llvm-project/clang/lib/AST/Expr.cpp

2261 lines
78 KiB
C++

//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace clang;
void Expr::ANCHOR() {} // key function for Expr class.
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool Expr::isKnownToHaveBooleanValue() const {
// If this value has _Bool type, it is obvious 0/1.
if (getType()->isBooleanType()) return true;
// If this is a non-scalar-integer type, we don't care enough to try.
if (!getType()->isIntegralOrEnumerationType()) return false;
if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
return PE->getSubExpr()->isKnownToHaveBooleanValue();
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
switch (UO->getOpcode()) {
case UnaryOperator::Plus:
case UnaryOperator::Extension:
return UO->getSubExpr()->isKnownToHaveBooleanValue();
default:
return false;
}
}
// Only look through implicit casts. If the user writes
// '(int) (a && b)' treat it as an arbitrary int.
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
return CE->getSubExpr()->isKnownToHaveBooleanValue();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
switch (BO->getOpcode()) {
default: return false;
case BinaryOperator::LT: // Relational operators.
case BinaryOperator::GT:
case BinaryOperator::LE:
case BinaryOperator::GE:
case BinaryOperator::EQ: // Equality operators.
case BinaryOperator::NE:
case BinaryOperator::LAnd: // AND operator.
case BinaryOperator::LOr: // Logical OR operator.
return true;
case BinaryOperator::And: // Bitwise AND operator.
case BinaryOperator::Xor: // Bitwise XOR operator.
case BinaryOperator::Or: // Bitwise OR operator.
// Handle things like (x==2)|(y==12).
return BO->getLHS()->isKnownToHaveBooleanValue() &&
BO->getRHS()->isKnownToHaveBooleanValue();
case BinaryOperator::Comma:
case BinaryOperator::Assign:
return BO->getRHS()->isKnownToHaveBooleanValue();
}
}
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
CO->getFalseExpr()->isKnownToHaveBooleanValue();
return false;
}
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
void ExplicitTemplateArgumentList::initializeFrom(
const TemplateArgumentListInfo &Info) {
LAngleLoc = Info.getLAngleLoc();
RAngleLoc = Info.getRAngleLoc();
NumTemplateArgs = Info.size();
TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
for (unsigned i = 0; i != NumTemplateArgs; ++i)
new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
}
void ExplicitTemplateArgumentList::copyInto(
TemplateArgumentListInfo &Info) const {
Info.setLAngleLoc(LAngleLoc);
Info.setRAngleLoc(RAngleLoc);
for (unsigned I = 0; I != NumTemplateArgs; ++I)
Info.addArgument(getTemplateArgs()[I]);
}
std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
return sizeof(ExplicitTemplateArgumentList) +
sizeof(TemplateArgumentLoc) * NumTemplateArgs;
}
std::size_t ExplicitTemplateArgumentList::sizeFor(
const TemplateArgumentListInfo &Info) {
return sizeFor(Info.size());
}
void DeclRefExpr::computeDependence() {
TypeDependent = false;
ValueDependent = false;
NamedDecl *D = getDecl();
// (TD) C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
//
// and
//
// (VD) C++ [temp.dep.constexpr]p2:
// An identifier is value-dependent if it is:
// (TD) - an identifier that was declared with dependent type
// (VD) - a name declared with a dependent type,
if (getType()->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
}
// (TD) - a conversion-function-id that specifies a dependent type
else if (D->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName &&
D->getDeclName().getCXXNameType()->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
}
// (TD) - a template-id that is dependent,
else if (hasExplicitTemplateArgumentList() &&
TemplateSpecializationType::anyDependentTemplateArguments(
getTemplateArgs(),
getNumTemplateArgs())) {
TypeDependent = true;
ValueDependent = true;
}
// (VD) - the name of a non-type template parameter,
else if (isa<NonTypeTemplateParmDecl>(D))
ValueDependent = true;
// (VD) - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent.
else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
if (Var->getType()->isIntegralOrEnumerationType() &&
Var->getType().getCVRQualifiers() == Qualifiers::Const) {
if (const Expr *Init = Var->getAnyInitializer())
if (Init->isValueDependent())
ValueDependent = true;
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
else if (Var->isStaticDataMember() &&
Var->getDeclContext()->isDependentContext())
ValueDependent = true;
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
ValueDependent = true;
// (TD) - a nested-name-specifier or a qualified-id that names a
// member of an unknown specialization.
