocations aren't captured in the AST, so the
// check above can't see them. Check for them manually here.
for (const Decl *Member : Dtor->getParent()->decls())
if (isa<FieldDecl>(Member))
if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
return false;
for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
if (HasNonDllImportDtor(B.getType()))
return false;
}
}
// PR9614. Avoid cases where the source code is lying to us. An available
// externally function should have an equivalent function somewhere else,
// but a function that calls itself through asm label/`__builtin_` trickery is
// clearly not equivalent to the real implementation.
// This happens in glibc's btowc and in some configure checks.
return !isTriviallyRecursive(F);
}
bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
return CodeGenOpts.OptimizationLevel > 0;
}
void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
llvm::GlobalValue *GV) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (FD->isCPUSpecificMultiVersion()) {
auto *Spec = FD->getAttr<CPUSpecificAttr>();
for (unsigned I = 0; I < Spec->cpus_size(); ++I)
EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
// Requires multiple emits.
} else
EmitGlobalFunctionDefinition(GD, GV);
}
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
const auto *D = cast<ValueDecl>(GD.getDecl());
PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
Context.getSourceManager(),
"Generating code for declaration");
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// At -O0, don't generate IR for functions with available_externally
// linkage.
if (!shouldEmitFunction(GD))
return;
llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
std::string Name;
llvm::raw_string_ostream OS(Name);
FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
/*Qualified=*/true);
return Name;
});
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
// Make sure to emit the definition(s) before we emit the thunks.
// This is necessary for the generation of certain thunks.
if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
ABI->emitCXXStructor(GD);
else if (FD->isMultiVersion())
EmitMultiVersionFunctionDefinition(GD, GV);
else
EmitGlobalFunctionDefinition(GD, GV);
if (Method->isVirtual())
getVTables().EmitThunks(GD);
return;
}
if (FD->isMultiVersion())
return EmitMultiVersionFunctionDefinition(GD, GV);
return EmitGlobalFunctionDefinition(GD, GV);
}
if (const auto *VD = dyn_cast<VarDecl>(D))
return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
}
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
llvm::Function *NewFn);
static unsigned
TargetMVPriority(const TargetInfo &TI,
const CodeGenFunction::MultiVersionResolverOption &RO) {
unsigned Priority = 0;
for (StringRef Feat : RO.Conditions.Features)
Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
if (!RO.Conditions.Architecture.empty())
Priority = std::max(
Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
return Priority;
}
void CodeGenModule::emitMultiVersionFunctions() {
for (GlobalDecl GD : MultiVersionFuncs) {
SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
getContext().forEachMultiversionedFunctionVersion(
FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
GlobalDecl CurGD{
(CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
StringRef MangledName = getMangledName(CurGD);
llvm::Constant *Func = GetGlobalValue(MangledName);
if (!Func) {
if (CurFD->isDefined()) {
EmitGlobalFunctionDefinition(CurGD, nullptr);
Func = GetGlobalValue(MangledName);
} else {
const CGFunctionInfo &FI =
getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
/*DontDefer=*/false, ForDefinition);
}
assert(Func && "This should have just been created");
}
const auto *TA = CurFD->getAttr<TargetAttr>();
llvm::SmallVector<StringRef, 8> Feats;
TA->getAddedFeatures(Feats);
Options.emplace_back(cast<llvm::Function>(Func),
TA->getArchitecture(), Feats);
});
llvm::Function *ResolverFunc;
const TargetInfo &TI = getTarget();
if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
ResolverFunc = cast<llvm::Function>(
GetGlobalValue((getMangledName(GD) + ".resolver").str()));
ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
} else {
ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
}
if (supportsCOMDAT())
ResolverFunc->setComdat(
getModule().getOrInsertComdat(ResolverFunc->getName()));
llvm::stable_sort(
Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
const CodeGenFunction::MultiVersionResolverOption &RHS) {
return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
});
CodeGenFunction CGF(*this);
CGF.EmitMultiVersionResolver(ResolverFunc, Options);
}
}
void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
assert(FD && "Not a FunctionDecl?");
const auto *DD = FD->getAttr<CPUDispatchAttr>();
assert(DD && "Not a cpu_dispatch Function?");
llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
DeclTy = getTypes().GetFunctionType(FInfo);
}
StringRef ResolverName = getMangledName(GD);
llvm::Type *ResolverType;
GlobalDecl ResolverGD;
if (getTarget().supportsIFunc())
ResolverType = llvm::FunctionType::get(
llvm::PointerType::get(DeclTy,
Context.getTargetAddressSpace(FD->getType())),
false);
else {
ResolverType = DeclTy;
ResolverGD = GD;
}
auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
if (supportsCOMDAT())
ResolverFunc->setComdat(
getModule().getOrInsertComdat(ResolverFunc->getName()));
SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
const TargetInfo &Target = getTarget();
unsigned Index = 0;
for (const IdentifierInfo *II : DD->cpus()) {
// Get the name of the target function so we can look it up/create it.
std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
getCPUSpecificMangling(*this, II->getName());
llvm::Constant *Func = GetGlobalValue(MangledName);
if (!Func) {
GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
if (ExistingDecl.getDecl() &&
ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
Func = GetGlobalValue(MangledName);
} else {
if (!ExistingDecl.getDecl())
ExistingDecl = GD.getWithMultiVersionIndex(Index);
Func = GetOrCreateLLVMFunction(
MangledName, DeclTy, ExistingDecl,
/*ForVTable=*/false, /*DontDefer=*/true,
/*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
}
}
llvm::SmallVector<StringRef, 32> Features;
Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
llvm::transform(Features, Features.begin(),
[](StringRef Str) { return Str.substr(1); });
Features.erase(std::remove_if(
Features.begin(), Features.end(), [&Target](StringRef Feat) {
return !Target.validateCpuSupports(Feat);
}), Features.end());
Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
++Index;
}
llvm::sort(
Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
const CodeGenFunction::MultiVersionResolverOption &RHS) {
return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
});
// If the list contains multiple 'default' versions, such as when it contains
// 'pentium' and 'generic', don't emit the call to the generic one (since we
// always run on at least a 'pentium'). We do this by deleting the 'least
// advanced' (read, lowest mangling letter).
while (Options.size() > 1 &&
CodeGenFunction::GetX86CpuSupportsMask(
(Options.end() - 2)->Conditions.Features) == 0) {
StringRef LHSName = (Options.end() - 2)->Function->getName();
StringRef RHSName = (Options.end() - 1)->Function->getName();
if (LHSName.compare(RHSName) < 0)
Options.erase(Options.end() - 2);
else
Options.erase(Options.end() - 1);
}
CodeGenFunction CGF(*this);
CGF.EmitMultiVersionResolver(ResolverFunc, Options);
if (getTarget().supportsIFunc()) {
std::string AliasName = getMangledNameImpl(
*this, GD, FD, /*OmitMultiVersionMangling=*/true);
llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
if (!AliasFunc) {
auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
/*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
auto *GA = llvm::GlobalAlias::create(
DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
GA->setLinkage(llvm::Function::WeakODRLinkage);
SetCommonAttributes(GD, GA);
}
}
}
/// If a dispatcher for the specified mangled name is not in the module, create
/// and return an llvm Function with the specified type.
llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
std::string MangledName =
getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
// Holds the name of the resolver, in ifunc mode this is the ifunc (which has
// a separate resolver).
std::string ResolverName = MangledName;
if (getTarget().supportsIFunc())
ResolverName += ".ifunc";
else if (FD->isTargetMultiVersion())
ResolverName += ".resolver";
// If this already exists, just return that one.
if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
return ResolverGV;
// Since this is the first time we've created this IFunc, make sure
// that we put this multiversioned function into the list to be
// replaced later if necessary (target multiversioning only).
if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
MultiVersionFuncs.push_back(GD);
if (getTarget().supportsIFunc()) {
llvm::Type *ResolverType = llvm::FunctionType::get(
llvm::PointerType::get(
DeclTy, getContext().getTargetAddressSpace(FD->getType())),
false);
llvm::Constant *Resolver = GetOrCreateLLVMFunction(
MangledName + ".resolver", ResolverType, GlobalDecl{},
/*ForVTable=*/false);
llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
GIF->setName(ResolverName);
SetCommonAttributes(FD, GIF);
return GIF;
}
llvm::Constant *Resolver = GetOrCreateLLVMFunction(
ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
assert(isa<llvm::GlobalValue>(Resolver) &&
"Resolver should be created for the first time");
SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
return Resolver;
}
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
/// module, create and return an llvm Function with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the function when it is first created.
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
ForDefinition_t IsForDefinition) {
const Decl *D = GD.getDecl();
// Any attempts to use a MultiVersion function should result in retrieving
// the iFunc instead. Name Mangling will handle the rest of the changes.
if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
// For the device mark the function as one that should be emitted.
if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
!OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
!DontDefer && !IsForDefinition) {
if (const FunctionDecl *FDDef = FD->getDefinition()) {
GlobalDecl GDDef;
if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
GDDef = GlobalDecl(CD, GD.getCtorType());
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
GDDef = GlobalDecl(DD, GD.getDtorType());
else
GDDef = GlobalDecl(FDDef);
EmitGlobal(GDDef);
}
}
if (FD->isMultiVersion()) {
if (FD->hasAttr<TargetAttr>())
UpdateMultiVersionNames(GD, FD);
if (!IsForDefinition)
return GetOrCreateMultiVersionResolver(GD, Ty, FD);
}
}
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
if (FD && !FD->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
setDSOLocal(Entry);
}
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
// Check that GD is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
(GD.getCanonicalDecl().getDecl() !=
OtherGD.getCanonicalDecl().getDecl()) &&
DiagnosedConflictingDefinitions.insert(GD).second) {
getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
(Entry->getValueType() == Ty)) {
return Entry;
}
// Make sure the result is of the correct type.
// (If function is requested for a definition, we always need to create a new
// function, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
}
// This function doesn't have a complete type (for example, the return
// type is an incomplete struct). Use a fake type instead, and make
// sure not to try to set attributes.
bool IsIncompleteFunction = false;
llvm::FunctionType *FTy;
if (isa<llvm::FunctionType>(Ty)) {
FTy = cast<llvm::FunctionType>(Ty);
} else {
FTy = llvm::FunctionType::get(VoidTy, false);
IsIncompleteFunction = true;
}
llvm::Function *F =
llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
Entry ? StringRef() : MangledName, &getModule());
// If we already created a function with the same mangled name (but different
// type) before, take its name and add it to the list of functions to be
// replaced with F at the end of CodeGen.
