forked from OSchip/llvm-project
629 lines
20 KiB
C++
629 lines
20 KiB
C++
//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the X86 specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
|
|
#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
|
|
|
|
#include "X86FrameLowering.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86SelectionDAGInfo.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelAccessor.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <string>
|
|
|
|
#define GET_SUBTARGETINFO_HEADER
|
|
#include "X86GenSubtargetInfo.inc"
|
|
|
|
namespace llvm {
|
|
class GlobalValue;
|
|
class StringRef;
|
|
class TargetMachine;
|
|
|
|
/// The X86 backend supports a number of different styles of PIC.
|
|
///
|
|
namespace PICStyles {
|
|
enum Style {
|
|
StubPIC, // Used on i386-darwin in pic mode.
|
|
GOT, // Used on 32 bit elf on when in pic mode.
|
|
RIPRel, // Used on X86-64 when in pic mode.
|
|
None // Set when not in pic mode.
|
|
};
|
|
}
|
|
|
|
class X86Subtarget final : public X86GenSubtargetInfo {
|
|
|
|
protected:
|
|
enum X86SSEEnum {
|
|
NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
|
|
};
|
|
|
|
enum X863DNowEnum {
|
|
NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
|
|
};
|
|
|
|
enum X86ProcFamilyEnum {
|
|
Others, IntelAtom, IntelSLM
|
|
};
|
|
|
|
/// X86 processor family: Intel Atom, and others
|
|
X86ProcFamilyEnum X86ProcFamily;
|
|
|
|
/// Which PIC style to use
|
|
PICStyles::Style PICStyle;
|
|
|
|
const TargetMachine &TM;
|
|
|
|
/// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
|
|
X86SSEEnum X86SSELevel;
|
|
|
|
/// MMX, 3DNow, 3DNow Athlon, or none supported.
|
|
X863DNowEnum X863DNowLevel;
|
|
|
|
/// True if the processor supports X87 instructions.
|
|
bool HasX87;
|
|
|
|
/// True if this processor has conditional move instructions
|
|
/// (generally pentium pro+).
|
|
bool HasCMov;
|
|
|
|
/// True if the processor supports X86-64 instructions.
|
|
bool HasX86_64;
|
|
|
|
/// True if the processor supports POPCNT.
|
|
bool HasPOPCNT;
|
|
|
|
/// True if the processor supports SSE4A instructions.
|
|
bool HasSSE4A;
|
|
|
|
/// Target has AES instructions
|
|
bool HasAES;
|
|
|
|
/// Target has FXSAVE/FXRESTOR instructions
|
|
bool HasFXSR;
|
|
|
|
/// Target has XSAVE instructions
|
|
bool HasXSAVE;
|
|
/// Target has XSAVEOPT instructions
|
|
bool HasXSAVEOPT;
|
|
/// Target has XSAVEC instructions
|
|
bool HasXSAVEC;
|
|
/// Target has XSAVES instructions
|
|
bool HasXSAVES;
|
|
|
|
/// Target has carry-less multiplication
|
|
bool HasPCLMUL;
|
|
|
|
/// Target has 3-operand fused multiply-add
|
|
bool HasFMA;
|
|
|
|
/// Target has 4-operand fused multiply-add
|
|
bool HasFMA4;
|
|
|
|
/// Target has XOP instructions
|
|
bool HasXOP;
|
|
|
|
/// Target has TBM instructions.
|
|
bool HasTBM;
|
|
|
|
/// True if the processor has the MOVBE instruction.
|
|
bool HasMOVBE;
|
|
|
|
/// True if the processor has the RDRAND instruction.
|
|
bool HasRDRAND;
|
|
|
|
/// Processor has 16-bit floating point conversion instructions.
|
|
bool HasF16C;
|
|
|
|
/// Processor has FS/GS base insturctions.
|
|
bool HasFSGSBase;
|
|
|
|
/// Processor has LZCNT instruction.
|
|
bool HasLZCNT;
|
|
|
|
/// Processor has BMI1 instructions.