// (handled by DependentScopeDeclRefExpr)
}
DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
ValueDecl *D, SourceLocation NameLoc,
const TemplateArgumentListInfo *TemplateArgs,
QualType T)
: Expr(DeclRefExprClass, T, false, false),
DecoratedD(D,
(Qualifier? HasQualifierFlag : 0) |
(TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
Loc(NameLoc) {
if (Qualifier) {
NameQualifier *NQ = getNameQualifier();
NQ->NNS = Qualifier;
NQ->Range = QualifierRange;
}
if (TemplateArgs)
getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
computeDependence();
}
DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
ValueDecl *D,
SourceLocation NameLoc,
QualType T,
const TemplateArgumentListInfo *TemplateArgs) {
std::size_t Size = sizeof(DeclRefExpr);
if (Qualifier != 0)
Size += sizeof(NameQualifier);
if (TemplateArgs)
Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
TemplateArgs, T);
}
DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier,
unsigned NumTemplateArgs) {
std::size_t Size = sizeof(DeclRefExpr);
if (HasQualifier)
Size += sizeof(NameQualifier);
if (NumTemplateArgs)
Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
return new (Mem) DeclRefExpr(EmptyShell());
}
SourceRange DeclRefExpr::getSourceRange() const {
// FIXME: Does not handle multi-token names well, e.g., operator[].
SourceRange R(Loc);
if (hasQualifier())
R.setBegin(getQualifierRange().getBegin());
if (hasExplicitTemplateArgumentList())
R.setEnd(getRAngleLoc());
return R;
}
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
ASTContext &Context = CurrentDecl->getASTContext();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
return FD->getNameAsString();
llvm::SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
Out << "virtual ";
if (MD->isStatic())
Out << "static ";
}
PrintingPolicy Policy(Context.getLangOptions());
std::string Proto = FD->getQualifiedNameAsString(Policy);
const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = 0;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(AFT);
Proto += "(";
if (FT) {
llvm::raw_string_ostream POut(Proto);
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
if (i) POut << ", ";
std::string Param;
FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
POut << Param;
}
if (FT->isVariadic()) {
if (FD->getNumParams()) POut << ", ";
POut << "...";
}
}
Proto += ")";
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
if (ThisQuals.hasConst())
Proto += " const";
if (ThisQuals.hasVolatile())
Proto += " volatile";
}
if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
AFT->getResultType().getAsStringInternal(Proto, Policy);
Out << Proto;
Out.flush();
return Name.str().str();
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
llvm::SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
Out << (MD->isInstanceMethod() ? '-' : '+');
Out << '[';
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
// a null check to avoid a crash.
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
Out << ID;
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
Out << '(' << CID << ')';
Out << ' ';
Out << MD->getSelector().getAsString();
Out << ']';
Out.flush();
return Name.str().str();
}
if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
return "top level";
}
return "";
}
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
llvm::APFloat V = getValue();
bool ignored;
V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
unsigned ByteLength, bool Wide,
QualType Ty,
const SourceLocation *Loc,
unsigned NumStrs) {
// Allocate enough space for the StringLiteral plus an array of locations for
// any concatenated string tokens.
void *Mem = C.Allocate(sizeof(StringLiteral)+
sizeof(SourceLocation)*(NumStrs-1),
llvm::alignof<StringLiteral>());
StringLiteral *SL = new (Mem) StringLiteral(Ty);
// OPTIMIZE: could allocate this appended to the StringLiteral.
