forked from OSchip/llvm-project
1141 lines
44 KiB
TableGen
1141 lines
44 KiB
TableGen
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This describes the calling conventions for the X86-32 and X86-64
|
|
// architectures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfSubtarget - Match if the current subtarget has a feature F.
|
|
class CCIfSubtarget<string F, CCAction A>
|
|
: CCIf<!strconcat("static_cast<const X86Subtarget&>"
|
|
"(State.getMachineFunction().getSubtarget()).", F),
|
|
A>;
|
|
|
|
// Register classes for RegCall
|
|
class RC_X86_RegCall {
|
|
list<Register> GPR_8 = [];
|
|
list<Register> GPR_16 = [];
|
|
list<Register> GPR_32 = [];
|
|
list<Register> GPR_64 = [];
|
|
list<Register> FP_CALL = [FP0];
|
|
list<Register> FP_RET = [FP0, FP1];
|
|
list<Register> XMM = [];
|
|
list<Register> YMM = [];
|
|
list<Register> ZMM = [];
|
|
}
|
|
|
|
// RegCall register classes for 32 bits
|
|
def RC_X86_32_RegCall : RC_X86_RegCall {
|
|
let GPR_8 = [AL, CL, DL, DIL, SIL];
|
|
let GPR_16 = [AX, CX, DX, DI, SI];
|
|
let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
|
|
let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
|
|
///< \todo Fix AssignToReg to enable empty lists
|
|
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
|
|
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
|
|
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
|
|
}
|
|
|
|
class RC_X86_64_RegCall : RC_X86_RegCall {
|
|
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
|
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
|
|
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
|
|
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
|
|
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
|
|
ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
|
|
}
|
|
|
|
def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
|
|
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
|
|
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
|
|
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
|
|
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
|
|
}
|
|
|
|
def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
|
|
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
|
|
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
|
|
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
|
|
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
|
|
}
|
|
|
|
// X86-64 Intel regcall calling convention.
|
|
multiclass X86_RegCall_base<RC_X86_RegCall RC> {
|
|
def CC_#NAME : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// bool, char, int, enum, long, pointer --> GPR
|
|
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
|
|
|
|
// long long, __int64 --> GPR
|
|
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
|
|
|
|
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
|
|
CCIfType<[v64i1], CCPromoteToType<i64>>,
|
|
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
|
|
CCAssignToReg<RC.GPR_64>>>,
|
|
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
|
|
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
|
|
|
|
// TODO: Handle the case of mask types (v*i1)
|
|
CCIfType<[v8i1, v16i1, v32i1], CCCustom<"CC_X86_RegCall_Error">>,
|
|
|
|
// float, double, float128 --> XMM
|
|
// In the case of SSE disabled --> save to stack
|
|
CCIfType<[f32, f64, f128],
|
|
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
|
|
|
|
// long double --> FP
|
|
CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
|
|
|
|
// __m128, __m128i, __m128d --> XMM
|
|
// In the case of SSE disabled --> save to stack
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
|
|
|
|
// __m256, __m256i, __m256d --> YMM
|
|
// In the case of SSE disabled --> save to stack
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
|
|
|
|
// __m512, __m512i, __m512d --> ZMM
|
|
// In the case of SSE disabled --> save to stack
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
|
|
|
|
// If no register was found -> assign to stack
|
|
|
|
// In 64 bit, assign 64/32 bit values to 8 byte stack
|
|
CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
|
|
CCAssignToStack<8, 8>>>,
|
|
|
|
// In 32 bit, assign 64/32 bit values to 8/4 byte stack
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
|
|
|
|
// MMX type gets 8 byte slot in stack , while alignment depends on target
|
|
CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
|
|
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
|
|
|
|
// float 128 get stack slots whose size and alignment depends
|
|
// on the subtarget.
|
|
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
|
|
|
|
// Vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToStack<16, 16>>,
|
|
|
|
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToStack<32, 32>>,
|
|
|
|
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
|
|
CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>>
|
|
]>;
|
|
|
|
def RetCC_#NAME : CallingConv<[
|
|
// Promote i1 arguments to i8.