|
|
bool HasBMI;
|
|
|
|
/// Processor has BMI2 instructions.
|
|
bool HasBMI2;
|
|
|
|
/// Processor has VBMI instructions.
|
|
bool HasVBMI;
|
|
|
|
/// Processor has Integer Fused Multiply Add
|
|
bool HasIFMA;
|
|
|
|
/// Processor has RTM instructions.
|
|
bool HasRTM;
|
|
|
|
/// Processor has HLE.
|
|
bool HasHLE;
|
|
|
|
/// Processor has ADX instructions.
|
|
bool HasADX;
|
|
|
|
/// Processor has SHA instructions.
|
|
bool HasSHA;
|
|
|
|
/// Processor has PRFCHW instructions.
|
|
bool HasPRFCHW;
|
|
|
|
/// Processor has RDSEED instructions.
|
|
bool HasRDSEED;
|
|
|
|
/// Processor has LAHF/SAHF instructions.
|
|
bool HasLAHFSAHF;
|
|
|
|
/// Processor has MONITORX/MWAITX instructions.
|
|
bool HasMWAITX;
|
|
|
|
/// Processor has Prefetch with intent to Write instruction
|
|
bool HasPFPREFETCHWT1;
|
|
|
|
/// True if BT (bit test) of memory instructions are slow.
|
|
bool IsBTMemSlow;
|
|
|
|
/// True if SHLD instructions are slow.
|
|
bool IsSHLDSlow;
|
|
|
|
/// True if unaligned memory accesses of 16-bytes are slow.
|
|
bool IsUAMem16Slow;
|
|
|
|
/// True if unaligned memory accesses of 32-bytes are slow.
|
|
bool IsUAMem32Slow;
|
|
|
|
/// True if SSE operations can have unaligned memory operands.
|
|
/// This may require setting a configuration bit in the processor.
|
|
bool HasSSEUnalignedMem;
|
|
|
|
/// True if this processor has the CMPXCHG16B instruction;
|
|
/// this is true for most x86-64 chips, but not the first AMD chips.
|
|
bool HasCmpxchg16b;
|
|
|
|
/// True if the LEA instruction should be used for adjusting
|
|
/// the stack pointer. This is an optimization for Intel Atom processors.
|
|
bool UseLeaForSP;
|
|
|
|
/// True if there is no performance penalty to writing only the lower parts
|
|
/// of a YMM register without clearing the upper part.
|
|
bool HasFastPartialYMMWrite;
|
|
|
|
/// True if hardware SQRTSS instruction is at least as fast (latency) as
|
|
/// RSQRTSS followed by a Newton-Raphson iteration.
|
|
bool HasFastScalarFSQRT;
|
|
|
|
/// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
|
|
/// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
|
|
bool HasFastVectorFSQRT;
|
|
|
|
/// True if 8-bit divisions are significantly faster than
|
|
/// 32-bit divisions and should be used when possible.
|
|
bool HasSlowDivide32;
|
|
|
|
/// True if 16-bit divides are significantly faster than
|
|
/// 64-bit divisions and should be used when possible.
|
|
bool HasSlowDivide64;
|
|
|
|
/// True if LZCNT instruction is fast.
|
|
bool HasFastLZCNT;
|
|
|
|
/// True if the short functions should be padded to prevent
|
|
/// a stall when returning too early.
|
|
bool PadShortFunctions;
|
|
|
|
/// True if the Calls with memory reference should be converted
|
|
/// to a register-based indirect call.
|
|
bool CallRegIndirect;
|
|
|
|
/// True if the LEA instruction inputs have to be ready at address generation
|
|
/// (AG) time.