//
// This happens if there is a prototype for a function (e.g. "int f()") and
// then a definition of a different type (e.g. "int f(int x)").
if (Entry) {
F->takeName(Entry);
// This might be an implementation of a function without a prototype, in
// which case, try to do special replacement of calls which match the new
// prototype. The really key thing here is that we also potentially drop
// arguments from the call site so as to make a direct call, which makes the
// inliner happier and suppresses a number of optimizer warnings (!) about
// dropping arguments.
if (!Entry->use_empty()) {
ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
Entry->removeDeadConstantUsers();
}
llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
F, Entry->getValueType()->getPointerTo());
addGlobalValReplacement(Entry, BC);
}
assert(F->getName() == MangledName && "name was uniqued!");
if (D)
SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
}
if (!DontDefer) {
// All MSVC dtors other than the base dtor are linkonce_odr and delegate to
// each other bottoming out with the base dtor. Therefore we emit non-base
// dtors on usage, even if there is no dtor definition in the TU.
if (D && isa<CXXDestructorDecl>(D) &&
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
GD.getDtorType()))
addDeferredDeclToEmit(GD);
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the
// DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
// don't need it anymore).
addDeferredDeclToEmit(DDI->second);
DeferredDecls.erase(DDI);
// Otherwise, there are cases we have to worry about where we're
// using a declaration for which we must emit a definition but where
// we might not find a top-level definition:
// - member functions defined inline in their classes
// - friend functions defined inline in some class
// - special member functions with implicit definitions
// If we ever change our AST traversal to walk into class methods,
// this will be unnecessary.
//
// We also don't emit a definition for a function if it's going to be an
// entry in a vtable, unless it's already marked as used.
} else if (getLangOpts().CPlusPlus && D) {
// Look for a declaration that's lexically in a record.
for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
FD = FD->getPreviousDecl()) {
if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
if (FD->doesThisDeclarationHaveABody()) {
addDeferredDeclToEmit(GD.getWithDecl(FD));
break;
}
}
}
}
}
// Make sure the result is of the requested type.
if (!IsIncompleteFunction) {
assert(F->getFunctionType() == Ty);
return F;
}
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
return llvm::ConstantExpr::getBitCast(F, PTy);
}
/// GetAddrOfFunction - Return the address of the given function. If Ty is
/// non-null, then this function will use the specified type if it has to
/// create it (this occurs when we see a definition of the function).
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
llvm::Type *Ty,
bool ForVTable,
bool DontDefer,
ForDefinition_t IsForDefinition) {
assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
"consteval function should never be emitted");
// If there was no specific requested type, just convert it now.
if (!Ty) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
Ty = getTypes().ConvertType(FD->getType());
}
// Devirtualized destructor calls may come through here instead of via
// getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
// of the complete destructor when necessary.
if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
if (getTarget().getCXXABI().isMicrosoft() &&
GD.getDtorType() == Dtor_Complete &&
DD->getParent()->getNumVBases() == 0)
GD = GlobalDecl(DD, Dtor_Base);
}
StringRef MangledName = getMangledName(GD);
auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
/*IsThunk=*/false, llvm::AttributeList(),
IsForDefinition);
// Returns kernel handle for HIP kernel stub function.
if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
auto *Handle = getCUDARuntime().getKernelHandle(
cast<llvm::Function>(F->stripPointerCasts()), GD);
if (IsForDefinition)
return F;
return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
}
return F;
}
static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
IdentifierInfo &CII = C.Idents.get(Name);
for (const auto &Result : DC->lookup(&CII))
if (const auto FD = dyn_cast<FunctionDecl>(Result))
return FD;
if (!C.getLangOpts().CPlusPlus)
return nullptr;
// Demangle the premangled name from getTerminateFn()
IdentifierInfo &CXXII =
(Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
? C.Idents.get("terminate")
: C.Idents.get(Name);
for (const auto &N : {"__cxxabiv1", "std"}) {
IdentifierInfo &NS = C.Idents.get(N);
for (const auto &Result : DC->lookup(&NS)) {
NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
for (const auto &Result : LSD->lookup(&NS))
if ((ND = dyn_cast<NamespaceDecl>(Result)))
break;
if (ND)
for (const auto &Result : ND->lookup(&CXXII))
if (const auto *FD = dyn_cast<FunctionDecl>(Result))
return FD;
}
}
return nullptr;
}
/// CreateRuntimeFunction - Create a new runtime function with the specified
/// type and name.
llvm::FunctionCallee
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
llvm::AttributeList ExtraAttrs, bool Local,
bool AssumeConvergent) {
if (AssumeConvergent) {
ExtraAttrs =
ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
llvm::Attribute::Convergent);
}
llvm::Constant *C =
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
/*DontDefer=*/false, /*IsThunk=*/false,
ExtraAttrs);
if (auto *F = dyn_cast<llvm::Function>(C)) {
if (F->empty()) {
F->setCallingConv(getRuntimeCC());
// In Windows Itanium environments, try to mark runtime functions
// dllimport. For Mingw and MSVC, don't. We don't really know if the user
// will link their standard library statically or dynamically. Marking
// functions imported when they are not imported can cause linker errors
// and warnings.
if (!Local && getTriple().isWindowsItaniumEnvironment() &&
!getCodeGenOpts().LTOVisibilityPublicStd) {
const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
if (!FD || FD->hasAttr<DLLImportAttr>()) {
F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
F->setLinkage(llvm::GlobalValue::ExternalLinkage);
}
}
setDSOLocal(F);
}
}
return {FTy, C};
}
/// isTypeConstant - Determine whether an object of this type can be emitted
/// as a constant.
///
/// If ExcludeCtor is true, the duration when the object's constructor runs
/// will not be considered. The caller will need to verify that the object is
/// not written to during its construction.
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
if (!Ty.isConstant(Context) && !Ty->isReferenceType())
return false;
if (Context.getLangOpts().CPlusPlus) {
if (const CXXRecordDecl *Record
= Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
return ExcludeCtor && !Record->hasMutableFields() &&
Record->hasTrivialDestructor();
}
return true;
}
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
/// create and return an llvm GlobalVariable with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the global when it is first created.
///
/// If IsForDefinition is true, it is guaranteed that an actual global with
/// type Ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
llvm::PointerType *Ty,
const VarDecl *D,
ForDefinition_t IsForDefinition) {
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
if (D && !D->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
if (Entry->getType() == Ty)
return Entry;
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
const VarDecl *OtherD;
// Check that D is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
(D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
(OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
OtherD->hasInit() &&
DiagnosedConflictingDefinitions.insert(D).second) {
getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
// Make sure the result is of the correct type.
if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
// (If global is requested for a definition, we always need to create a new
// global, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(Entry, Ty);
}
auto AddrSpace = GetGlobalVarAddressSpace(D);
auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
auto *GV = new llvm::GlobalVariable(
getModule(), Ty->getElementType(), false,
llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
// If we already created a global with the same mangled name (but different
// type) before, take its name and remove it from its parent.
if (Entry) {
GV->takeName(Entry);
if (!Entry->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
}
Entry->eraseFromParent();
}
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
// list, and remove it from DeferredDecls (since we don't need it anymore).
addDeferredDeclToEmit(DDI->second);
DeferredDecls.erase(DDI);
}
// Handle things which are present even on external declarations.
if (D) {
if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
// FIXME: This code is overly simple and should be merged with other global
// handling.
GV->setConstant(isTypeConstant(D->getType(), false));
GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
setLinkageForGV(GV, D);
if (D->getTLSKind()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
setGVProperties(GV, D);
// If required by the ABI, treat declarations of static data members with
// inline initializers as definitions.
if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
EmitGlobalVarDefinition(D);
}
// Emit section information for extern variables.
if (D->hasExternalStorage()) {
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
GV->setSection(SA->getName());
}
// Handle XCore specific ABI requirements.
if (getTriple().getArch() == llvm::Triple::xcore &&
D->getLanguageLinkage() == CLanguageLinkage &&
D->getType().isConstant(Context) &&
isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
GV->setSection(".cp.rodata");
// Check if we a have a const declaration with an initializer, we may be
// able to emit it as available_externally to expose it's value to the
// optimizer.
if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
D->getType().isConstQualified() && !GV->hasInitializer() &&
!D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
const auto *Record =
Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
bool HasMutableFields = Record && Record->hasMutableFields();
if (!HasMutableFields) {
const VarDecl *InitDecl;
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
if (InitExpr) {
ConstantEmitter emitter(*this);
llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
if (Init) {
auto *InitType = Init->getType();
if (GV->getValueType() != InitType) {
// The type of the initializer does not match the definition.
// This happens when an initializer has a different type from
// the type of the global (because of padding at the end of a
// structure for instance).
GV->setName(StringRef());
// Make a new global with the correct type, this is now guaranteed
// to work.
auto *NewGV = cast<llvm::GlobalVariable>(
GetAddrOfGlobalVar(D, InitType, IsForDefinition)
->stripPointerCasts());
// Erase the old global, since it is no longer used.
GV->eraseFromParent();
GV = NewGV;
} else {
GV->setInitializer(Init);
GV->setConstant(true);
GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
}
emitter.finalize(GV);
}
}
}
}
}
if (GV->isDeclaration()) {
getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
// External HIP managed variables needed to be recorded for transformation
// in both device and host compilations.
if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
D->hasExternalStorage())
getCUDARuntime().handleVarRegistration(D, *GV);
}
LangAS ExpectedAS =
D ? D->getType().getAddressSpace()
: (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
assert(getContext().getTargetAddressSpace(ExpectedAS) ==
Ty->getPointerAddressSpace());
if (AddrSpace != ExpectedAS)
return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
ExpectedAS, Ty);
return GV;
}
llvm::Constant *
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
const Decl *D = GD.getDecl();
if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
/*DontDefer=*/false, IsForDefinition);
if (isa<CXXMethodDecl>(D)) {
auto FInfo =
&getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
auto Ty = getTypes().GetFunctionType(*FInfo);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
}
if (isa<FunctionDecl>(D)) {
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
}
return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
}
llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
unsigned Alignment) {
llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
llvm::GlobalVariable *OldGV = nullptr;
if (GV) {
// Check if the variable has the right type.
if (GV->getValueType() == Ty)
return GV;
// Because C++ name mangling, the only way we can end up with an already
// existing global with the same name is if it has been declared extern "C".
assert(GV->isDeclaration() && "Declaration has wrong type!");
OldGV = GV;
}
// Create a new variable.
GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
Linkage, nullptr, Name);
if (OldGV) {
// Replace occurrences of the old variable if needed.
GV->takeName(OldGV);
if (!OldGV->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
}
OldGV->eraseFromParent();
}
if (supportsCOMDAT() && GV->isWeakForLinker() &&
!GV->hasAvailableExternallyLinkage())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
GV->setAlignment(llvm::MaybeAlign(Alignment));
return GV;
}
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable. If Ty is non-null and if the global doesn't exist,
/// then it will be created with the specified type instead of whatever the
/// normal requested type would be. If IsForDefinition is true, it is guaranteed
/// that an actual global with type Ty will be returned, not conversion of a
/// variable with the same mangled name but some other type.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
llvm::Type *Ty,
ForDefinition_t IsForDefinition) {
assert(D->hasGlobalStorage() && "Not a global variable");
QualType ASTTy = D->getType();
if (!Ty)
Ty = getTypes().ConvertTypeForMem(ASTTy);
llvm::PointerType *PTy =
llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
StringRef MangledName = getMangledName(D);
return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
}
/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
StringRef Name) {
auto PtrTy =
getContext().getLangOpts().OpenCL
? llvm::PointerType::get(
Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
: llvm::PointerType::getUnqual(Ty);
auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
return Ret;
}
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
assert(!D->getInit() && "Cannot emit definite definitions here!");
StringRef MangledName = getMangledName(D);
llvm::GlobalValue *GV = GetGlobalValue(MangledName);
// We already have a definition, not declaration, with the same mangled name.
// Emitting of declaration is not required (and actually overwrites emitted
// definition).
if (GV && !GV->isDeclaration())
return;
// If we have not seen a reference to this variable yet, place it into the
// deferred declarations table to be emitted if needed later.
if (!MustBeEmitted(D) && !GV) {
DeferredDecls[MangledName] = D;
return;
}
// The tentative definition is the only definition.
EmitGlobalVarDefinition(D);
}
void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
EmitExternalVarDeclaration(D);
}
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
return Context.toCharUnitsFromBits(
getDataLayout().getTypeStoreSizeInBits(Ty));
}
LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
LangAS AddrSpace = LangAS::Default;
if (LangOpts.OpenCL) {
AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
assert(AddrSpace == LangAS::opencl_global ||
AddrSpace == LangAS::opencl_global_device ||
AddrSpace == LangAS::opencl_global_host ||
AddrSpace == LangAS::opencl_constant ||
AddrSpace == LangAS::opencl_local ||
AddrSpace >= LangAS::FirstTargetAddressSpace);
return AddrSpace;
}
if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
if (D && D->hasAttr<CUDAConstantAttr>())
return LangAS::cuda_constant;
else if (D && D->hasAttr<CUDASharedAttr>())
return LangAS::cuda_shared;
else if (D && D->hasAttr<CUDADeviceAttr>())
return LangAS::cuda_device;
else if (D && D->getType().isConstQualified())
return LangAS::cuda_constant;
else
return LangAS::cuda_device;
}
if (LangOpts.OpenMP) {
LangAS AS;
if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
return AS;
}
return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
}
LangAS CodeGenModule::getStringLiteralAddressSpace() const {
// OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
if (LangOpts.OpenCL)
return LangAS::opencl_constant;
if (auto AS = getTarget().getConstantAddressSpace())
return AS.getValue();
return LangAS::Default;
}
// In address space agnostic languages, string literals are in default address
// space in AST. However, certain targets (e.g. amdgcn) request them to be
// emitted in constant address space in LLVM IR. To be consistent with other
// parts of AST, string literal global variables in constant address space
// need to be casted to default address space before being put into address
// map and referenced by other part of CodeGen.
// In OpenCL, string literals are in constant address space in AST, therefore
// they should not be casted to default address space.
static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
llvm::GlobalVariable *GV) {
llvm::Constant *Cast = GV;
if (!CGM.getLangOpts().OpenCL) {
if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
if (AS != LangAS::Default)
Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
CGM, GV, AS.getValue(), LangAS::Default,
GV->getValueType()->getPointerTo(
CGM.getContext().getTargetAddressSpace(LangAS::Default)));
}
}
return Cast;
}
template<typename SomeDecl>
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
llvm::GlobalValue *GV) {
if (!getLangOpts().CPlusPlus)
return;
// Must have 'used' attribute, or else inline assembly can't rely on
// the name existing.
if (!D->template hasAttr<UsedAttr>())
return;
// Must have internal linkage and an ordinary name.
if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
return;
// Must be in an extern "C" context. Entities declared directly within
// a record are not extern "C" even if the record is in such a context.
const SomeDecl *First = D->getFirstDecl();
if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
return;
// OK, this is an internal linkage entity inside an extern "C" linkage
// specification. Make a note of that so we can give it the "expected"
// mangled name if nothing else is using that name.
std::pair<StaticExternCMap::iterator, bool> R =
StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
// If we have multiple internal linkage entities with the same name
// in extern "C" regions, none of them gets that name.
if (!R.second)
R.first->second = nullptr;
}
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
if (!CGM.supportsCOMDAT())
return false;
// Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
// them being "merged" by the COMDAT Folding linker optimization.
if (D.hasAttr<CUDAGlobalAttr>())
return false;
if (D.hasAttr<SelectAnyAttr>())
return true;
GVALinkage Linkage;
if (auto *VD = dyn_cast<VarDecl>(&D))
Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
else
Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
switch (Linkage) {
case GVA_Internal:
case GVA_AvailableExternally:
case GVA_StrongExternal:
return false;
case GVA_DiscardableODR:
case GVA_StrongODR:
return true;
}
llvm_unreachable("No such linkage");
}
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
llvm::GlobalObject &GO) {
if (!shouldBeInCOMDAT(*this, D))
return;
GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
}
/// Pass IsTentative as true if you want to create a tentative definition.
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
bool IsTentative) {
// OpenCL global variables of sampler type are translated to function calls,
// therefore no need to be translated.
QualType ASTTy = D->getType();
if (getLangOpts().OpenCL && ASTTy->isSamplerT())
return;
// If this is OpenMP device, check if it is legal to emit this global
// normally.
if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
OpenMPRuntime->emitTargetGlobalVariable(D))
return;
llvm::Constant *Init = nullptr;
bool NeedsGlobalCtor = false;
bool NeedsGlobalDtor =
D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
const VarDecl *InitDecl;
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
Optional<ConstantEmitter> emitter;
// CUDA E.2.4.1 "__shared__ variables cannot have an initialization
// as part of their declaration." Sema has already checked for
// error cases, so we just need to set Init to UndefValue.
bool IsCUDASharedVar =
getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
// Shadows of initialized device-side global variables are also left
// undefined.
// Managed Variables should be initialized on both host side and device side.
bool IsCUDAShadowVar =
!getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
(D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
D->hasAttr<CUDASharedAttr>());
bool IsCUDADeviceShadowVar =
getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
(D->getType()->isCUDADeviceBuiltinSurfaceType() ||
D->getType()->isCUDADeviceBuiltinTextureType());
if (getLangOpts().CUDA &&
(IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
else if (D->hasAttr<LoaderUninitializedAttr>())
Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
else if (!InitExpr) {
// This is a tentative definition; tentative definitions are
// implicitly initialized with { 0 }.
//
// Note that tentative definitions are only emitted at the end of
// a translation unit, so they should never have incomplete
// type. In addition, EmitTentativeDefinition makes sure that we
// never attempt to emit a tentative definition if a real one
// exists. A use may still exists, however, so we still may need
// to do a RAUW.
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
Init = EmitNullConstant(D->getType());
} else {
initializedGlobalDecl = GlobalDecl(D);
emitter.emplace(*this);
Init = emitter->tryEmitForInitializer(*InitDecl);
if (!Init) {
QualType T = InitExpr->getType();
if (D->getType()->isReferenceType())
T = D->getType();
if (getLangOpts().CPlusPlus) {
Init = EmitNullConstant(T);
NeedsGlobalCtor = true;
} else {
ErrorUnsupported(D, "static initializer");
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
}
} else {
// We don't need an initializer, so remove the entry for the delayed
// initializer position (just in case this entry was delayed) if we
// also don't need to register a destructor.
if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
DelayedCXXInitPosition.erase(D);
}
}
llvm::Type* InitType = Init->getType();
llvm::Constant *Entry =
GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
// Strip off pointer casts if we got them.
Entry = Entry->stripPointerCasts();
// Entry is now either a Function or GlobalVariable.
auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
// We have a definition after a declaration with the wrong type.
// We must make a new GlobalVariable* and update everything that used OldGV
// (a declaration or tentative definition) with the new GlobalVariable*
// (which will be a definition).
//
// This happens if there is a prototype for a global (e.g.
// "extern int x[];") and then a definition of a different type (e.g.
// "int x[10];"). This also happens when an initializer has a different type
// from the type of the global (this happens with unions).
if (!GV || GV->getValueType() != InitType ||
GV->getType()->getAddressSpace() !=
getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
// Move the old entry aside so that we'll create a new one.
Entry->setName(StringRef());
// Make a new global with the correct type, this is now guaranteed to work.
GV = cast<llvm::GlobalVariable>(
GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
->stripPointerCasts());
// Replace all uses of the old global with the new global
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
// Erase the old global, since it is no longer used.
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
}
MaybeHandleStaticInExternC(D, GV);
if (D->hasAttr<AnnotateAttr>())
AddGlobalAnnotations(D, GV);
// Set the llvm linkage type as appropriate.
llvm::GlobalValue::LinkageTypes Linkage =
getLLVMLinkageVarDefinition(D, GV->isConstant());
// CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
// the device. [...]"