char *AStrData = new (C, 1) char[ByteLength];
memcpy(AStrData, StrData, ByteLength);
SL->StrData = AStrData;
SL->ByteLength = ByteLength;
SL->IsWide = Wide;
SL->TokLocs[0] = Loc[0];
SL->NumConcatenated = NumStrs;
if (NumStrs != 1)
memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
return SL;
}
StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
void *Mem = C.Allocate(sizeof(StringLiteral)+
sizeof(SourceLocation)*(NumStrs-1),
llvm::alignof<StringLiteral>());
StringLiteral *SL = new (Mem) StringLiteral(QualType());
SL->StrData = 0;
SL->ByteLength = 0;
SL->NumConcatenated = NumStrs;
return SL;
}
void StringLiteral::DoDestroy(ASTContext &C) {
C.Deallocate(const_cast<char*>(StrData));
Expr::DoDestroy(C);
}
void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
if (StrData)
C.Deallocate(const_cast<char*>(StrData));
char *AStrData = new (C, 1) char[Str.size()];
memcpy(AStrData, Str.data(), Str.size());
StrData = AStrData;
ByteLength = Str.size();
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
default: assert(0 && "Unknown unary operator");
case PostInc: return "++";
case PostDec: return "--";
case PreInc: return "++";
case PreDec: return "--";
case AddrOf: return "&";
case Deref: return "*";
case Plus: return "+";
case Minus: return "-";
case Not: return "~";
case LNot: return "!";
case Real: return "__real";
case Imag: return "__imag";
case Extension: return "__extension__";
case OffsetOf: return "__builtin_offsetof";
}
}
UnaryOperator::Opcode
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
switch (OO) {
default: assert(false && "No unary operator for overloaded function");
case OO_PlusPlus: return Postfix ? PostInc : PreInc;
case OO_MinusMinus: return Postfix ? PostDec : PreDec;
case OO_Amp: return AddrOf;
case OO_Star: return Deref;
case OO_Plus: return Plus;
case OO_Minus: return Minus;
case OO_Tilde: return Not;
case OO_Exclaim: return LNot;
}
}
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
switch (Opc) {
case PostInc: case PreInc: return OO_PlusPlus;
case PostDec: case PreDec: return OO_MinusMinus;
case AddrOf: return OO_Amp;
case Deref: return OO_Star;
case Plus: return OO_Plus;
case Minus: return OO_Minus;
case Not: return OO_Tilde;
case LNot: return OO_Exclaim;
default: return OO_None;
}
}
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
unsigned numargs, QualType t, SourceLocation rparenloc)
: Expr(SC, t,
fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
NumArgs(numargs) {
SubExprs = new (C) Stmt*[numargs+1];
SubExprs[FN] = fn;
for (unsigned i = 0; i != numargs; ++i)
SubExprs[i+ARGS_START] = args[i];
RParenLoc = rparenloc;
}
CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
QualType t, SourceLocation rparenloc)
: Expr(CallExprClass, t,
fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
NumArgs(numargs) {
SubExprs = new (C) Stmt*[numargs+1];
SubExprs[FN] = fn;
for (unsigned i = 0; i != numargs; ++i)
SubExprs[i+ARGS_START] = args[i];
RParenLoc = rparenloc;
}
CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), SubExprs(0), NumArgs(0) {
SubExprs = new (C) Stmt*[1];
}
void CallExpr::DoDestroy(ASTContext& C) {
DestroyChildren(C);
if (SubExprs) C.Deallocate(SubExprs);
this->~CallExpr();
C.Deallocate(this);
}
Decl *CallExpr::getCalleeDecl() {
Expr *CEE = getCallee()->IgnoreParenCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
return DRE->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
return ME->getMemberDecl();
return 0;
}
FunctionDecl *CallExpr::getDirectCallee() {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
// No change, just return.
if (NumArgs == getNumArgs()) return;
// If shrinking # arguments, just delete the extras and forgot them.
if (NumArgs < getNumArgs()) {
for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
getArg(i)->Destroy(C);
this->NumArgs = NumArgs;
return;
}
// Otherwise, we are growing the # arguments. New an bigger argument array.
Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
// Copy over args.
for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
NewSubExprs[i] = SubExprs[i];
// Null out new args.
for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
NewSubExprs[i] = 0;
if (SubExprs) C.Deallocate(SubExprs);
SubExprs = NewSubExprs;
this->NumArgs = NumArgs;
}
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
// All simple function calls (e.g. func()) are implicitly cast to pointer to
// function. As a result, we try and obtain the DeclRefExpr from the
// ImplicitCastExpr.