|
|
bool LEAUsesAG;
|
|
|
|
/// True if the LEA instruction with certain arguments is slow
|
|
bool SlowLEA;
|
|
|
|
/// True if INC and DEC instructions are slow when writing to flags
|
|
bool SlowIncDec;
|
|
|
|
/// Processor has AVX-512 PreFetch Instructions
|
|
bool HasPFI;
|
|
|
|
/// Processor has AVX-512 Exponential and Reciprocal Instructions
|
|
bool HasERI;
|
|
|
|
/// Processor has AVX-512 Conflict Detection Instructions
|
|
bool HasCDI;
|
|
|
|
/// Processor has AVX-512 Doubleword and Quadword instructions
|
|
bool HasDQI;
|
|
|
|
/// Processor has AVX-512 Byte and Word instructions
|
|
bool HasBWI;
|
|
|
|
/// Processor has AVX-512 Vector Length eXtenstions
|
|
bool HasVLX;
|
|
|
|
/// Processor has PKU extenstions
|
|
bool HasPKU;
|
|
|
|
/// Processor supports MPX - Memory Protection Extensions
|
|
bool HasMPX;
|
|
|
|
/// Processor supports Invalidate Process-Context Identifier
|
|
bool HasInvPCId;
|
|
|
|
/// Processor has VM Functions
|
|
bool HasVMFUNC;
|
|
|
|
/// Processor has Supervisor Mode Access Protection
|
|
bool HasSMAP;
|
|
|
|
/// Processor has Software Guard Extensions
|
|
bool HasSGX;
|
|
|
|
/// Processor supports Flush Cache Line instruction
|
|
bool HasCLFLUSHOPT;
|
|
|
|
/// Processor has Persistent Commit feature
|
|
bool HasPCOMMIT;
|
|
|
|
/// Processor supports Cache Line Write Back instruction
|
|
bool HasCLWB;
|
|
|
|
/// Use software floating point for code generation.
|
|
bool UseSoftFloat;
|
|
|
|
/// The minimum alignment known to hold of the stack frame on
|
|
/// entry to the function and which must be maintained by every function.
|
|
unsigned stackAlignment;
|
|
|
|
/// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
|
|
///
|
|
unsigned MaxInlineSizeThreshold;
|
|
|
|
/// What processor and OS we're targeting.
|
|
Triple TargetTriple;
|
|
|
|
/// Instruction itineraries for scheduling
|
|
InstrItineraryData InstrItins;
|
|
|
|
/// Gather the accessor points to GlobalISel-related APIs.
|
|
/// This is used to avoid ifndefs spreading around while GISel is
|
|
/// an optional library.
|
|
std::unique_ptr<GISelAccessor> GISel;
|
|
private:
|
|
|
|
/// Override the stack alignment.
|
|
unsigned StackAlignOverride;
|
|
|
|
/// True if compiling for 64-bit, false for 16-bit or 32-bit.
|
|
bool In64BitMode;
|
|
|
|
/// True if compiling for 32-bit, false for 16-bit or 64-bit.
|
|
bool In32BitMode;
|
|
|
|
/// True if compiling for 16-bit, false for 32-bit or 64-bit.
|
|
bool In16BitMode;
|
|
|
|
X86SelectionDAGInfo TSInfo;
|
|
// Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
|
|
// X86TargetLowering needs.
|
|
X86InstrInfo InstrInfo;
|
|
X86TargetLowering TLInfo;
|
|
X86FrameLowering FrameLowering;
|
|
|
|
public:
|
|
/// This constructor initializes the data members to match that
|
|
/// of the specified triple.
|
|
///
|
|
X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
|
|
const X86TargetMachine &TM, unsigned StackAlignOverride);
|
|
|
|
/// This object will take onwership of \p GISelAccessor.
|
|
void setGISelAccessor(GISelAccessor &GISel) { this->GISel.reset(&GISel); }
|
|
|
|
const X86TargetLowering *getTargetLowering() const override {
|
|
return &TLInfo;
|
|
}
|
|
const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
|
|
const X86FrameLowering *getFrameLowering() const override {
|
|
return &FrameLowering;
|
|
}
|
|
const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
|
|
return &TSInfo;
|
|
}
|
|
const X86RegisterInfo *getRegisterInfo() const override {
|
|
return &getInstrInfo()->getRegisterInfo();
|
|
}
|
|
|
|
/// Returns the minimum alignment known to hold of the
|
|
/// stack frame on entry to the function and which must be maintained by every
|
|
/// function for this subtarget.
