llvm-project/llvm/tools/llvm-xray/xray-graph.cc

589 lines
23 KiB
C++

//===-- xray-graph.c - XRay Function Call Graph Renderer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Generate a DOT file to represent the function call graph encountered in
// the trace.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <cassert>
#include <cmath>
#include <system_error>
#include <utility>
#include "xray-graph.h"
#include "xray-registry.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/YAMLXRayRecord.h"
using namespace llvm;
using namespace llvm::xray;
// Setup llvm-xray graph subcommand and its options.
static cl::SubCommand Graph("graph", "Generate function-call graph");
static cl::opt<std::string> GraphInput(cl::Positional,
cl::desc("<xray log file>"),
cl::Required, cl::sub(Graph));
static cl::opt<bool>
GraphKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
cl::sub(Graph), cl::init(false));
static cl::alias GraphKeepGoing2("k", cl::aliasopt(GraphKeepGoing),
cl::desc("Alias for -keep-going"),
cl::sub(Graph));
static cl::opt<std::string>
GraphOutput("output", cl::value_desc("Output file"), cl::init("-"),
cl::desc("output file; use '-' for stdout"), cl::sub(Graph));
static cl::alias GraphOutput2("o", cl::aliasopt(GraphOutput),
cl::desc("Alias for -output"), cl::sub(Graph));
static cl::opt<std::string> GraphInstrMap(
"instr_map", cl::desc("binary with the instrumrntation map, or "
"a separate instrumentation map"),
cl::value_desc("binary with xray_instr_map"), cl::sub(Graph), cl::init(""));
static cl::alias GraphInstrMap2("m", cl::aliasopt(GraphInstrMap),
cl::desc("alias for -instr_map"),
cl::sub(Graph));
static cl::opt<bool> GraphDeduceSiblingCalls(
"deduce-sibling-calls",
cl::desc("Deduce sibling calls when unrolling function call stacks"),
cl::sub(Graph), cl::init(false));
static cl::alias
GraphDeduceSiblingCalls2("d", cl::aliasopt(GraphDeduceSiblingCalls),
cl::desc("Alias for -deduce-sibling-calls"),
cl::sub(Graph));
static cl::opt<GraphRenderer::StatType>
GraphEdgeLabel("edge-label",
cl::desc("Output graphs with edges labeled with this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
clEnumValN(GraphRenderer::StatType::COUNT,
"count", "function call counts"),
clEnumValN(GraphRenderer::StatType::MIN, "min",
"minimum function durations"),
clEnumValN(GraphRenderer::StatType::MED, "med",
"median function durations"),
clEnumValN(GraphRenderer::StatType::PCT90, "90p",
"90th percentile durations"),
clEnumValN(GraphRenderer::StatType::PCT99, "99p",
"99th percentile durations"),
clEnumValN(GraphRenderer::StatType::MAX, "max",
"maximum function durations"),
clEnumValN(GraphRenderer::StatType::SUM, "sum",
"sum of call durations")));
static cl::alias GraphEdgeLabel2("e", cl::aliasopt(GraphEdgeLabel),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
static cl::opt<GraphRenderer::StatType> GraphVertexLabel(
"vertex-label",
cl::desc("Output graphs with vertices labeled with this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
clEnumValN(GraphRenderer::StatType::COUNT, "count",
"function call counts"),
clEnumValN(GraphRenderer::StatType::MIN, "min",
"minimum function durations"),
clEnumValN(GraphRenderer::StatType::MED, "med",
"median function durations"),
clEnumValN(GraphRenderer::StatType::PCT90, "90p",
"90th percentile durations"),
clEnumValN(GraphRenderer::StatType::PCT99, "99p",
"99th percentile durations"),
clEnumValN(GraphRenderer::StatType::MAX, "max",
"maximum function durations"),
clEnumValN(GraphRenderer::StatType::SUM, "sum",
"sum of call durations")));
static cl::alias GraphVertexLabel2("v", cl::aliasopt(GraphVertexLabel),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
static cl::opt<GraphRenderer::StatType> GraphEdgeColorType(
"color-edges",
cl::desc("Output graphs with edge colors determined by this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
clEnumValN(GraphRenderer::StatType::COUNT, "count",