// CUDA B.2.2 "The __constant__ qualifier, optionally used together with
// __device__, declares a variable that: [...]
// Is accessible from all the threads within the grid and from the host
// through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
// / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
if (GV && LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (Linkage != llvm::GlobalValue::InternalLinkage &&
(D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
GV->setExternallyInitialized(true);
} else {
getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
}
getCUDARuntime().handleVarRegistration(D, *GV);
}
GV->setInitializer(Init);
if (emitter)
emitter->finalize(GV);
// If it is safe to mark the global 'constant', do so now.
GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
isTypeConstant(D->getType(), true));
// If it is in a read-only section, mark it 'constant'.
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
GV->setConstant(true);
}
GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
// On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
// function is only defined alongside the variable, not also alongside
// callers. Normally, all accesses to a thread_local go through the
// thread-wrapper in order to ensure initialization has occurred, underlying
// variable will never be used other than the thread-wrapper, so it can be
// converted to internal linkage.
//
// However, if the variable has the 'constinit' attribute, it _can_ be
// referenced directly, without calling the thread-wrapper, so the linkage
// must not be changed.
//
// Additionally, if the variable isn't plain external linkage, e.g. if it's
// weak or linkonce, the de-duplication semantics are important to preserve,
// so we don't change the linkage.
if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
Linkage == llvm::GlobalValue::ExternalLinkage &&
Context.getTargetInfo().getTriple().isOSDarwin() &&
!D->hasAttr<ConstInitAttr>())
Linkage = llvm::GlobalValue::InternalLinkage;
GV->setLinkage(Linkage);
if (D->hasAttr<DLLImportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if (D->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
else
GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
if (Linkage == llvm::GlobalVariable::CommonLinkage) {
// common vars aren't constant even if declared const.
GV->setConstant(false);
// Tentative definition of global variables may be initialized with
// non-zero null pointers. In this case they should have weak linkage
// since common linkage must have zero initializer and must not have
// explicit section therefore cannot have non-zero initial value.
if (!GV->getInitializer()->isNullValue())
GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
}
setNonAliasAttributes(D, GV);
if (D->getTLSKind() && !GV->isThreadLocal()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
maybeSetTrivialComdat(*D, *GV);
// Emit the initializer function if necessary.
if (NeedsGlobalCtor || NeedsGlobalDtor)
EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
// Emit global variable debug information.
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo())
DI->EmitGlobalVariable(GV, D);
}
void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo()) {
QualType ASTTy = D->getType();
llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
llvm::PointerType *PTy =
llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
DI->EmitExternalVariable(
cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
}
}
static bool isVarDeclStrongDefinition(const ASTContext &Context,
CodeGenModule &CGM, const VarDecl *D,
bool NoCommon) {
// Don't give variables common linkage if -fno-common was specified unless it
// was overridden by a NoCommon attribute.
if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
return true;
// C11 6.9.2/2:
// A declaration of an identifier for an object that has file scope without
// an initializer, and without a storage-class specifier or with the
// storage-class specifier static, constitutes a tentative definition.
if (D->getInit() || D->hasExternalStorage())
return true;
// A variable cannot be both common and exist in a section.
if (D->hasAttr<SectionAttr>())
return true;
// A variable cannot be both common and exist in a section.
// We don't try to determine which is the right section in the front-end.
// If no specialized section name is applicable, it will resort to default.
if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
D->hasAttr<PragmaClangDataSectionAttr>() ||
D->hasAttr<PragmaClangRelroSectionAttr>() ||
D->hasAttr<PragmaClangRodataSectionAttr>())
return true;
// Thread local vars aren't considered common linkage.
if (D->getTLSKind())
return true;
// Tentative definitions marked with WeakImportAttr are true definitions.
if (D->hasAttr<WeakImportAttr>())
return true;
// A variable cannot be both common and exist in a comdat.
if (shouldBeInCOMDAT(CGM, *D))
return true;
// Declarations with a required alignment do not have common linkage in MSVC
// mode.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (D->hasAttr<AlignedAttr>())
return true;
QualType VarType = D->getType();
if (Context.isAlignmentRequired(VarType))
return true;
if (const auto *RT = VarType->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
for (const FieldDecl *FD : RD->fields()) {
if (FD->isBitField())
continue;
if (FD->hasAttr<AlignedAttr>())
return true;
if (Context.isAlignmentRequired(FD->getType()))
return true;
}
}
}
// Microsoft's link.exe doesn't support alignments greater than 32 bytes for
// common symbols, so symbols with greater alignment requirements cannot be
// common.
// Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
// alignments for common symbols via the aligncomm directive, so this
// restriction only applies to MSVC environments.
if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
Context.getTypeAlignIfKnown(D->getType()) >
Context.toBits(CharUnits::fromQuantity(32)))
return true;
return false;
}
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
if (Linkage == GVA_Internal)
return llvm::Function::InternalLinkage;
if (D->hasAttr<WeakAttr>()) {
if (IsConstantVariable)
return llvm::GlobalVariable::WeakODRLinkage;
else
return llvm::GlobalVariable::WeakAnyLinkage;
}
if (const auto *FD = D->getAsFunction())
if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
return llvm::GlobalVariable::LinkOnceAnyLinkage;
// We are guaranteed to have a strong definition somewhere else,
// so we can use available_externally linkage.
if (Linkage == GVA_AvailableExternally)
return llvm::GlobalValue::AvailableExternallyLinkage;
// Note that Apple's kernel linker doesn't support symbol
// coalescing, so we need to avoid linkonce and weak linkages there.
// Normally, this means we just map to internal, but for explicit
// instantiations we'll map to external.
// In C++, the compiler has to emit a definition in every translation unit
// that references the function. We should use linkonce_odr because
// a) if all references in this translation unit are optimized away, we
// don't need to codegen it. b) if the function persists, it needs to be
// merged with other definitions. c) C++ has the ODR, so we know the
// definition is dependable.
if (Linkage == GVA_DiscardableODR)
return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
: llvm::Function::InternalLinkage;
// An explicit instantiation of a template has weak linkage, since
// explicit instantiations can occur in multiple translation units
// and must all be equivalent. However, we are not allowed to
// throw away these explicit instantiations.
//
// CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
// so say that CUDA templates are either external (for kernels) or internal.
// This lets llvm perform aggressive inter-procedural optimizations. For
// -fgpu-rdc case, device function calls across multiple TU's are allowed,
// therefore we need to follow the normal linkage paradigm.
if (Linkage == GVA_StrongODR) {
if (getLangOpts().AppleKext)
return llvm::Function::ExternalLinkage;
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
!getLangOpts().GPURelocatableDeviceCode)
return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
: llvm::Function::InternalLinkage;
return llvm::Function::WeakODRLinkage;
}
// C++ doesn't have tentative definitions and thus cannot have common
// linkage.
if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
!isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
CodeGenOpts.NoCommon))
return llvm::GlobalVariable::CommonLinkage;
// selectany symbols are externally visible, so use weak instead of
// linkonce. MSVC optimizes away references to const selectany globals, so
// all definitions should be the same and ODR linkage should be used.
// http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
if (D->hasAttr<SelectAnyAttr>())
return llvm::GlobalVariable::WeakODRLinkage;
// Otherwise, we have strong external linkage.
assert(Linkage == GVA_StrongExternal);
return llvm::GlobalVariable::ExternalLinkage;
}
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
const VarDecl *VD, bool IsConstant) {
GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
}
/// Replace the uses of a function that was declared with a non-proto type.
/// We want to silently drop extra arguments from call sites
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
llvm::Function *newFn) {
// Fast path.
if (old->use_empty()) return;
llvm::Type *newRetTy = newFn->getReturnType();
SmallVector<llvm::Value*, 4> newArgs;
for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
ui != ue; ) {
llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
llvm::User *user = use->getUser();
// Recognize and replace uses of bitcasts. Most calls to
// unprototyped functions will use bitcasts.
if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
if (bitcast->getOpcode() == llvm::Instruction::BitCast)
replaceUsesOfNonProtoConstant(bitcast, newFn);
continue;
}
// Recognize calls to the function.
llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
if (!callSite) continue;
if (!callSite->isCallee(&*use))
continue;
// If the return types don't match exactly, then we can't
// transform this call unless it's dead.
if (callSite->getType() != newRetTy && !callSite->use_empty())
continue;
// Get the call site's attribute list.
SmallVector<llvm::AttributeSet, 8> newArgAttrs;
llvm::AttributeList oldAttrs = callSite->getAttributes();
// If the function was passed too few arguments, don't transform.
unsigned newNumArgs = newFn->arg_size();
if (callSite->arg_size() < newNumArgs)
continue;
// If extra arguments were passed, we silently drop them.
// If any of the types mismatch, we don't transform.
unsigned argNo = 0;
bool dontTransform = false;
for (llvm::Argument &A : newFn->args()) {
if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
dontTransform = true;
break;
}
// Add any parameter attributes.
newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
argNo++;
}
if (dontTransform)
continue;
// Okay, we can transform this. Create the new call instruction and copy
// over the required information.
newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
// Copy over any operand bundles.
SmallVector<llvm::OperandBundleDef, 1> newBundles;
callSite->getOperandBundlesAsDefs(newBundles);
llvm::CallBase *newCall;
if (dyn_cast<llvm::CallInst>(callSite)) {
newCall =
llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
} else {
auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
oldInvoke->getUnwindDest(), newArgs,
newBundles, "", callSite);
}
newArgs.clear(); // for the next iteration
if (!newCall->getType()->isVoidTy())
newCall->takeName(callSite);
newCall->setAttributes(llvm::AttributeList::get(
newFn->getContext(), oldAttrs.getFnAttributes(),
oldAttrs.getRetAttributes(), newArgAttrs));
newCall->setCallingConv(callSite->getCallingConv());
// Finally, remove the old call, replacing any uses with the new one.
if (!callSite->use_empty())
callSite->replaceAllUsesWith(newCall);
// Copy debug location attached to CI.
if (callSite->getDebugLoc())
newCall->setDebugLoc(callSite->getDebugLoc());
callSite->eraseFromParent();
}
}
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
/// implement a function with no prototype, e.g. "int foo() {}". If there are
/// existing call uses of the old function in the module, this adjusts them to
/// call the new function directly.