|
|
CCIfType<[i1], CCPromoteToType<i8>>,
|
|
|
|
// bool, char, int, enum, long, pointer --> GPR
|
|
CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
|
|
CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
|
|
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
|
|
|
|
// long long, __int64 --> GPR
|
|
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
|
|
|
|
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
|
|
CCIfType<[v64i1], CCPromoteToType<i64>>,
|
|
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
|
|
CCAssignToReg<RC.GPR_64>>>,
|
|
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
|
|
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
|
|
|
|
// TODO: Handle the case of mask types (v*i1)
|
|
CCIfType<[v8i1, v16i1, v32i1], CCCustom<"CC_X86_RegCall_Error">>,
|
|
|
|
// long double --> FP
|
|
CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
|
|
|
|
// float, double, float128 --> XMM
|
|
CCIfType<[f32, f64, f128],
|
|
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
|
|
|
|
// __m128, __m128i, __m128d --> XMM
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
|
|
|
|
// __m256, __m256i, __m256d --> YMM
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
|
|
|
|
// __m512, __m512i, __m512d --> ZMM
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
|
|
]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return-value conventions common to all X86 CC's.
|
|
def RetCC_X86Common : CallingConv<[
|
|
// Scalar values are returned in AX first, then DX. For i8, the ABI
|
|
// requires the values to be in AL and AH, however this code uses AL and DL
|
|
// instead. This is because using AH for the second register conflicts with
|
|
// the way LLVM does multiple return values -- a return of {i16,i8} would end
|
|
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
|
|
// for functions that return two i8 values are currently expected to pack the
|
|
// values into an i16 (which uses AX, and thus AL:AH).
|
|
//
|
|
// For code that doesn't care about the ABI, we allow returning more than two
|
|
// integer values in registers.
|
|
CCIfType<[i1], CCPromoteToType<i8>>,
|
|
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
|
|
|
|
// Boolean vectors of AVX-512 are returned in SIMD registers.
|
|
// The call from AVX to AVX-512 function should work,
|
|
// since the boolean types in AVX/AVX2 are promoted by default.
|
|
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
|
|
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
|
|
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
|
|
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
|
|
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
|
|
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
|
|
|
|
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
|
|
// can only be used by ABI non-compliant code. If the target doesn't have XMM
|
|
// registers, it won't have vector types.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
|
|
// can only be used by ABI non-compliant code. This vector type is only
|
|
// supported while using the AVX target feature.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
|
|
|
|
// 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
|
|
// can only be used by ABI non-compliant code. This vector type is only
|
|
// supported while using the AVX-512 target feature.
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
|
|
|
|
// MMX vector types are always returned in MM0. If the target doesn't have
|
|
// MM0, it doesn't support these vector types.
|
|
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
|
|
|
|
// Long double types are always returned in FP0 (even with SSE).
|
|
CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
|
|
]>;
|
|
|
|
// X86-32 C return-value convention.
|
|
def RetCC_X86_32_C : CallingConv<[
|
|
// The X86-32 calling convention returns FP values in FP0, unless marked
|
|
// with "inreg" (used here to distinguish one kind of reg from another,
|
|
// weirdly; this is really the sse-regparm calling convention) in which
|
|
// case they use XMM0, otherwise it is the same as the common X86 calling
|
|
// conv.
|
|
CCIfInReg<CCIfSubtarget<"hasSSE2()",
|
|
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-32 FastCC return-value convention.
|
|
def RetCC_X86_32_Fast : CallingConv<[
|
|
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
|
|
// SSE2.
|
|
// This can happen when a float, 2 x float, or 3 x float vector is split by
|
|
// target lowering, and is returned in 1-3 sse regs.
|
|
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
|
|
// For integers, ECX can be used as an extra return register
|
|
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
|
|
|
|
// Otherwise, it is the same as the common X86 calling convention.