"function call counts"),
clEnumValN(GraphRenderer::StatType::MIN, "min",
"minimum function durations"),
clEnumValN(GraphRenderer::StatType::MED, "med",
"median function durations"),
clEnumValN(GraphRenderer::StatType::PCT90, "90p",
"90th percentile durations"),
clEnumValN(GraphRenderer::StatType::PCT99, "99p",
"99th percentile durations"),
clEnumValN(GraphRenderer::StatType::MAX, "max",
"maximum function durations"),
clEnumValN(GraphRenderer::StatType::SUM, "sum",
"sum of call durations")));
static cl::alias GraphEdgeColorType2("c", cl::aliasopt(GraphEdgeColorType),
cl::desc("Alias for -color-edges"),
cl::sub(Graph));
static cl::opt<GraphRenderer::StatType> GraphVertexColorType(
"color-vertices",
cl::desc("Output graphs with vertex colors determined by this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
clEnumValN(GraphRenderer::StatType::COUNT, "count",
"function call counts"),
clEnumValN(GraphRenderer::StatType::MIN, "min",
"minimum function durations"),
clEnumValN(GraphRenderer::StatType::MED, "med",
"median function durations"),
clEnumValN(GraphRenderer::StatType::PCT90, "90p",
"90th percentile durations"),
clEnumValN(GraphRenderer::StatType::PCT99, "99p",
"99th percentile durations"),
clEnumValN(GraphRenderer::StatType::MAX, "max",
"maximum function durations"),
clEnumValN(GraphRenderer::StatType::SUM, "sum",
"sum of call durations")));
static cl::alias GraphVertexColorType2("b", cl::aliasopt(GraphVertexColorType),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
template <class T> T diff(T L, T R) { return std::max(L, R) - std::min(L, R); }
// Updates the statistics for a GraphRenderer::TimeStat
static void updateStat(GraphRenderer::TimeStat &S, int64_t L) {
S.Count++;
if (S.Min > L || S.Min == 0)
S.Min = L;
if (S.Max < L)
S.Max = L;
S.Sum += L;
}
// Evaluates an XRay record and performs accounting on it.
//
// If the record is an ENTER record it pushes the FuncID and TSC onto a
// structure representing the call stack for that function.
// If the record is an EXIT record it checks computes computes the ammount of
// time the function took to complete and then stores that information in an
// edge of the graph. If there is no matching ENTER record the function tries
// to recover by assuming that there were EXIT records which were missed, for
// example caused by tail call elimination and if the option is enabled then
// then tries to recover from this.
//
// This funciton will also error if the records are out of order, as the trace
// is expected to be sorted.
//
// The graph generated has an immaginary root for functions called by no-one at
// FuncId 0.
//
// FIXME: Refactor this and account subcommand to reduce code duplication.
Error GraphRenderer::accountRecord(const XRayRecord &Record) {
using std::make_error_code;
using std::errc;
if (CurrentMaxTSC == 0)
CurrentMaxTSC = Record.TSC;
if (Record.TSC < CurrentMaxTSC)
return make_error<StringError>("Records not in order",
make_error_code(errc::invalid_argument));
auto &ThreadStack = PerThreadFunctionStack[Record.TId];
switch (Record.Type) {
case RecordTypes::ENTER: {
if (VertexAttrs.count(Record.FuncId) == 0)
VertexAttrs[Record.FuncId].SymbolName =
FuncIdHelper.SymbolOrNumber(Record.FuncId);
ThreadStack.push_back({Record.FuncId, Record.TSC});
break;
}
case RecordTypes::EXIT: {
// FIXME: Refactor this and the account subcommand to reducr code
// duplication
if (ThreadStack.size() == 0 || ThreadStack.back().FuncId != Record.FuncId) {
if (!DeduceSiblingCalls)
return make_error<StringError>("No matching ENTRY record",
make_error_code(errc::invalid_argument));
auto Parent = std::find_if(
ThreadStack.rbegin(), ThreadStack.rend(),
[&](const FunctionAttr &A) { return A.FuncId == Record.FuncId; });
if (Parent == ThreadStack.rend())
return make_error<StringError>(
"No matching Entry record in stack",
make_error_code(errc::invalid_argument)); // There is no matching
// Function for this exit.
