forked from OSchip/llvm-project
283 lines
9.3 KiB
LLVM
283 lines
9.3 KiB
LLVM
; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA
|
|
|
|
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
|
|
|
|
; For this loop:
|
|
; unsigned index = 0;
|
|
; for (int i = 0; i < n; i++) {
|
|
; A[2 * index] = A[2 * index] + B[i];
|
|
; index++;
|
|
; }
|
|
;
|
|
; SCEV is unable to prove that A[2 * i] does not overflow.
|
|
;
|
|
; Analyzing the IR does not help us because the GEPs are not
|
|
; affine AddRecExprs. However, we can turn them into AddRecExprs
|
|
; using SCEV Predicates.
|
|
;
|
|
; Once we have an affine expression we need to add an additional NUSW
|
|
; to check that the pointers don't wrap since the GEPs are not
|
|
; inbound.
|
|
|
|
; LAA-LABEL: f1
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
|
|
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; (zext i32 {0,+,2}<%for.body> to i64)
|
|
; We have added the nusw flag to turn this expression into the SCEV expression:
|
|
; i64 {0,+,2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a)
|
|
; LAA-NEXT: --> {%a,+,4}<%for.body>
|
|
|
|
|
|
define void @f1(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = zext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%inc1 = add i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; For this loop:
|
|
; unsigned index = n;
|
|
; for (int i = 0; i < n; i++) {
|
|
; A[2 * index] = A[2 * index] + B[i];
|
|
; index--;
|
|
; }
|
|
;
|
|
; the SCEV expression for 2 * index is not an AddRecExpr
|
|
; (and implictly not affine). However, we are able to make assumptions
|
|
; that will turn the expression into an affine one and continue the
|
|
; analysis.
|
|
;
|
|
; Once we have an affine expression we need to add an additional NUSW
|
|
; to check that the pointers don't wrap since the GEPs are not
|
|
; inbounds.
|
|
;
|
|
; This loop has a negative stride for A, and the nusw flag is required in
|
|
; order to properly extend the increment from i32 -4 to i64 -4.
|
|
|
|
; LAA-LABEL: f2
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
|
|
; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
|
|
; We have added the nusw flag to turn this expression into the following SCEV:
|
|
; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a)
|
|
; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body>
|
|
|
|
define void @f2(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = zext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; We replicate the tests above, but this time sign extend 2 * index instead
|
|
; of zero extending it.
|
|
|
|
; LAA-LABEL: f3
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; i64 (sext i32 {0,+,2}<%for.body> to i64)
|
|
; We have added the nssw flag to turn this expression into the following SCEV:
|
|
; i64 {0,+,2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {%a,+,4}<%for.body>
|
|
|
|
define void @f3(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = sext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%inc1 = add i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; LAA-LABEL: f4
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
|
|
; We have added the nssw flag to turn this expression into the following SCEV:
|
|
; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
|
|
|
|
define void @f4(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = sext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; The following function is similar to the one above, but has the GEP
|
|
; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
|
|
; This means that the SCEV expression for %mul can wrap and we need
|
|
; a SCEV predicate to continue analysis.
|
|
;
|
|
; We can still analyze this by adding the required no wrap SCEV predicates.
|
|
|
|
; LAA-LABEL: f5
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul:
|
|
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
|
|
|
|
define void @f5(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
|
|
%arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|