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// Intel_OCL_BI return-value convention.
|
|
def RetCC_Intel_OCL_BI : CallingConv<[
|
|
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
|
|
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// 256-bit FP vectors
|
|
// No more than 4 registers
|
|
CCIfType<[v8f32, v4f64, v8i32, v4i64],
|
|
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
|
|
|
|
// 512-bit FP vectors
|
|
CCIfType<[v16f32, v8f64, v16i32, v8i64],
|
|
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
|
|
|
|
// i32, i64 in the standard way
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-32 HiPE return-value convention.
|
|
def RetCC_X86_32_HiPE : CallingConv<[
|
|
// Promote all types to i32
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Return: HP, P, VAL1, VAL2
|
|
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
|
|
]>;
|
|
|
|
// X86-32 HiPE return-value convention.
|
|
def RetCC_X86_32_VectorCall : CallingConv<[
|
|
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// 256-bit FP vectors
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
|
|
|
|
// 512-bit FP vectors
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
|
|
|
|
// Return integers in the standard way.
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-64 C return-value convention.
|
|
def RetCC_X86_64_C : CallingConv<[
|
|
// The X86-64 calling convention always returns FP values in XMM0.
|
|
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
|
|
|
|
// MMX vector types are always returned in XMM0.
|
|
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
|
|
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
|
|
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-Win64 C return-value convention.
|
|
def RetCC_X86_Win64_C : CallingConv<[
|
|
// The X86-Win64 calling convention always returns __m64 values in RAX.
|
|
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
|
|
|
|
// Otherwise, everything is the same as 'normal' X86-64 C CC.
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
// X86-64 HiPE return-value convention.
|
|
def RetCC_X86_64_HiPE : CallingConv<[
|
|
// Promote all types to i64
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Return: HP, P, VAL1, VAL2
|
|
CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
|
|
]>;
|
|
|
|
// X86-64 WebKit_JS return-value convention.
|
|
def RetCC_X86_64_WebKit_JS : CallingConv<[
|
|
// Promote all types to i64
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Return: RAX
|
|
CCIfType<[i64], CCAssignToReg<[RAX]>>
|
|
]>;
|
|
|
|
def RetCC_X86_64_Swift : CallingConv<[
|
|
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
|
|
|
|
// For integers, ECX, R8D can be used as extra return registers.
|
|
CCIfType<[i1], CCPromoteToType<i8>>,
|
|
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
|
|
|
|
// XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
|
|
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
|
|
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-64 AnyReg return-value convention. No explicit register is specified for
|
|
// the return-value. The register allocator is allowed and expected to choose
|
|
// any free register.
|
|
//
|
|
// This calling convention is currently only supported by the stackmap and
|
|
// patchpoint intrinsics. All other uses will result in an assert on Debug
|
|
// builds. On Release builds we fallback to the X86 C calling convention.
|
|
def RetCC_X86_64_AnyReg : CallingConv<[
|
|
CCCustom<"CC_X86_AnyReg_Error">
|
|
]>;
|
|
|
|
// X86-64 HHVM return-value convention.
|
|
def RetCC_X86_64_HHVM: CallingConv<[
|
|
// Promote all types to i64
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Return: could return in any GP register save RSP and R12.
|
|
CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
|
|
RAX, R10, R11, R13, R14, R15]>>
|
|
]>;
|
|
|
|
|
|
defm X86_32_RegCall :
|
|
X86_RegCall_base<RC_X86_32_RegCall>;
|
|
defm X86_Win64_RegCall :
|
|
X86_RegCall_base<RC_X86_64_RegCall_Win>;
|
|
defm X86_SysV64_RegCall :
|
|
X86_RegCall_base<RC_X86_64_RegCall_SysV>;
|
|
|
|
// This is the root return-value convention for the X86-32 backend.
|
|
def RetCC_X86_32 : CallingConv<[
|
|
// If FastCC, use RetCC_X86_32_Fast.
|
|
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
|
|
// If HiPE, use RetCC_X86_32_HiPE.
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
|
|
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
|
|
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
|
|
|
|
// Otherwise, use RetCC_X86_32_C.
|
|
CCDelegateTo<RetCC_X86_32_C>
|
|
]>;
|
|
|
|
// This is the root return-value convention for the X86-64 backend.
|
|
def RetCC_X86_64 : CallingConv<[
|
|
// HiPE uses RetCC_X86_64_HiPE
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
|
|
|
|
// Handle JavaScript calls.
|
|
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
|
|
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
|
|
|
|
// Handle Swift calls.
|
|
CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
|
|
|
|
// Handle explicit CC selection
|
|
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
|
|
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
|
|
|
|
// Handle HHVM calls.