|
|
unsigned getStackAlignment() const { return stackAlignment; }
|
|
|
|
/// Returns the maximum memset / memcpy size
|
|
/// that still makes it profitable to inline the call.
|
|
unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
|
|
|
|
/// ParseSubtargetFeatures - Parses features string setting specified
|
|
/// subtarget options. Definition of function is auto generated by tblgen.
|
|
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
|
|
|
|
/// Methods used by Global ISel
|
|
const CallLowering *getCallLowering() const override;
|
|
const InstructionSelector *getInstructionSelector() const override;
|
|
const LegalizerInfo *getLegalizerInfo() const override;
|
|
const RegisterBankInfo *getRegBankInfo() const override;
|
|
private:
|
|
/// Initialize the full set of dependencies so we can use an initializer
|
|
/// list for X86Subtarget.
|
|
X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
|
|
void initializeEnvironment();
|
|
void initSubtargetFeatures(StringRef CPU, StringRef FS);
|
|
public:
|
|
/// Is this x86_64? (disregarding specific ABI / programming model)
|
|
bool is64Bit() const {
|
|
return In64BitMode;
|
|
}
|
|
|
|
bool is32Bit() const {
|
|
return In32BitMode;
|
|
}
|
|
|
|
bool is16Bit() const {
|
|
return In16BitMode;
|
|
}
|
|
|
|
/// Is this x86_64 with the ILP32 programming model (x32 ABI)?
|
|
bool isTarget64BitILP32() const {
|
|
return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
|
|
TargetTriple.isOSNaCl());
|
|
}
|
|
|
|
/// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
|
|
bool isTarget64BitLP64() const {
|
|
return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
|
|
!TargetTriple.isOSNaCl());
|
|
}
|
|
|
|
PICStyles::Style getPICStyle() const { return PICStyle; }
|
|
void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
|
|
|
|
bool hasX87() const { return HasX87; }
|
|
bool hasCMov() const { return HasCMov; }
|
|
bool hasSSE1() const { return X86SSELevel >= SSE1; }
|
|
bool hasSSE2() const { return X86SSELevel >= SSE2; }
|
|
bool hasSSE3() const { return X86SSELevel >= SSE3; }
|
|
bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
|
|
bool hasSSE41() const { return X86SSELevel >= SSE41; }
|
|
bool hasSSE42() const { return X86SSELevel >= SSE42; }
|
|
bool hasAVX() const { return X86SSELevel >= AVX; }
|
|
bool hasAVX2() const { return X86SSELevel >= AVX2; }
|
|
bool hasAVX512() const { return X86SSELevel >= AVX512F; }
|
|
bool hasFp256() const { return hasAVX(); }
|
|
bool hasInt256() const { return hasAVX2(); }
|
|
bool hasSSE4A() const { return HasSSE4A; }
|
|
bool hasMMX() const { return X863DNowLevel >= MMX; }
|
|
bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
|
|
bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
|
|
bool hasPOPCNT() const { return HasPOPCNT; }
|
|
bool hasAES() const { return HasAES; }
|
|
bool hasFXSR() const { return HasFXSR; }
|
|
bool hasXSAVE() const { return HasXSAVE; }
|
|
bool hasXSAVEOPT() const { return HasXSAVEOPT; }
|
|
bool hasXSAVEC() const { return HasXSAVEC; }
|
|
bool hasXSAVES() const { return HasXSAVES; }
|
|
bool hasPCLMUL() const { return HasPCLMUL; }
|
|
// Prefer FMA4 to FMA - its better for commutation/memory folding and
|
|
// has equal or better performance on all supported targets.