while (ThreadStack.back().FuncId != Record.FuncId) {
uint64_t D = diff(ThreadStack.back().TSC, Record.TSC);
int32_t TopFuncId = ThreadStack.back().FuncId;
ThreadStack.pop_back();
assert(ThreadStack.size() != 0);
auto &EA = Graph[ThreadStack.back().FuncId][TopFuncId];
EA.Timings.push_back(D);
updateStat(EA.S, D);
updateStat(VertexAttrs[TopFuncId].S, D);
}
}
uint64_t D = diff(ThreadStack.back().TSC, Record.TSC);
ThreadStack.pop_back();
auto &V = Graph[ThreadStack.empty() ? 0 : ThreadStack.back().FuncId];
auto &EA = V[Record.FuncId];
EA.Timings.push_back(D);
updateStat(EA.S, D);
updateStat(VertexAttrs[Record.FuncId].S, D);
break;
}
}
return Error::success();
}
template <typename U>
void GraphRenderer::getStats(U begin, U end, GraphRenderer::TimeStat &S) {
assert(begin != end);
std::ptrdiff_t MedianOff = S.Count / 2;
std::nth_element(begin, begin + MedianOff, end);
S.Median = *(begin + MedianOff);
std::ptrdiff_t Pct90Off = (S.Count * 9) / 10;
std::nth_element(begin, begin + Pct90Off, end);
S.Pct90 = *(begin + Pct90Off);
std::ptrdiff_t Pct99Off = (S.Count * 99) / 100;
std::nth_element(begin, begin + Pct99Off, end);
S.Pct99 = *(begin + Pct99Off);
}
void GraphRenderer::updateMaxStats(const GraphRenderer::TimeStat &S,
GraphRenderer::TimeStat &M) {
M.Count = std::max(M.Count, S.Count);
M.Min = std::max(M.Min, S.Min);
M.Median = std::max(M.Median, S.Median);
M.Pct90 = std::max(M.Pct90, S.Pct90);
M.Pct99 = std::max(M.Pct99, S.Pct99);
M.Max = std::max(M.Max, S.Max);
M.Sum = std::max(M.Sum, S.Sum);
}
void GraphRenderer::calculateEdgeStatistics() {
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &A = E.second;
getStats(A.Timings.begin(), A.Timings.end(), A.S);
updateMaxStats(A.S, GraphEdgeMax);
}
}
}
void GraphRenderer::calculateVertexStatistics() {
DenseMap<int32_t, std::pair<uint64_t, SmallVector<EdgeAttribute *, 4>>>
IncommingEdges;
uint64_t MaxCount = 0;
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &IEV = IncommingEdges[E.first];
IEV.second.push_back(&E.second);
IEV.first += E.second.S.Count;
if (IEV.first > MaxCount)
MaxCount = IEV.first;
}
}
std::vector<uint64_t> TempTimings;
TempTimings.reserve(MaxCount);
for (auto &V : IncommingEdges) {
for (auto &P : V.second.second) {
TempTimings.insert(TempTimings.end(), P->Timings.begin(),
P->Timings.end());
}
getStats(TempTimings.begin(), TempTimings.end(), VertexAttrs[V.first].S);
updateMaxStats(VertexAttrs[V.first].S, GraphVertexMax);
TempTimings.clear();
}
}
// A Helper function for normalizeStatistics which normalises a single
// TimeStat element.
static void normalizeTimeStat(GraphRenderer::TimeStat &S,
double CycleFrequency) {
S.Min /= CycleFrequency;
S.Median /= CycleFrequency;
S.Max /= CycleFrequency;
S.Sum /= CycleFrequency;
S.Pct90 /= CycleFrequency;
S.Pct99 /= CycleFrequency;
}
// Normalises the statistics in the graph for a given TSC frequency.
void GraphRenderer::normalizeStatistics(double CycleFrequency) {
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &S = E.second.S;
normalizeTimeStat(S, CycleFrequency);
}
}
for (auto &V : VertexAttrs) {
auto &S = V.second.S;
normalizeTimeStat(S, CycleFrequency);
}
normalizeTimeStat(GraphEdgeMax, CycleFrequency);
normalizeTimeStat(GraphVertexMax, CycleFrequency);
}
// Returns a string containing the value of statistic field T
std::string
GraphRenderer::TimeStat::getAsString(GraphRenderer::StatType T) const {
std::string St;
raw_string_ostream S{St};
switch (T) {
case GraphRenderer::StatType::COUNT:
S << Count;
break;
case GraphRenderer::StatType::MIN:
S << Min;
break;
case GraphRenderer::StatType::MED:
S << Median;
break;
case GraphRenderer::StatType::PCT90:
S << Pct90;
break;
case GraphRenderer::StatType::PCT99:
S << Pct99;
break;
case GraphRenderer::StatType::MAX:
S << Max;
break;
case GraphRenderer::StatType::SUM:
S << Sum;
break;
case GraphRenderer::StatType::NONE:
break;
}
return S.str();
}
// Evaluates a polynomial given the coefficints provided in an ArrayRef
// evaluating:
//
// p(x) = a[n-0]*x^0 + a[n-1]*x^1 + ... a[n-n]*x^n
//
// at x_0 using Horner's Method for both performance and stability reasons.