|
|
CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
|
|
|
|
CCIfCC<"CallingConv::X86_RegCall",
|
|
CCIfSubtarget<"isTargetWin64()",
|
|
CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
|
|
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
|
|
|
|
// Mingw64 and native Win64 use Win64 CC
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
|
|
|
|
// Otherwise, drop to normal X86-64 CC
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
// This is the return-value convention used for the entire X86 backend.
|
|
def RetCC_X86 : CallingConv<[
|
|
|
|
// Check if this is the Intel OpenCL built-ins calling convention
|
|
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
|
|
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
|
|
CCDelegateTo<RetCC_X86_32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-64 Argument Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_X86_64_C : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// Pass SwiftSelf in a callee saved register.
|
|
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
|
|
|
|
// A SwiftError is passed in R12.
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
|
|
|
|
// For Swift Calling Convention, pass sret in %RAX.
|
|
CCIfCC<"CallingConv::Swift",
|
|
CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
|
|
|
|
// The first 6 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
|
|
|
|
// The first 8 MMX vector arguments are passed in XMM registers on Darwin.
|
|
CCIfType<[x86mmx],
|
|
CCIfSubtarget<"isTargetDarwin()",
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCPromoteToType<v2i64>>>>,
|
|
|
|
// Boolean vectors of AVX-512 are passed in SIMD registers.
|
|
// The call from AVX to AVX-512 function should work,
|
|
// since the boolean types in AVX/AVX2 are promoted by default.
|
|
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
|
|
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
|
|
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
|
|
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
|
|
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
|
|
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
|
|
|
|
// The first 8 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()",
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
|
|
|
|
// The first 8 256-bit vector arguments are passed in YMM registers, unless
|
|
// this is a vararg function.
|
|
// FIXME: This isn't precisely correct; the x86-64 ABI document says that
|
|
// fixed arguments to vararg functions are supposed to be passed in
|
|
// registers. Actually modeling that would be a lot of work, though.
|
|
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasFp256()",
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
|
|
YMM4, YMM5, YMM6, YMM7]>>>>,
|
|
|
|
// The first 8 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCIfSubtarget<"hasAVX512()",
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
|
|
|
|
// Vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToStack<32, 32>>,
|
|
|
|
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
|
|
CCIfType<[v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToStack<64, 64>>
|
|
]>;
|
|
|
|
// Calling convention for X86-64 HHVM.
|
|
def CC_X86_64_HHVM : CallingConv<[
|
|
// Use all/any GP registers for args, except RSP.
|
|
CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
|
|
RDI, RSI, RDX, RCX, R8, R9,
|
|
RAX, R10, R11, R13, R14]>>
|
|
]>;
|
|
|
|
// Calling convention for helper functions in HHVM.
|
|
def CC_X86_64_HHVM_C : CallingConv<[
|
|
// Pass the first argument in RBP.
|
|
CCIfType<[i64], CCAssignToReg<[RBP]>>,
|
|
|
|
// Otherwise it's the same as the regular C calling convention.
|
|
CCDelegateTo<CC_X86_64_C>
|
|
]>;
|
|
|
|
// Calling convention used on Win64
|
|
def CC_X86_Win64_C : CallingConv<[
|
|
// FIXME: Handle byval stuff.
|
|
// FIXME: Handle varargs.
|
|
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// 128 bit vectors are passed by pointer
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
|
|
|
|
|
|
// 256 bit vectors are passed by pointer
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
|
|
|
|
// 512 bit vectors are passed by pointer
|
|
CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
|
|
|
|
// The first 4 MMX vector arguments are passed in GPRs.
|
|
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
|
|
|
|
// The first 4 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// Do not pass the sret argument in RCX, the Win64 thiscall calling
|
|
// convention requires "this" to be passed in RCX.
|
|
CCIfCC<"CallingConv::X86_ThisCall",
|
|
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
|
|
[XMM1, XMM2, XMM3]>>>>,
|
|
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// The first 4 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
|
|
[RCX , RDX , R8 , R9 ]>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 0>>
|
|
]>;
|
|
|
|
def CC_X86_Win64_VectorCall : CallingConv<[
|
|
// The first 6 floating point and vector types of 128 bits or less use
|
|
// XMM0-XMM5.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
|
|
|
|
// 256-bit vectors use YMM registers.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
|
|
|
|
// 512-bit vectors use ZMM registers.