|
|
bool hasFMA() const { return HasFMA && !HasFMA4; }
|
|
bool hasFMA4() const { return HasFMA4; }
|
|
bool hasAnyFMA() const { return hasFMA() || hasFMA4() || hasAVX512(); }
|
|
bool hasXOP() const { return HasXOP; }
|
|
bool hasTBM() const { return HasTBM; }
|
|
bool hasMOVBE() const { return HasMOVBE; }
|
|
bool hasRDRAND() const { return HasRDRAND; }
|
|
bool hasF16C() const { return HasF16C; }
|
|
bool hasFSGSBase() const { return HasFSGSBase; }
|
|
bool hasLZCNT() const { return HasLZCNT; }
|
|
bool hasBMI() const { return HasBMI; }
|
|
bool hasBMI2() const { return HasBMI2; }
|
|
bool hasVBMI() const { return HasVBMI; }
|
|
bool hasIFMA() const { return HasIFMA; }
|
|
bool hasRTM() const { return HasRTM; }
|
|
bool hasHLE() const { return HasHLE; }
|
|
bool hasADX() const { return HasADX; }
|
|
bool hasSHA() const { return HasSHA; }
|
|
bool hasPRFCHW() const { return HasPRFCHW; }
|
|
bool hasRDSEED() const { return HasRDSEED; }
|
|
bool hasLAHFSAHF() const { return HasLAHFSAHF; }
|
|
bool hasMWAITX() const { return HasMWAITX; }
|
|
bool isBTMemSlow() const { return IsBTMemSlow; }
|
|
bool isSHLDSlow() const { return IsSHLDSlow; }
|
|
bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
|
|
bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
|
|
bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
|
|
bool hasCmpxchg16b() const { return HasCmpxchg16b; }
|
|
bool useLeaForSP() const { return UseLeaForSP; }
|
|
bool hasFastPartialYMMWrite() const { return HasFastPartialYMMWrite; }
|
|
bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
|
|
bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
|
|
bool hasFastLZCNT() const { return HasFastLZCNT; }
|
|
bool hasSlowDivide32() const { return HasSlowDivide32; }
|
|
bool hasSlowDivide64() const { return HasSlowDivide64; }
|
|
bool padShortFunctions() const { return PadShortFunctions; }
|
|
bool callRegIndirect() const { return CallRegIndirect; }
|
|
bool LEAusesAG() const { return LEAUsesAG; }
|
|
bool slowLEA() const { return SlowLEA; }
|
|
bool slowIncDec() const { return SlowIncDec; }
|
|
bool hasCDI() const { return HasCDI; }
|
|
bool hasPFI() const { return HasPFI; }
|
|
bool hasERI() const { return HasERI; }
|
|
bool hasDQI() const { return HasDQI; }
|
|
bool hasBWI() const { return HasBWI; }
|
|
bool hasVLX() const { return HasVLX; }
|
|
bool hasPKU() const { return HasPKU; }
|
|
bool hasMPX() const { return HasMPX; }
|
|
|
|
virtual bool isXRaySupported() const override { return is64Bit(); }
|
|
|
|
bool isAtom() const { return X86ProcFamily == IntelAtom; }
|
|
bool isSLM() const { return X86ProcFamily == IntelSLM; }
|
|
bool useSoftFloat() const { return UseSoftFloat; }
|
|
|
|
/// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
|
|
/// no-sse2). There isn't any reason to disable it if the target processor
|
|
/// supports it.