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
return 0;
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
if (!DRE)
return 0;
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
if (!FDecl)
return 0;
if (!FDecl->getIdentifier())
return 0;
return FDecl->getBuiltinID();
}
QualType CallExpr::getCallReturnType() const {
QualType CalleeType = getCallee()->getType();
if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
CalleeType = FnTypePtr->getPointeeType();
else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
CalleeType = BPT->getPointeeType();
else if (const MemberPointerType *MPT
= CalleeType->getAs<MemberPointerType>())
CalleeType = MPT->getPointeeType();
const FunctionType *FnType = CalleeType->getAs<FunctionType>();
return FnType->getResultType();
}
OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
SourceLocation OperatorLoc,
TypeSourceInfo *tsi,
OffsetOfNode* compsPtr, unsigned numComps,
Expr** exprsPtr, unsigned numExprs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
sizeof(OffsetOfNode) * numComps +
sizeof(Expr*) * numExprs);
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
exprsPtr, numExprs, RParenLoc);
}
OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
unsigned numComps, unsigned numExprs) {
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
sizeof(OffsetOfNode) * numComps +
sizeof(Expr*) * numExprs);
return new (Mem) OffsetOfExpr(numComps, numExprs);
}
OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
OffsetOfNode* compsPtr, unsigned numComps,
Expr** exprsPtr, unsigned numExprs,
SourceLocation RParenLoc)
: Expr(OffsetOfExprClass, type, /*TypeDependent=*/false,
/*ValueDependent=*/tsi->getType()->isDependentType() ||
hasAnyTypeDependentArguments(exprsPtr, numExprs) ||
hasAnyValueDependentArguments(exprsPtr, numExprs)),
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
NumComps(numComps), NumExprs(numExprs)
{
for(unsigned i = 0; i < numComps; ++i) {
setComponent(i, compsPtr[i]);
}
for(unsigned i = 0; i < numExprs; ++i) {
setIndexExpr(i, exprsPtr[i]);
}
}
IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
assert(getKind() == Field || getKind() == Identifier);
if (getKind() == Field)
return getField()->getIdentifier();
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}
MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
NestedNameSpecifier *qual,
SourceRange qualrange,
ValueDecl *memberdecl,
DeclAccessPair founddecl,
SourceLocation l,
const TemplateArgumentListInfo *targs,
QualType ty) {
std::size_t Size = sizeof(MemberExpr);
bool hasQualOrFound = (qual != 0 ||
founddecl.getDecl() != memberdecl ||
founddecl.getAccess() != memberdecl->getAccess());
if (hasQualOrFound)
Size += sizeof(MemberNameQualifier);
if (targs)
Size += ExplicitTemplateArgumentList::sizeFor(*targs);
void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
if (hasQualOrFound) {
if (qual && qual->isDependent()) {
E->setValueDependent(true);
E->setTypeDependent(true);
}
E->HasQualifierOrFoundDecl = true;
MemberNameQualifier *NQ = E->getMemberQualifier();
NQ->NNS = qual;
NQ->Range = qualrange;
NQ->FoundDecl = founddecl;
}
if (targs) {
E->HasExplicitTemplateArgumentList = true;
E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
}
return E;
}
const char *CastExpr::getCastKindName() const {
switch (getCastKind()) {
case CastExpr::CK_Unknown:
return "Unknown";
case CastExpr::CK_BitCast:
return "BitCast";
case CastExpr::CK_LValueBitCast:
return "LValueBitCast";
case CastExpr::CK_NoOp:
return "NoOp";
case CastExpr::CK_BaseToDerived:
return "BaseToDerived";
case CastExpr::CK_DerivedToBase:
return "DerivedToBase";
case CastExpr::CK_UncheckedDerivedToBase:
return "UncheckedDerivedToBase";
case CastExpr::CK_Dynamic:
return "Dynamic";
case CastExpr::CK_ToUnion:
return "ToUnion";
case CastExpr::CK_ArrayToPointerDecay:
return "ArrayToPointerDecay";
case CastExpr::CK_FunctionToPointerDecay:
return "FunctionToPointerDecay";
case CastExpr::CK_NullToMemberPointer:
return "NullToMemberPointer";
case CastExpr::CK_BaseToDerivedMemberPointer:
return "BaseToDerivedMemberPointer";
case CastExpr::CK_DerivedToBaseMemberPointer:
return "DerivedToBaseMemberPointer";
case CastExpr::CK_UserDefinedConversion:
return "UserDefinedConversion";
case CastExpr::CK_ConstructorConversion:
return "ConstructorConversion";
case CastExpr::CK_IntegralToPointer:
return "IntegralToPointer";
case CastExpr::CK_PointerToIntegral:
return "PointerToIntegral";
case CastExpr::CK_ToVoid:
return "ToVoid";
case CastExpr::CK_VectorSplat:
return "VectorSplat";
case CastExpr::CK_IntegralCast:
return "IntegralCast";
case CastExpr::CK_IntegralToFloating:
return "IntegralToFloating";
case CastExpr::CK_FloatingToIntegral:
return "FloatingToIntegral";
case CastExpr::CK_FloatingCast:
return "FloatingCast";
case CastExpr::CK_MemberPointerToBoolean:
return "MemberPointerToBoolean";
case CastExpr::CK_AnyPointerToObjCPointerCast:
return "AnyPointerToObjCPointerCast";
case CastExpr::CK_AnyPointerToBlockPointerCast:
return "AnyPointerToBlockPointerCast";
}
assert(0 && "Unhandled cast kind!");
return 0;
}
void CastExpr::DoDestroy(ASTContext &C)
{
BasePath.Destroy();
Expr::DoDestroy(C);
}
Expr *CastExpr::getSubExprAsWritten() {
Expr *SubExpr = 0;
CastExpr *E = this;
do {
SubExpr = E->getSubExpr();
// Skip any temporary bindings; they're implicit.