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
|
|
|
|
// Delegate to fastcall to handle integer types.
|
|
CCDelegateTo<CC_X86_Win64_C>
|
|
]>;
|
|
|
|
|
|
def CC_X86_64_GHC : CallingConv<[
|
|
// Promote i8/i16/i32 arguments to i64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
|
|
CCIfType<[i64],
|
|
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
|
|
|
|
// Pass in STG registers: F1, F2, F3, F4, D1, D2
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()",
|
|
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
|
|
]>;
|
|
|
|
def CC_X86_64_HiPE : CallingConv<[
|
|
// Promote i8/i16/i32 arguments to i64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
|
|
CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def CC_X86_64_WebKit_JS : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Only the first integer argument is passed in register.
|
|
CCIfType<[i32], CCAssignToReg<[EAX]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RAX]>>,
|
|
|
|
// The remaining integer arguments are passed on the stack. 32bit integer and
|
|
// floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
|
|
// 64bit integer and floating-point arguments are aligned to 8 byte and stored
|
|
// in 8 byte stack slots.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
// No explicit register is specified for the AnyReg calling convention. The
|
|
// register allocator may assign the arguments to any free register.
|
|
//
|
|
// This calling convention is currently only supported by the stackmap and
|
|
// patchpoint intrinsics. All other uses will result in an assert on Debug
|
|
// builds. On Release builds we fallback to the X86 C calling convention.
|
|
def CC_X86_64_AnyReg : CallingConv<[
|
|
CCCustom<"CC_X86_AnyReg_Error">
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 C Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
|
|
/// values are spilled on the stack.
|
|
def CC_X86_32_Vector_Common : CallingConv<[
|
|
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToStack<32, 32>>,
|
|
|
|
// 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToStack<64, 64>>
|
|
]>;
|
|
|
|
// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
|
|
// vector registers
|
|
def CC_X86_32_Vector_Standard : CallingConv<[
|
|
// SSE vector arguments are passed in XMM registers.
|
|
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
|
|
|
|
// AVX 256-bit vector arguments are passed in YMM registers.
|
|
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasFp256()",
|
|
CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
|
|
|
|
// AVX 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
|
|
|
|
CCDelegateTo<CC_X86_32_Vector_Common>
|
|
]>;
|
|
|
|
// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
|
|
// vector registers.
|
|
def CC_X86_32_Vector_Darwin : CallingConv<[
|
|
// SSE vector arguments are passed in XMM registers.
|
|
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
|
|
|
|
// AVX 256-bit vector arguments are passed in YMM registers.
|
|
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasFp256()",
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
|
|
|
|
// AVX 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
|
|
|
|
CCDelegateTo<CC_X86_32_Vector_Common>
|
|
]>;
|
|
|
|
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
|
|
/// values are spilled on the stack.
|
|
def CC_X86_32_Common : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// The first 3 float or double arguments, if marked 'inreg' and if the call
|
|
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
|
|
|
|
// The first 3 __m64 vector arguments are passed in mmx registers if the
|
|
// call is not a vararg call.
|
|
CCIfNotVarArg<CCIfType<[x86mmx],
|
|
CCAssignToReg<[MM0, MM1, MM2]>>>,
|
|
|
|
// Integer/Float values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
// Doubles get 8-byte slots that are 4-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 4>>,
|
|
|
|
// Long doubles get slots whose size depends on the subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 4>>,
|
|
|
|
// Boolean vectors of AVX-512 are passed in SIMD registers.
|
|
// The call from AVX to AVX-512 function should work,
|
|
// since the boolean types in AVX/AVX2 are promoted by default.
|
|
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
|
|
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
|
|
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
|
|
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
|
|
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
|
|
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
|
|
|
|
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
|
|
// passed in the parameter area.
|
|
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
|
|
|
|
// Darwin passes vectors in a form that differs from the i386 psABI
|
|
CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
|
|
|
|
// Otherwise, drop to 'normal' X86-32 CC
|
|
CCDelegateTo<CC_X86_32_Vector_Standard>
|
|
]>;
|
|
|
|
def CC_X86_32_C : CallingConv<[
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in ECX.