///
/// This is not just a cleanup: the always_inline pass requires direct calls to
/// functions to be able to inline them. If there is a bitcast in the way, it
/// won't inline them. Instcombine normally deletes these calls, but it isn't
/// run at -O0.
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
llvm::Function *NewFn) {
// If we're redefining a global as a function, don't transform it.
if (!isa<llvm::Function>(Old)) return;
replaceUsesOfNonProtoConstant(Old, NewFn);
}
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
auto DK = VD->isThisDeclarationADefinition();
if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
return;
TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
// If we have a definition, this might be a deferred decl. If the
// instantiation is explicit, make sure we emit it at the end.
if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
GetAddrOfGlobalVar(VD);
EmitTopLevelDecl(VD);
}
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
llvm::GlobalValue *GV) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
// Compute the function info and LLVM type.
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
// Get or create the prototype for the function.
if (!GV || (GV->getValueType() != Ty))
GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
/*DontDefer=*/true,
ForDefinition));
// Already emitted.
if (!GV->isDeclaration())
return;
// We need to set linkage and visibility on the function before
// generating code for it because various parts of IR generation
// want to propagate this information down (e.g. to local static
// declarations).
auto *Fn = cast<llvm::Function>(GV);
setFunctionLinkage(GD, Fn);
// FIXME: this is redundant with part of setFunctionDefinitionAttributes
setGVProperties(Fn, GD);
MaybeHandleStaticInExternC(D, Fn);
maybeSetTrivialComdat(*D, *Fn);
// Set CodeGen attributes that represent floating point environment.
setLLVMFunctionFEnvAttributes(D, Fn);
CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
setNonAliasAttributes(GD, Fn);
SetLLVMFunctionAttributesForDefinition(D, Fn);
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
AddGlobalCtor(Fn, CA->getPriority());
if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
AddGlobalDtor(Fn, DA->getPriority(), true);
if (D->hasAttr<AnnotateAttr>())
AddGlobalAnnotations(D, Fn);
}
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
const auto *D = cast<ValueDecl>(GD.getDecl());
const AliasAttr *AA = D->getAttr<AliasAttr>();
assert(AA && "Not an alias?");
StringRef MangledName = getMangledName(GD);
if (AA->getAliasee() == MangledName) {
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
return;
}
// If there is a definition in the module, then it wins over the alias.
// This is dubious, but allow it to be safe. Just ignore the alias.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry && !Entry->isDeclaration())
return;
Aliases.push_back(GD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
// Create a reference to the named value. This ensures that it is emitted
// if a deferred decl.
llvm::Constant *Aliasee;
llvm::GlobalValue::LinkageTypes LT;
if (isa<llvm::FunctionType>(DeclTy)) {
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
/*ForVTable=*/false);
LT = getFunctionLinkage(GD);
} else {
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
llvm::PointerType::getUnqual(DeclTy),
/*D=*/nullptr);
if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
else
LT = getFunctionLinkage(GD);
}
// Create the new alias itself, but don't set a name yet.
unsigned AS = Aliasee->getType()->getPointerAddressSpace();
auto *GA =
llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
if (Entry) {
if (GA->getAliasee() == Entry) {
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
return;
}
assert(Entry->isDeclaration());
// If there is a declaration in the module, then we had an extern followed
// by the alias, as in:
// extern int test6();
// ...
// int test6() __attribute__((alias("test7")));
//
// Remove it and replace uses of it with the alias.
GA->takeName(Entry);
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
Entry->getType()));
Entry->eraseFromParent();
} else {
GA->setName(MangledName);
}
// Set attributes which are particular to an alias; this is a
// specialization of the attributes which may be set on a global
// variable/function.
if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
D->isWeakImported()) {
GA->setLinkage(llvm::Function::WeakAnyLinkage);
}
if (const auto *VD = dyn_cast<VarDecl>(D))
if (VD->getTLSKind())
setTLSMode(GA, *VD);
SetCommonAttributes(GD, GA);
}
void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
const auto *D = cast<ValueDecl>(GD.getDecl());
const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
assert(IFA && "Not an ifunc?");
StringRef MangledName = getMangledName(GD);
if (IFA->getResolver() == MangledName) {
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
return;
}
// Report an error if some definition overrides ifunc.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
DiagnosedConflictingDefinitions.insert(GD).second) {
Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
<< MangledName;
Diags.Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
return;
}
Aliases.push_back(GD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
llvm::Constant *Resolver =
GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
/*ForVTable=*/false);
llvm::GlobalIFunc *GIF =
llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
"", Resolver, &getModule());
if (Entry) {
if (GIF->getResolver() == Entry) {
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
return;
}
assert(Entry->isDeclaration());
// If there is a declaration in the module, then we had an extern followed
// by the ifunc, as in:
// extern int test();
// ...
// int test() __attribute__((ifunc("resolver")));
//
// Remove it and replace uses of it with the ifunc.
GIF->takeName(Entry);
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
Entry->getType()));
Entry->eraseFromParent();
} else
GIF->setName(MangledName);
SetCommonAttributes(GD, GIF);
}
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
ArrayRef<llvm::Type*> Tys) {
return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
Tys);
}
static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
const StringLiteral *Literal, bool TargetIsLSB,
bool &IsUTF16, unsigned &StringLength) {
StringRef String = Literal->getString();
unsigned NumBytes = String.size();
// Check for simple case.
if (!Literal->containsNonAsciiOrNull()) {
StringLength = NumBytes;
return *Map.insert(std::make_pair(String, nullptr)).first;
}
// Otherwise, convert the UTF8 literals into a string of shorts.
IsUTF16 = true;
SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
llvm::UTF16 *ToPtr = &ToBuf[0];
(void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
ToPtr + NumBytes, llvm::strictConversion);
// ConvertUTF8toUTF16 returns the length in ToPtr.
StringLength = ToPtr - &ToBuf[0];
// Add an explicit null.
*ToPtr = 0;
return *Map.insert(std::make_pair(
StringRef(reinterpret_cast<const char *>(ToBuf.data()),
(StringLength + 1) * 2),
nullptr)).first;
}
ConstantAddress
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
unsigned StringLength = 0;
bool isUTF16 = false;
llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
GetConstantCFStringEntry(CFConstantStringMap, Literal,
getDataLayout().isLittleEndian(), isUTF16,
StringLength);
if (auto *C = Entry.second)
return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
const ASTContext &Context = getContext();
const llvm::Triple &Triple = getTriple();
const auto CFRuntime = getLangOpts().CFRuntime;
const bool IsSwiftABI =
static_cast<unsigned>(CFRuntime) >=
static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
// If we don't already have it, get __CFConstantStringClassReference.
if (!CFConstantStringClassRef) {
const char *CFConstantStringClassName = "__CFConstantStringClassReference";
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Ty = llvm::ArrayType::get(Ty, 0);
switch (CFRuntime) {
default: break;
case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
case LangOptions::CoreFoundationABI::Swift5_0:
CFConstantStringClassName =
Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
: "$s10Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
case LangOptions::CoreFoundationABI::Swift4_2:
CFConstantStringClassName =
Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
: "$S10Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
case LangOptions::CoreFoundationABI::Swift4_1:
CFConstantStringClassName =
Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
: "__T010Foundation19_NSCFConstantStringCN";
Ty = IntPtrTy;
break;
}
llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
llvm::GlobalValue *GV = nullptr;
if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
IdentifierInfo &II = Context.Idents.get(GV->getName());
TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
const VarDecl *VD = nullptr;
for (const auto &Result : DC->lookup(&II))
if ((VD = dyn_cast<VarDecl>(Result)))
break;
if (Triple.isOSBinFormatELF()) {
if (!VD)
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
} else {
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
if (!VD || !VD->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
else
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
}
setDSOLocal(GV);
}
}
// Decay array -> ptr
CFConstantStringClassRef =
IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
: llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
}
QualType CFTy = Context.getCFConstantStringType();
auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
ConstantInitBuilder Builder(*this);
auto Fields = Builder.beginStruct(STy);
// Class pointer.
Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
// Flags.
if (IsSwiftABI) {
Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
} else {
Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
}
// String pointer.
llvm::Constant *C = nullptr;
if (isUTF16) {
auto Arr = llvm::makeArrayRef(
reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
Entry.first().size() / 2);
C = llvm::ConstantDataArray::get(VMContext, Arr);
} else {
C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
}
// Note: -fwritable-strings doesn't make the backing store strings of
// CFStrings writable. (See <rdar://problem/10657500>)
auto *GV =
new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage, C, ".str");
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
// Don't enforce the target's minimum global alignment, since the only use
// of the string is via this class initializer.
CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
: Context.getTypeAlignInChars(Context.CharTy);
GV->setAlignment(Align.getAsAlign());
// FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
// Without it LLVM can merge the string with a non unnamed_addr one during
// LTO. Doing that changes the section it ends in, which surprises ld64.
if (Triple.isOSBinFormatMachO())
GV->setSection(isUTF16 ? "__TEXT,__ustring"
: "__TEXT,__cstring,cstring_literals");
// Make sure the literal ends up in .rodata to allow for safe ICF and for
// the static linker to adjust permissions to read-only later on.
else if (Triple.isOSBinFormatELF())
GV->setSection(".rodata");
// String.
llvm::Constant *Str =
llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
if (isUTF16)
// Cast the UTF16 string to the correct type.
Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
Fields.add(Str);
// String length.
llvm::IntegerType *LengthTy =
llvm::IntegerType::get(getModule().getContext(),
Context.getTargetInfo().getLongWidth());
if (IsSwiftABI) {
if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
LengthTy = Int32Ty;
else
LengthTy = IntPtrTy;
}
Fields.addInt(LengthTy, StringLength);
// Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
// properly aligned on 32-bit platforms.
CharUnits Alignment =
IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
// The struct.
GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
/*isConstant=*/false,
llvm::GlobalVariable::PrivateLinkage);
GV->addAttribute("objc_arc_inert");
switch (Triple.getObjectFormat()) {
case llvm::Triple::UnknownObjectFormat:
llvm_unreachable("unknown file format");
case llvm::Triple::GOFF:
llvm_unreachable("GOFF is not yet implemented");
case llvm::Triple::XCOFF:
llvm_unreachable("XCOFF is not yet implemented");
case llvm::Triple::COFF:
case llvm::Triple::ELF:
case llvm::Triple::Wasm:
GV->setSection("cfstring");
break;
case llvm::Triple::MachO:
GV->setSection("__DATA,__cfstring");
break;
}
Entry.second = GV;
return ConstantAddress(GV, Alignment);
}
bool CodeGenModule::getExpressionLocationsEnabled() const {
return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
}
QualType CodeGenModule::getObjCFastEnumerationStateType() {
if (ObjCFastEnumerationStateType.isNull()) {
RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
D->startDefinition();
QualType FieldTypes[] = {
Context.UnsignedLongTy,
Context.getPointerType(Context.getObjCIdType()),
Context.getPointerType(Context.UnsignedLongTy),
Context.getConstantArrayType(Context.UnsignedLongTy,
llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(Context,
D,
SourceLocation(),
SourceLocation(), nullptr,
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
D->addDecl(Field);
}
D->completeDefinition();
ObjCFastEnumerationStateType = Context.getTagDeclType(D);
}
return ObjCFastEnumerationStateType;
}
llvm::Constant *
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
assert(!E->getType()->isPointerType() && "Strings are always arrays");
// Don't emit it as the address of the string, emit the string data itself
// as an inline array.
if (E->getCharByteWidth() == 1) {
SmallString<64> Str(E->getString());
// Resize the string to the right size, which is indicated by its type.
const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
Str.resize(CAT->getSize().getZExtValue());
return llvm::ConstantDataArray::getString(VMContext, Str, false);
}
auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
llvm::Type *ElemTy = AType->getElementType();
unsigned NumElements = AType->getNumElements();
// Wide strings have either 2-byte or 4-byte elements.
if (ElemTy->getPrimitiveSizeInBits() == 16) {
SmallVector<uint16_t, 32> Elements;
Elements.reserve(NumElements);
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
Elements.push_back(E->getCodeUnit(i));
Elements.resize(NumElements);
return llvm::ConstantDataArray::get(VMContext, Elements);
}
assert(ElemTy->getPrimitiveSizeInBits() == 32);
SmallVector<uint32_t, 32> Elements;
Elements.reserve(NumElements);
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
Elements.push_back(E->getCodeUnit(i));
Elements.resize(NumElements);
return llvm::ConstantDataArray::get(VMContext, Elements);
}
static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
CodeGenModule &CGM, StringRef GlobalName,
CharUnits Alignment) {
unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
CGM.getStringLiteralAddressSpace());
llvm::Module &M = CGM.getModule();
// Create a global variable for this string
auto *GV = new llvm::GlobalVariable(
M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
GV->setAlignment(Alignment.getAsAlign());
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
if (GV->isWeakForLinker()) {
assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
GV->setComdat(M.getOrInsertComdat(GV->getName()));
}
CGM.setDSOLocal(GV);
return GV;
}
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
/// constant array for the given string literal.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
StringRef Name) {
CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
llvm::GlobalVariable **Entry = nullptr;
if (!LangOpts.WritableStrings) {
Entry = &ConstantStringMap[C];
if (auto GV = *Entry) {
if (Alignment.getQuantity() > GV->getAlignment())
GV->setAlignment(Alignment.getAsAlign());
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
Alignment);
}
}
SmallString<256> MangledNameBuffer;
StringRef GlobalVariableName;
llvm::GlobalValue::LinkageTypes LT;
// Mangle the string literal if that's how the ABI merges duplicate strings.
// Don't do it if they are writable, since we don't want writes in one TU to
// affect strings in another.
if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
!LangOpts.WritableStrings) {
llvm::raw_svector_ostream Out(MangledNameBuffer);
getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
LT = llvm::GlobalValue::LinkOnceODRLinkage;
GlobalVariableName = MangledNameBuffer;
} else {
LT = llvm::GlobalValue::PrivateLinkage;
GlobalVariableName = Name;
}
auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
if (Entry)
*Entry = GV;
SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
QualType());
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
Alignment);
}
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
/// array for the given ObjCEncodeExpr node.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
std::string Str;
getContext().getObjCEncodingForType(E->getEncodedType(), Str);
return GetAddrOfConstantCString(Str);
}
/// GetAddrOfConstantCString - Returns a pointer to a character array containing
/// the literal and a terminating '\0' character.
/// The result has pointer to array type.
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
const std::string &Str, const char *GlobalName) {
StringRef StrWithNull(Str.c_str(), Str.size() + 1);
CharUnits Alignment =
getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
llvm::Constant *C =
llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
// Don't share any string literals if strings aren't constant.
llvm::GlobalVariable **Entry = nullptr;
if (!LangOpts.WritableStrings) {
Entry = &ConstantStringMap[C];
if (auto GV = *Entry) {
if (Alignment.getQuantity() > GV->getAlignment())
GV->setAlignment(Alignment.getAsAlign());
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
Alignment);
}
}
// Get the default prefix if a name wasn't specified.
if (!GlobalName)
GlobalName = ".str";
// Create a global variable for this.
auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
GlobalName, Alignment);
if (Entry)
*Entry = GV;
return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
Alignment);
}
ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
const MaterializeTemporaryExpr *E, const Expr *Init) {
assert((E->getStorageDuration() == SD_Static ||
E->getStorageDuration() == SD_Thread) && "not a global temporary");
const auto *VD = cast<VarDecl>(E->getExtendingDecl());
// If we're not materializing a subobject of the temporary, keep the
// cv-qualifiers from the type of the MaterializeTemporaryExpr.
QualType MaterializedType = Init->getType();
if (Init == E->getSubExpr())
MaterializedType = E->getType();
CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
if (!InsertResult.second) {
// We've seen this before: either we already created it or we're in the
// process of doing so.
if (!InsertResult.first->second) {
// We recursively re-entered this function, probably during emission of
// the initializer. Create a placeholder. We'll clean this up in the
// outer call, at the end of this function.
llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
InsertResult.first->second = new llvm::GlobalVariable(
getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
nullptr);
}
return ConstantAddress(InsertResult.first->second, Align);
}
// FIXME: If an externally-visible declaration extends multiple temporaries,
// we need to give each temporary the same name in every translation unit (and
// we also need to make the temporaries externally-visible).
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
getCXXABI().getMangleContext().mangleReferenceTemporary(
VD, E->getManglingNumber(), Out);
APValue *Value = nullptr;
if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
// If the initializer of the extending declaration is a constant
// initializer, we should have a cached constant initializer for this
// temporary. Note that this might have a different value from the value
// computed by evaluating the initializer if the surrounding constant
// expression modifies the temporary.
Value = E->getOrCreateValue(false);
}
// Try evaluating it now, it might have a constant initializer.
Expr::EvalResult EvalResult;
if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
!EvalResult.hasSideEffects())
Value = &EvalResult.Val;
LangAS AddrSpace =
VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
Optional<ConstantEmitter> emitter;
llvm::Constant *InitialValue = nullptr;
bool Constant = false;
llvm::Type *Type;
if (Value) {
// The temporary has a constant initializer, use it.
emitter.emplace(*this);
InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
MaterializedType);
Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
Type = InitialValue->getType();
} else {
// No initializer, the initialization will be provided when we
// initialize the declaration which performed lifetime extension.
Type = getTypes().ConvertTypeForMem(MaterializedType);
}
// Create a global variable for this lifetime-extended temporary.
llvm::GlobalValue::LinkageTypes Linkage =
getLLVMLinkageVarDefinition(VD, Constant);
if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
const VarDecl *InitVD;
if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
// Temporaries defined inside a class get linkonce_odr linkage because the
// class can be defined in multiple translation units.
Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
} else {
// There is no need for this temporary to have external linkage if the
// VarDecl has external linkage.
Linkage = llvm::GlobalVariable::InternalLinkage;
}
}
auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
auto *GV = new llvm::GlobalVariable(
getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
if (emitter) emitter->finalize(GV);
setGVProperties(GV, VD);
GV->setAlignment(Align.getAsAlign());
if (supportsCOMDAT() && GV->isWeakForLinker())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
if (VD->getTLSKind())
setTLSMode(GV, *VD);
llvm::Constant *CV = GV;
if (AddrSpace != LangAS::Default)
CV = getTargetCodeGenInfo().performAddrSpaceCast(
*this, GV, AddrSpace, LangAS::Default,
Type->getPointerTo(
getContext().getTargetAddressSpace(LangAS::Default)));
// Update the map with the new temporary. If we created a placeholder above,
// replace it with the new global now.
llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
if (Entry) {
Entry->replaceAllUsesWith(
llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
}
Entry = CV;
return ConstantAddress(CV, Align);
}
/// EmitObjCPropertyImplementations - Emit information for synthesized
/// properties for an implementation.
void CodeGenModule::EmitObjCPropertyImplementations(const
ObjCImplementationDecl *D) {
for (const auto *PID : D->property_impls()) {
// Dynamic is just for type-checking.
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
ObjCPropertyDecl *PD = PID->getPropertyDecl();
// Determine which methods need to be implemented, some may have
// been overridden. Note that ::isPropertyAccessor is not the method
// we want, that just indicates if the decl came from a
// property. What we want to know is if the method is defined in
// this implementation.
auto *Getter = PID->getGetterMethodDecl();
if (!Getter || Getter->isSynthesizedAccessorStub())
CodeGenFunction(*this).GenerateObjCGetter(
const_cast<ObjCImplementationDecl *>(D), PID);
auto *Setter = PID->getSetterMethodDecl();
if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
CodeGenFunction(*this).GenerateObjCSetter(
const_cast<ObjCImplementationDecl *>(D), PID);
}
}
}
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
const ObjCInterfaceDecl *iface = impl->getClassInterface();
for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
ivar; ivar = ivar->getNextIvar())
if (ivar->getType().isDestructedType())
return true;
return false;
}
static bool AllTrivialInitializers(CodeGenModule &CGM,
ObjCImplementationDecl *D) {
CodeGenFunction CGF(CGM);
for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
E = D->init_end(); B != E; ++B) {
CXXCtorInitializer *CtorInitExp = *B;
Expr *Init = CtorInitExp->getInit();
if (!CGF.isTrivialInitializer(Init))
return false;
}
return true;
}
/// EmitObjCIvarInitializations - Emit information for ivar initialization
/// for an implementation.