static double polyEval(ArrayRef<double> a, double x_0) {
double B = 0;
for (const auto &c : a) {
B = c + B * x_0;
}
return B;
}
// Takes a double precision number, clips it between 0 and 1 and then converts
// that to an integer between 0x00 and 0xFF with proxpper rounding.
static uint8_t uintIntervalTo8bitChar(double B) {
double n = std::max(std::min(B, 1.0), 0.0);
return static_cast<uint8_t>(255 * n + 0.5);
}
// Gets a color in a gradient given a number in the interval [0,1], it does this
// by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G
// and B values in the color. It then converts this [0,1] colors to a 24 bit
// color.
//
// In order to calculate these polynomials,
// 1. Convert the OrRed9 color scheme from http://colorbrewer2.org/ from sRGB
// to LAB color space.
// 2. Interpolate between the descrete colors in LAB space using a cubic
// spline interpolation.
// 3. Sample this interpolation at 100 points and convert to sRGB.
// 4. Calculate a polynomial fit for these 100 points for each of R G and B.
// We used a polynomial of degree 9 arbitrarily based on a fuzzy goodness
// of fit metric (using human judgement);
// 5. Extract these polynomial coefficients from matlab as a set of constants.
static std::string getColor(double point) {
assert(point >= 0.0 && point <= 1);
const static double RedPoly[] = {-38.4295, 239.239, -600.108, 790.544,
-591.26, 251.304, -58.0983, 6.62999,
-0.325899, 1.00173};
const static double GreenPoly[] = {-603.634, 2338.15, -3606.74, 2786.16,
-1085.19, 165.15, 11.2584, -6.11338,
-0.0091078, 0.965469};
const static double BluePoly[] = {-325.686, 947.415, -699.079, -513.75,
1127.78, -732.617, 228.092, -33.8202,
0.732108, 0.913916};
uint8_t r = uintIntervalTo8bitChar(polyEval(RedPoly, point));
uint8_t g = uintIntervalTo8bitChar(polyEval(GreenPoly, point));
uint8_t b = uintIntervalTo8bitChar(polyEval(BluePoly, point));
return llvm::formatv("#{0:X-2}{1:X-2}{2:x-2}", r, g, b);
}
// Returns the quotient between the property T of this and another TimeStat as
// a double
double GraphRenderer::TimeStat::compare(StatType T, const TimeStat &O) const {
double retval = 0;
switch (T) {
case GraphRenderer::StatType::COUNT:
retval = static_cast<double>(Count) / static_cast<double>(O.Count);
break;
case GraphRenderer::StatType::MIN:
retval = Min / O.Min;
break;
case GraphRenderer::StatType::MED:
retval = Median / O.Median;
break;
case GraphRenderer::StatType::PCT90:
retval = Pct90 / O.Pct90;
break;
case GraphRenderer::StatType::PCT99:
retval = Pct99 / O.Pct99;
break;
case GraphRenderer::StatType::MAX:
retval = Max / O.Max;
break;
case GraphRenderer::StatType::SUM:
retval = Sum / O.Sum;
break;
case GraphRenderer::StatType::NONE:
retval = 0.0;
break;
}
return std::sqrt(
retval); // the square root here provides more dynamic contrast for
// low runtime edges, giving better separation and
// coloring lower down the call stack.
}
// Outputs a DOT format version of the Graph embedded in the GraphRenderer
// object on OS. It does this in the expected way by itterating
// through all edges then vertices and then outputting them and their
// annotations.