|
|
CCIfNest<CCAssignToReg<[ECX]>>,
|
|
|
|
// The first 3 integer arguments, if marked 'inreg' and if the call is not
|
|
// a vararg call, are passed in integer registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_MCU : CallingConv<[
|
|
// Handles byval parameters. Note that, like FastCC, we can't rely on
|
|
// the delegation to CC_X86_32_Common because that happens after code that
|
|
// puts arguments in registers.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// If the call is not a vararg call, some arguments may be passed
|
|
// in integer registers.
|
|
CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCall : CallingConv<[
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_VectorCall : CallingConv<[
|
|
// The first 6 floating point and vector types of 128 bits or less use
|
|
// XMM0-XMM5.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
|
|
|
|
// 256-bit vectors use YMM registers.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
|
|
|
|
// 512-bit vectors use ZMM registers.
|
|
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
|
|
|
|
// Otherwise, pass it indirectly.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64,
|
|
v32i8, v16i16, v8i32, v4i64, v8f32, v4f64,
|
|
v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
|
|
CCCustom<"CC_X86_32_VectorCallIndirect">>,
|
|
|
|
// Delegate to fastcall to handle integer types.
|
|
CCDelegateTo<CC_X86_32_FastCall>
|
|
]>;
|
|
|
|
def CC_X86_32_ThisCall_Common : CallingConv<[
|
|
// The first integer argument is passed in ECX
|
|
CCIfType<[i32], CCAssignToReg<[ECX]>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_ThisCall_Mingw : CallingConv<[
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
CCDelegateTo<CC_X86_32_ThisCall_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_ThisCall_Win : CallingConv<[
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass sret arguments indirectly through stack.
|
|
CCIfSRet<CCAssignToStack<4, 4>>,
|
|
|
|
CCDelegateTo<CC_X86_32_ThisCall_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_ThisCall : CallingConv<[
|
|
CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
|
|
CCDelegateTo<CC_X86_32_ThisCall_Win>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCC : CallingConv<[
|
|
// Handles byval parameters. Note that we can't rely on the delegation
|
|
// to CC_X86_32_Common for this because that happens after code that
|
|
// puts arguments in registers.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i1/i8/i16 arguments to i32.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
|
|
|
|
// The first 3 float or double arguments, if the call is not a vararg
|
|
// call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
|
|
// Doubles get 8-byte slots that are 8-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_GHC : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass in STG registers: Base, Sp, Hp, R1
|
|
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
|
|
]>;
|
|
|
|
def CC_X86_32_HiPE : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
|
|
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
|
|
|
|
// Integer/Float values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>
|
|
]>;
|
|
|
|
// X86-64 Intel OpenCL built-ins calling convention.
|
|
def CC_Intel_OCL_BI : CallingConv<[
|
|
|
|
CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
|
|
CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
|
|
|
|
CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
|
|
CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
|
|
|
|
CCIfType<[i32], CCAssignToStack<4, 4>>,
|
|
|
|
// The SSE vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// The 256-bit vector arguments are passed in YMM registers.
|
|
CCIfType<[v8f32, v4f64, v8i32, v4i64],
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
|
|
|
|
// The 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfType<[v16f32, v8f64, v16i32, v8i64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
|
|
|
|
// Pass masks in mask registers
|
|
CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
|
|
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
|
|
CCDelegateTo<CC_X86_32_C>
|
|
]>;
|
|
|
|
def CC_X86_32_Intr : CallingConv<[
|
|
CCAssignToStack<4, 4>
|
|
]>;
|
|
|
|
def CC_X86_64_Intr : CallingConv<[
|
|
CCAssignToStack<8, 8>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Root Argument Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This is the root argument convention for the X86-32 backend.
|
|
def CC_X86_32 : CallingConv<[
|
|
// X86_INTR calling convention is valid in MCU target and should override the
|
|
// MCU calling convention. Thus, this should be checked before isTargetMCU().