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
// We might need a .cxx_destruct even if we don't have any ivar initializers.
if (needsDestructMethod(D)) {
IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
getContext(), D->getLocation(), D->getLocation(), cxxSelector,
getContext().VoidTy, nullptr, D,
/*isInstance=*/true, /*isVariadic=*/false,
/*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false, ObjCMethodDecl::Required);
D->addInstanceMethod(DTORMethod);
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
D->setHasDestructors(true);
}
// If the implementation doesn't have any ivar initializers, we don't need
// a .cxx_construct.
if (D->getNumIvarInitializers() == 0 ||
AllTrivialInitializers(*this, D))
return;
IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
// The constructor returns 'self'.
ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
getContext(), D->getLocation(), D->getLocation(), cxxSelector,
getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
/*isVariadic=*/false,
/*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false, ObjCMethodDecl::Required);
D->addInstanceMethod(CTORMethod);
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
D->setHasNonZeroConstructors(true);
}
// EmitLinkageSpec - Emit all declarations in a linkage spec.
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
ErrorUnsupported(LSD, "linkage spec");
return;
}
EmitDeclContext(LSD);
}
void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
for (auto *I : DC->decls()) {
// Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
// are themselves considered "top-level", so EmitTopLevelDecl on an
// ObjCImplDecl does not recursively visit them. We need to do that in
// case they're nested inside another construct (LinkageSpecDecl /
// ExportDecl) that does stop them from being considered "top-level".
if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
for (auto *M : OID->methods())
EmitTopLevelDecl(M);
}
EmitTopLevelDecl(I);
}
}
/// EmitTopLevelDecl - Emit code for a single top level declaration.
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
// Ignore dependent declarations.
if (D->isTemplated())
return;
// Consteval function shouldn't be emitted.
if (auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isConsteval())
return;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
EmitGlobal(cast<FunctionDecl>(D));
// Always provide some coverage mapping
// even for the functions that aren't emitted.
AddDeferredUnusedCoverageMapping(D);
break;
case Decl::CXXDeductionGuide:
// Function-like, but does not result in code emission.
break;
case Decl::Var:
case Decl::Decomposition:
case Decl::VarTemplateSpecialization:
EmitGlobal(cast<VarDecl>(D));
if (auto *DD = dyn_cast<DecompositionDecl>(D))
for (auto *B : DD->bindings())
if (auto *HD = B->getHoldingVar())
EmitGlobal(HD);
break;
// Indirect fields from global anonymous structs and unions can be
// ignored; only the actual variable requires IR gen support.
case Decl::IndirectField:
break;
// C++ Decls
case Decl::Namespace:
EmitDeclContext(cast<NamespaceDecl>(D));
break;
case Decl::ClassTemplateSpecialization: {
const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
if (CGDebugInfo *DI = getModuleDebugInfo())
if (Spec->getSpecializationKind() ==
TSK_ExplicitInstantiationDefinition &&
Spec->hasDefinition())
DI->completeTemplateDefinition(*Spec);
} LLVM_FALLTHROUGH;
case Decl::CXXRecord: {
CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
if (CGDebugInfo *DI = getModuleDebugInfo()) {
if (CRD->hasDefinition())
DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
if (auto *ES = D->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
DI->completeUnusedClass(*CRD);
}
// Emit any static data members, they may be definitions.
for (auto *I : CRD->decls())
if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
EmitTopLevelDecl(I);
break;
}
// No code generation needed.
case Decl::UsingShadow:
case Decl::ClassTemplate:
case Decl::VarTemplate:
case Decl::Concept:
case Decl::VarTemplatePartialSpecialization:
case Decl::FunctionTemplate:
case Decl::TypeAliasTemplate:
case Decl::Block:
case Decl::Empty:
case Decl::Binding:
break;
case Decl::Using: // using X; [C++]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitUsingDecl(cast<UsingDecl>(*D));
break;
case Decl::NamespaceAlias:
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
break;
case Decl::UsingDirective: // using namespace X; [C++]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
break;
case Decl::CXXConstructor:
getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
break;
case Decl::CXXDestructor:
getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
break;
case Decl::StaticAssert:
// Nothing to do.
break;
// Objective-C Decls
// Forward declarations, no (immediate) code generation.
case Decl::ObjCInterface:
case Decl::ObjCCategory:
break;
case Decl::ObjCProtocol: {
auto *Proto = cast<ObjCProtocolDecl>(D);
if (Proto->isThisDeclarationADefinition())
ObjCRuntime->GenerateProtocol(Proto);
break;
}
case Decl::ObjCCategoryImpl:
// Categories have properties but don't support synthesize so we
// can ignore them here.
ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
break;
case Decl::ObjCImplementation: {
auto *OMD = cast<ObjCImplementationDecl>(D);
EmitObjCPropertyImplementations(OMD);
EmitObjCIvarInitializations(OMD);
ObjCRuntime->GenerateClass(OMD);
// Emit global variable debug information.
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().hasReducedDebugInfo())
DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
OMD->getClassInterface()), OMD->getLocation());
break;
}
case Decl::ObjCMethod: {
auto *OMD = cast<ObjCMethodDecl>(D);
// If this is not a prototype, emit the body.
if (OMD->getBody())
CodeGenFunction(*this).GenerateObjCMethod(OMD);
break;
}
case Decl::ObjCCompatibleAlias:
ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
break;
case Decl::PragmaComment: {
const auto *PCD = cast<PragmaCommentDecl>(D);
switch (PCD->getCommentKind()) {
case PCK_Unknown:
llvm_unreachable("unexpected pragma comment kind");
case PCK_Linker:
AppendLinkerOptions(PCD->getArg());
break;
case PCK_Lib:
AddDependentLib(PCD->getArg());
break;
case PCK_Compiler:
case PCK_ExeStr:
case PCK_User:
break; // We ignore all of these.
}
break;
}
case Decl::PragmaDetectMismatch: {
const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
AddDetectMismatch(PDMD->getName(), PDMD->getValue());
break;
}
case Decl::LinkageSpec:
EmitLinkageSpec(cast<LinkageSpecDecl>(D));
break;
case Decl::FileScopeAsm: {
// File-scope asm is ignored during device-side CUDA compilation.
if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
break;
// File-scope asm is ignored during device-side OpenMP compilation.
if (LangOpts.OpenMPIsDevice)
break;
// File-scope asm is ignored during device-side SYCL compilation.
if (LangOpts.SYCLIsDevice)
break;
auto *AD = cast<FileScopeAsmDecl>(D);
getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
break;
}
case Decl::Import: {
auto *Import = cast<ImportDecl>(D);
// If we've already imported this module, we're done.
if (!ImportedModules.insert(Import->getImportedModule()))
break;
// Emit debug information for direct imports.
if (!Import->getImportedOwningModule()) {
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitImportDecl(*Import);
}
// Find all of the submodules and emit the module initializers.
llvm::SmallPtrSet<clang::Module *, 16> Visited;
SmallVector<clang::Module *, 16> Stack;
Visited.insert(Import->getImportedModule());
Stack.push_back(Import->getImportedModule());
while (!Stack.empty()) {
clang::Module *Mod = Stack.pop_back_val();
if (!EmittedModuleInitializers.insert(Mod).second)
continue;
for (auto *D : Context.getModuleInitializers(Mod))
EmitTopLevelDecl(D);
// Visit the submodules of this module.
for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub) {
// Skip explicit children; they need to be explicitly imported to emit
// the initializers.
if ((*Sub)->IsExplicit)
continue;
if (Visited.insert(*Sub).second)
Stack.push_back(*Sub);
}
}
break;
}
case Decl::Export:
EmitDeclContext(cast<ExportDecl>(D));
break;
case Decl::OMPThreadPrivate:
EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
break;
case Decl::OMPAllocate:
break;
case Decl::OMPDeclareReduction:
EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
break;
case Decl::OMPDeclareMapper:
EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
break;
case Decl::OMPRequires:
EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
break;
case Decl::Typedef:
case Decl::TypeAlias: // using foo = bar; [C++11]
if (CGDebugInfo *DI = getModuleDebugInfo())
DI->EmitAndRetainType(
getContext().getTypedefType(cast<TypedefNameDecl>(D)));
break;
case Decl::Record:
if (CGDebugInfo *DI = getModuleDebugInfo())
if (cast<RecordDecl>(D)->getDefinition())
DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
break;
case Decl::Enum:
if (CGDebugInfo *DI = getModuleDebugInfo())
if (cast<EnumDecl>(D)->getDefinition())
DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
break;
default:
// Make sure we handled everything we should, every other kind is a
// non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
// function. Need to recode Decl::Kind to do that easily.
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
break;
}
}
void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
// Do we need to generate coverage mapping?
if (!CodeGenOpts.CoverageMapping)
return;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
case Decl::ObjCMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor: {
if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
break;
SourceManager &SM = getContext().getSourceManager();
if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
break;
auto I = DeferredEmptyCoverageMappingDecls.find(D);
if (I == DeferredEmptyCoverageMappingDecls.end())
DeferredEmptyCoverageMappingDecls[D] = true;
break;
}
default:
break;
};
}
void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
// Do we need to generate coverage mapping?
if (!CodeGenOpts.CoverageMapping)
return;
if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
if (Fn->isTemplateInstantiation())
ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
}
auto I = DeferredEmptyCoverageMappingDecls.find(D);
if (I == DeferredEmptyCoverageMappingDecls.end())
DeferredEmptyCoverageMappingDecls[D] = false;
else
I->second = false;
}
void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
// We call takeVector() here to avoid use-after-free.
// FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
// we deserialize function bodies to emit coverage info for them, and that
// deserializes more declarations. How should we handle that case?
for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
if (!Entry.second)
continue;
const Decl *D = Entry.first;
switch (D->getKind()) {
case Decl::CXXConversion:
case Decl::CXXMethod:
case Decl::Function:
case Decl::ObjCMethod: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<FunctionDecl>(D));
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
case Decl::CXXConstructor: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
case Decl::CXXDestructor: {
CodeGenPGO PGO(*this);
GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
getFunctionLinkage(GD));
break;
}
default:
break;
};
}
}
void CodeGenModule::EmitMainVoidAlias() {
// In order to transition away from "__original_main" gracefully, emit an
// alias for "main" in the no-argument case so that libc can detect when
// new-style no-argument main is in used.
if (llvm::Function *F = getModule().getFunction("main")) {
if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
}
}
/// Turns the given pointer into a constant.