//
// FIXME: output more information, better presented.
void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H,
StatType ET, StatType EC, StatType VT,
StatType VC) {
calculateEdgeStatistics();
calculateVertexStatistics();
if (H.CycleFrequency)
normalizeStatistics(H.CycleFrequency);
OS << "digraph xray {\n";
if (VT != StatType::NONE)
OS << "node [shape=record];\n";
for (const auto &V : Graph)
for (const auto &E : V.second) {
const auto &S = E.second.S;
OS << "F" << V.first << " -> "
<< "F" << E.first << " [label=\"" << S.getAsString(ET) << "\"";
if (EC != StatType::NONE)
OS << " color=\"" << getColor(S.compare(EC, GraphEdgeMax)) << "\"";
OS << "];\n";
}
for (const auto &V : VertexAttrs) {
const auto &VA = V.second;
OS << "F" << V.first << " [label=\"" << (VT != StatType::NONE ? "{" : "")
<< (VA.SymbolName.size() > 40 ? VA.SymbolName.substr(0, 40) + "..."
: VA.SymbolName);
if (VT != StatType::NONE)
OS << "|" << VA.S.getAsString(VT) << "}\"";
else
OS << "\"";
if (VC != StatType::NONE)
OS << " color=\"" << getColor(VA.S.compare(VC, GraphVertexMax)) << "\"";
OS << "];\n";
}
OS << "}\n";
}
// Here we register and implement the llvm-xray graph subcommand.
// The bulk of this code reads in the options, opens the required files, uses
// those files to create a context for analysing the xray trace, then there is a
// short loop which actually analyses the trace, generates the graph and then
// outputs it as a DOT.
//
// FIXME: include additional filtering and annalysis passes to provide more
// specific useful information.
static CommandRegistration Unused(&Graph, []() -> Error {
InstrumentationMap Map;
if (!GraphInstrMap.empty()) {
auto InstrumentationMapOrError = loadInstrumentationMap(GraphInstrMap);
if (!InstrumentationMapOrError)
return joinErrors(
make_error<StringError>(
Twine("Cannot open instrumentation map '") + GraphInstrMap + "'",
std::make_error_code(std::errc::invalid_argument)),
InstrumentationMapOrError.takeError());
Map = std::move(*InstrumentationMapOrError);
}
const auto &FunctionAddresses = Map.getFunctionAddresses();
symbolize::LLVMSymbolizer::Options Opts(
symbolize::FunctionNameKind::LinkageName, true, true, false, "");
symbolize::LLVMSymbolizer Symbolizer(Opts);
llvm::xray::FuncIdConversionHelper FuncIdHelper(GraphInstrMap, Symbolizer,
FunctionAddresses);
xray::GraphRenderer GR(FuncIdHelper, GraphDeduceSiblingCalls);
std::error_code EC;
raw_fd_ostream OS(GraphOutput, EC, sys::fs::OpenFlags::F_Text);
if (EC)
return make_error<StringError>(
Twine("Cannot open file '") + GraphOutput + "' for writing.", EC);
auto TraceOrErr = loadTraceFile(GraphInput, true);
if (!TraceOrErr)
return joinErrors(
make_error<StringError>(Twine("Failed loading input file '") +
GraphInput + "'",
make_error_code(llvm::errc::invalid_argument)),
TraceOrErr.takeError());
auto &Trace = *TraceOrErr;
const auto &Header = Trace.getFileHeader();
// Here we generate the call graph from entries we find in the trace.
for (const auto &Record : Trace) {
auto E = GR.accountRecord(Record);
if (!E)
continue;
for (const auto &ThreadStack : GR.getPerThreadFunctionStack()) {
errs() << "Thread ID: " << ThreadStack.first << "\n";
auto Level = ThreadStack.second.size();
for (const auto &Entry : llvm::reverse(ThreadStack.second))
errs() << "#" << Level-- << "\t"
<< FuncIdHelper.SymbolOrNumber(Entry.FuncId) << '\n';
}
if (!GraphKeepGoing)
return joinErrors(make_error<StringError>(
"Error encountered generating the call graph.",
std::make_error_code(std::errc::invalid_argument)),
std::move(E));
handleAllErrors(std::move(E),
[&](const ErrorInfoBase &E) { E.log(errs()); });
}
GR.exportGraphAsDOT(OS, Header, GraphEdgeLabel, GraphEdgeColorType,
GraphVertexLabel, GraphVertexColorType);
return Error::success();
});