|
|
CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
|
|
CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
|
|
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
|
|
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_32_VectorCall>>,
|
|
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
|
|
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
|
|
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
|
|
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
|
|
|
|
// Otherwise, drop to normal X86-32 CC
|
|
CCDelegateTo<CC_X86_32_C>
|
|
]>;
|
|
|
|
// This is the root argument convention for the X86-64 backend.
|
|
def CC_X86_64 : CallingConv<[
|
|
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
|
|
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
|
|
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
|
|
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
|
|
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
|
|
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
|
|
CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
|
|
CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
|
|
CCIfCC<"CallingConv::X86_RegCall",
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
|
|
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
|
|
CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
|
|
|
|
// Mingw64 and native Win64 use Win64 CC
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
|
|
|
|
// Otherwise, drop to normal X86-64 CC
|
|
CCDelegateTo<CC_X86_64_C>
|
|
]>;
|
|
|
|
// This is the argument convention used for the entire X86 backend.
|
|
def CC_X86 : CallingConv<[
|
|
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
|
|
CCDelegateTo<CC_X86_32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Callee-saved Registers.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CSR_NoRegs : CalleeSavedRegs<(add)>;
|
|
|
|
def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
|
|
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
|
|
|
|
def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
|
|
|
|
def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
|
|
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
|
|
|
|
def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
|
|
|
|
def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
|
|
(sequence "XMM%u", 6, 15))>;
|
|
|
|
// The function used by Darwin to obtain the address of a thread-local variable
|
|
// uses rdi to pass a single parameter and rax for the return value. All other
|
|
// GPRs are preserved.
|
|
def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
|
|
R8, R9, R10, R11)>;
|
|
|
|
// CSRs that are handled by prologue, epilogue.
|
|
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
|
|
|
|
// CSRs that are handled explicitly via copies.
|
|
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
|
|
|
|
// All GPRs - except r11
|
|
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
|
|
R8, R9, R10, RSP)>;
|
|
|
|
// All registers - except r11
|
|
def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
|
|
(sequence "XMM%u", 0, 15))>;
|
|
def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
|
|
(sequence "YMM%u", 0, 15))>;
|
|
|
|
def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
|
|
R11, R12, R13, R14, R15, RBP,
|
|
(sequence "XMM%u", 0, 15))>;
|
|
|
|
def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
|
|
EDI)>;
|
|
def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
|
|
(sequence "XMM%u", 0, 7))>;
|
|
def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
|
|
(sequence "YMM%u", 0, 7))>;
|
|
def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
|
|
(sequence "ZMM%u", 0, 7),
|
|
(sequence "K%u", 0, 7))>;
|
|
|
|
def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
|
|
def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
|
|
(sequence "YMM%u", 0, 15)),
|
|
(sequence "XMM%u", 0, 15))>;
|
|
def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
|
|
(sequence "ZMM%u", 0, 31),
|
|
(sequence "K%u", 0, 7)),
|
|
(sequence "XMM%u", 0, 15))>;
|
|
|
|
// Standard C + YMM6-15
|
|
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
|
|
R13, R14, R15,
|
|
(sequence "YMM%u", 6, 15))>;
|
|
|
|
def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
|
|
R12, R13, R14, R15,
|
|
(sequence "ZMM%u", 6, 21),
|
|
K4, K5, K6, K7)>;
|
|
//Standard C + XMM 8-15
|
|
def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
|
|
(sequence "XMM%u", 8, 15))>;
|
|
|
|
//Standard C + YMM 8-15
|
|
def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
|
|
(sequence "YMM%u", 8, 15))>;
|
|
|
|
def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
|
|
(sequence "ZMM%u", 16, 31),
|
|
K4, K5, K6, K7)>;
|
|
|
|
// Only R12 is preserved for PHP calls in HHVM.
|
|
def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
|
|
|
|
// Register calling convention preserves few GPR and XMM8-15
|
|
def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
|
|
def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
|
|
(sequence "XMM%u", 4, 7))>;
|
|
def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
|
|
(sequence "R%u", 10, 15))>;
|
|
def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
|
|
(sequence "XMM%u", 8, 15))>;
|
|
def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
|
|
(sequence "R%u", 12, 15))>;
|
|
def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
|
|
(sequence "XMM%u", 8, 15))>;
|
|
|