|
|
bool hasMFence() const { return hasSSE2() || is64Bit(); }
|
|
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
|
|
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
|
|
bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
|
|
bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
|
|
bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
|
|
bool isTargetPS4() const { return TargetTriple.isPS4(); }
|
|
|
|
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
|
|
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
|
|
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
|
|
|
|
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
|
|
bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
|
|
bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
|
|
bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
|
|
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
|
|
bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
|
|
bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
|
|
bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
|
|
|
|
bool isTargetWindowsMSVC() const {
|
|
return TargetTriple.isWindowsMSVCEnvironment();
|
|
}
|
|
|
|
bool isTargetKnownWindowsMSVC() const {
|
|
return TargetTriple.isKnownWindowsMSVCEnvironment();
|
|
}
|
|
|
|
bool isTargetWindowsCoreCLR() const {
|
|
return TargetTriple.isWindowsCoreCLREnvironment();
|
|
}
|
|
|
|
bool isTargetWindowsCygwin() const {
|
|
return TargetTriple.isWindowsCygwinEnvironment();
|
|
}
|
|
|
|
bool isTargetWindowsGNU() const {
|
|
return TargetTriple.isWindowsGNUEnvironment();
|
|
}
|
|
|
|
bool isTargetWindowsItanium() const {
|
|
return TargetTriple.isWindowsItaniumEnvironment();
|
|
}
|
|
|
|
bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
|
|
|
|
bool isOSWindows() const { return TargetTriple.isOSWindows(); }
|
|
|
|
bool isTargetWin64() const {
|
|
return In64BitMode && TargetTriple.isOSWindows();
|
|
}
|
|
|
|
bool isTargetWin32() const {
|
|
return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
|
|
}
|
|
|
|
bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
|
|
bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
|
|
|
|
bool isPICStyleStubPIC() const {
|
|
return PICStyle == PICStyles::StubPIC;
|
|
}
|
|
|
|
bool isPositionIndependent() const { return TM.isPositionIndependent(); }
|
|
|
|
bool isCallingConvWin64(CallingConv::ID CC) const {
|
|
switch (CC) {
|
|
// On Win64, all these conventions just use the default convention.
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
case CallingConv::X86_FastCall:
|
|
case CallingConv::X86_StdCall:
|
|
case CallingConv::X86_ThisCall:
|
|
case CallingConv::X86_VectorCall:
|
|
case CallingConv::Intel_OCL_BI:
|
|
return isTargetWin64();
|
|
// This convention allows using the Win64 convention on other targets.
|
|
case CallingConv::X86_64_Win64:
|
|
return true;
|
|
// This convention allows using the SysV convention on Windows targets.
|
|
case CallingConv::X86_64_SysV:
|
|
return false;
|
|
// Otherwise, who knows what this is.
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Classify a global variable reference for the current subtarget according
|
|
/// to how we should reference it in a non-pcrel context.
|
|
unsigned char classifyLocalReference(const GlobalValue *GV) const;
|
|
|
|
unsigned char classifyGlobalReference(const GlobalValue *GV,
|
|
const Module &M) const;
|
|
unsigned char classifyGlobalReference(const GlobalValue *GV) const;
|
|
|
|
/// Classify a global function reference for the current subtarget.
|
|
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
|
|
const Module &M) const;
|
|
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
|
|
|
|
/// Classify a blockaddress reference for the current subtarget according to
|
|
/// how we should reference it in a non-pcrel context.
|
|
unsigned char classifyBlockAddressReference() const;
|
|
|
|
/// Return true if the subtarget allows calls to immediate address.
|
|
bool isLegalToCallImmediateAddr() const;
|
|
|
|
/// This function returns the name of a function which has an interface
|
|
/// like the non-standard bzero function, if such a function exists on
|
|
/// the current subtarget and it is considered prefereable over
|
|
/// memset with zero passed as the second argument. Otherwise it
|
|
/// returns null.
|
|
const char *getBZeroEntry() const;
|
|
|
|
/// This function returns true if the target has sincos() routine in its
|
|
/// compiler runtime or math libraries.
|
|
bool hasSinCos() const;
|
|
|
|
/// Enable the MachineScheduler pass for all X86 subtargets.
|
|
bool enableMachineScheduler() const override { return true; }
|
|
|
|
bool enableEarlyIfConversion() const override;
|
|
|
|
/// Return the instruction itineraries based on the subtarget selection.
|
|
const InstrItineraryData *getInstrItineraryData() const override {
|
|
return &InstrItins;
|
|
}
|
|
|
|
AntiDepBreakMode getAntiDepBreakMode() const override {
|
|
return TargetSubtargetInfo::ANTIDEP_CRITICAL;
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|