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
const void *Ptr) {
uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
return llvm::ConstantInt::get(i64, PtrInt);
}
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
llvm::NamedMDNode *&GlobalMetadata,
GlobalDecl D,
llvm::GlobalValue *Addr) {
if (!GlobalMetadata)
GlobalMetadata =
CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
// TODO: should we report variant information for ctors/dtors?
llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
llvm::ConstantAsMetadata::get(GetPointerConstant(
CGM.getLLVMContext(), D.getDecl()))};
GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
/// For each function which is declared within an extern "C" region and marked
/// as 'used', but has internal linkage, create an alias from the unmangled
/// name to the mangled name if possible. People expect to be able to refer
/// to such functions with an unmangled name from inline assembly within the
/// same translation unit.
void CodeGenModule::EmitStaticExternCAliases() {
if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
return;
for (auto &I : StaticExternCValues) {
IdentifierInfo *Name = I.first;
llvm::GlobalValue *Val = I.second;
if (Val && !getModule().getNamedValue(Name->getName()))
addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
}
}
bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
GlobalDecl &Result) const {
auto Res = Manglings.find(MangledName);
if (Res == Manglings.end())
return false;
Result = Res->getValue();
return true;
}
/// Emits metadata nodes associating all the global values in the
/// current module with the Decls they came from. This is useful for
/// projects using IR gen as a subroutine.
///
/// Since there's currently no way to associate an MDNode directly
/// with an llvm::GlobalValue, we create a global named metadata
/// with the name 'clang.global.decl.ptrs'.
void CodeGenModule::EmitDeclMetadata() {
llvm::NamedMDNode *GlobalMetadata = nullptr;
for (auto &I : MangledDeclNames) {
llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
// Some mangled names don't necessarily have an associated GlobalValue
// in this module, e.g. if we mangled it for DebugInfo.
if (Addr)
EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
}
}
/// Emits metadata nodes for all the local variables in the current
/// function.
void CodeGenFunction::EmitDeclMetadata() {
if (LocalDeclMap.empty()) return;
llvm::LLVMContext &Context = getLLVMContext();
// Find the unique metadata ID for this name.
unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
llvm::NamedMDNode *GlobalMetadata = nullptr;
for (auto &I : LocalDeclMap) {
const Decl *D = I.first;
llvm::Value *Addr = I.second.getPointer();
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
Alloca->setMetadata(
DeclPtrKind, llvm::MDNode::get(
Context, llvm::ValueAsMetadata::getConstant(DAddr)));
} else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
}
}
}
void CodeGenModule::EmitVersionIdentMetadata() {
llvm::NamedMDNode *IdentMetadata =
TheModule.getOrInsertNamedMetadata("llvm.ident");
std::string Version = getClangFullVersion();
llvm::LLVMContext &Ctx = TheModule.getContext();
llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
}
void CodeGenModule::EmitCommandLineMetadata() {
llvm::NamedMDNode *CommandLineMetadata =
TheModule.getOrInsertNamedMetadata("llvm.commandline");
std::string CommandLine = getCodeGenOpts().RecordCommandLine;
llvm::LLVMContext &Ctx = TheModule.getContext();
llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
}
void CodeGenModule::EmitCoverageFile() {
if (getCodeGenOpts().CoverageDataFile.empty() &&
getCodeGenOpts().CoverageNotesFile.empty())
return;
llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
if (!CUNode)
return;
llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
llvm::LLVMContext &Ctx = TheModule.getContext();
auto *CoverageDataFile =
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
auto *CoverageNotesFile =
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
llvm::MDNode *CU = CUNode->getOperand(i);
llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
}
}
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
bool ForEH) {
// Return a bogus pointer if RTTI is disabled, unless it's for EH.
// FIXME: should we even be calling this method if RTTI is disabled
// and it's not for EH?
if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
getTriple().isNVPTX()))
return llvm::Constant::getNullValue(Int8PtrTy);
if (ForEH && Ty->isObjCObjectPointerType() &&
LangOpts.ObjCRuntime.isGNUFamily())
return ObjCRuntime->GetEHType(Ty);
return getCXXABI().getAddrOfRTTIDescriptor(Ty);
}
void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
// Do not emit threadprivates in simd-only mode.
if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
return;
for (auto RefExpr : D->varlists()) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
bool PerformInit =
VD->getAnyInitializer() &&
!VD->getAnyInitializer()->isConstantInitializer(getContext(),
/*ForRef=*/false);
Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
VD, Addr, RefExpr->getBeginLoc(), PerformInit))
CXXGlobalInits.push_back(InitFunction);
}
}
llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
StringRef Suffix) {
llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
if (InternalId)
return InternalId;
if (isExternallyVisible(T->getLinkage())) {
std::string OutName;
llvm::raw_string_ostream Out(OutName);
getCXXABI().getMangleContext().mangleTypeName(T, Out);
Out << Suffix;
InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
} else {
InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
llvm::ArrayRef<llvm::Metadata *>());
}
return InternalId;
}
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
}
llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
}
// Generalize pointer types to a void pointer with the qualifiers of the
// originally pointed-to type, e.g. 'const char *' and 'char * const *'
// generalize to 'const void *' while 'char *' and 'const char **' generalize to
// 'void *'.
static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
if (!Ty->isPointerType())
return Ty;
return Ctx.getPointerType(
QualType(Ctx.VoidTy).withCVRQualifiers(
Ty->getPointeeType().getCVRQualifiers()));
}
// Apply type generalization to a FunctionType's return and argument types
static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
SmallVector<QualType, 8> GeneralizedParams;
for (auto &Param : FnType->param_types())
GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
return Ctx.getFunctionType(
GeneralizeType(Ctx, FnType->getReturnType()),
GeneralizedParams, FnType->getExtProtoInfo());
}
if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
return Ctx.getFunctionNoProtoType(
GeneralizeType(Ctx, FnType->getReturnType()));
llvm_unreachable("Encountered unknown FunctionType");
}
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
GeneralizedMetadataIdMap, ".generalized");
}
/// Returns whether this module needs the "all-vtables" type identifier.
bool CodeGenModule::NeedAllVtablesTypeId() const {
// Returns true if at least one of vtable-based CFI checkers is enabled and
// is not in the trapping mode.
return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
(LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
}
void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
CharUnits Offset,
const CXXRecordDecl *RD) {
llvm::Metadata *MD =
CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
VTable->addTypeMetadata(Offset.getQuantity(), MD);
if (CodeGenOpts.SanitizeCfiCrossDso)
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
VTable->addTypeMetadata(Offset.getQuantity(),
llvm::ConstantAsMetadata::get(CrossDsoTypeId));
if (NeedAllVtablesTypeId()) {
llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
VTable->addTypeMetadata(Offset.getQuantity(), MD);
}
}
llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
if (!SanStats)
SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
return *SanStats;
}
llvm::Value *
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
CodeGenFunction &CGF) {
llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
auto *Call = CGF.EmitRuntimeCall(
CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
return Call;
}
CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
/* forPointeeType= */ true);
}
CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
LValueBaseInfo *BaseInfo,
TBAAAccessInfo *TBAAInfo,
bool forPointeeType) {
if (TBAAInfo)
*TBAAInfo = getTBAAAccessInfo(T);
// FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
// that doesn't return the information we need to compute BaseInfo.
// Honor alignment typedef attributes even on incomplete types.
// We also honor them straight for C++ class types, even as pointees;
// there's an expressivity gap here.
if (auto TT = T->getAs<TypedefType>()) {
if (auto Align = TT->getDecl()->getMaxAlignment()) {
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
return getContext().toCharUnitsFromBits(Align);
}
}
bool AlignForArray = T->isArrayType();
// Analyze the base element type, so we don't get confused by incomplete
// array types.
T = getContext().getBaseElementType(T);
if (T->isIncompleteType()) {
// We could try to replicate the logic from
// ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
// type is incomplete, so it's impossible to test. We could try to reuse
// getTypeAlignIfKnown, but that doesn't return the information we need
// to set BaseInfo. So just ignore the possibility that the alignment is
// greater than one.
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::Type);
return CharUnits::One();
}
if (BaseInfo)
*BaseInfo = LValueBaseInfo(AlignmentSource::Type);
CharUnits Alignment;
const CXXRecordDecl *RD;
if (T.getQualifiers().hasUnaligned()) {
Alignment = CharUnits::One();
} else if (forPointeeType && !AlignForArray &&
(RD = T->getAsCXXRecordDecl())) {
// For C++ class pointees, we don't know whether we're pointing at a
// base or a complete object, so we generally need to use the
// non-virtual alignment.
Alignment = getClassPointerAlignment(RD);
} else {
Alignment = getContext().getTypeAlignInChars(T);
}
// Cap to the global maximum type alignment unless the alignment
// was somehow explicit on the type.
if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
if (Alignment.getQuantity() > MaxAlign &&
!getContext().isAlignmentRequired(T))
Alignment = CharUnits::fromQuantity(MaxAlign);
}
return Alignment;
}
bool CodeGenModule::stopAutoInit() {
unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
if (StopAfter) {
// This number is positive only when -ftrivial-auto-var-init-stop-after=* is
// used
if (NumAutoVarInit >= StopAfter) {
return true;
}
if (!NumAutoVarInit) {
unsigned DiagID = getDiags().getCustomDiagID(
DiagnosticsEngine::Warning,
"-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
"number of times ftrivial-auto-var-init=%1 gets applied.");
getDiags().Report(DiagID)
<< StopAfter
<< (getContext().getLangOpts().getTrivialAutoVarInit() ==
LangOptions::TrivialAutoVarInitKind::Zero
? "zero"
: "pattern");
}
++NumAutoVarInit;
}
return false;
}
void CodeGenModule::printPostfixForExternalizedStaticVar(
llvm::raw_ostream &OS) const {
OS << ".static." << getContext().getCUIDHash();
}