if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
SubExpr = Binder->getSubExpr();
// Conversions by constructor and conversion functions have a
// subexpression describing the call; strip it off.
if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
// If the subexpression we're left with is an implicit cast, look
// through that, too.
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
return SubExpr;
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
case PtrMemD: return ".*";
case PtrMemI: return "->*";
case Mul: return "*";
case Div: return "/";
case Rem: return "%";
case Add: return "+";
case Sub: return "-";
case Shl: return "<<";
case Shr: return ">>";
case LT: return "<";
case GT: return ">";
case LE: return "<=";
case GE: return ">=";
case EQ: return "==";
case NE: return "!=";
case And: return "&";
case Xor: return "^";
case Or: return "|";
case LAnd: return "&&";
case LOr: return "||";
case Assign: return "=";
case MulAssign: return "*=";
case DivAssign: return "/=";
case RemAssign: return "%=";
case AddAssign: return "+=";
case SubAssign: return "-=";
case ShlAssign: return "<<=";
case ShrAssign: return ">>=";
case AndAssign: return "&=";
case XorAssign: return "^=";
case OrAssign: return "|=";
case Comma: return ",";
}
return "";
}
BinaryOperator::Opcode
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
switch (OO) {
default: assert(false && "Not an overloadable binary operator");
case OO_Plus: return Add;
case OO_Minus: return Sub;
case OO_Star: return Mul;
case OO_Slash: return Div;
case OO_Percent: return Rem;
case OO_Caret: return Xor;
case OO_Amp: return And;
case OO_Pipe: return Or;
case OO_Equal: return Assign;
case OO_Less: return LT;
case OO_Greater: return GT;
case OO_PlusEqual: return AddAssign;
case OO_MinusEqual: return SubAssign;
case OO_StarEqual: return MulAssign;
case OO_SlashEqual: return DivAssign;
case OO_PercentEqual: return RemAssign;
case OO_CaretEqual: return XorAssign;
case OO_AmpEqual: return AndAssign;
case OO_PipeEqual: return OrAssign;
case OO_LessLess: return Shl;
case OO_GreaterGreater: return Shr;
case OO_LessLessEqual: return ShlAssign;
case OO_GreaterGreaterEqual: return ShrAssign;
case OO_EqualEqual: return EQ;
case OO_ExclaimEqual: return NE;
case OO_LessEqual: return LE;
case OO_GreaterEqual: return GE;
case OO_AmpAmp: return LAnd;
case OO_PipePipe: return LOr;
case OO_Comma: return Comma;
case OO_ArrowStar: return PtrMemI;
}
}
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
static const OverloadedOperatorKind OverOps[] = {
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
OO_Star, OO_Slash, OO_Percent,
OO_Plus, OO_Minus,
OO_LessLess, OO_GreaterGreater,
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
OO_EqualEqual, OO_ExclaimEqual,
OO_Amp,
OO_Caret,
OO_Pipe,
OO_AmpAmp,
OO_PipePipe,
OO_Equal, OO_StarEqual,
OO_SlashEqual, OO_PercentEqual,
OO_PlusEqual, OO_MinusEqual,
OO_LessLessEqual, OO_GreaterGreaterEqual,
OO_AmpEqual, OO_CaretEqual,
OO_PipeEqual,
OO_Comma
};
return OverOps[Opc];
}
InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
Expr **initExprs, unsigned numInits,
SourceLocation rbraceloc)
: Expr(InitListExprClass, QualType(), false, false),
InitExprs(C, numInits),
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
UnionFieldInit(0), HadArrayRangeDesignator(false)
{
for (unsigned I = 0; I != numInits; ++I) {
if (initExprs[I]->isTypeDependent())
TypeDependent = true;
if (initExprs[I]->isValueDependent())
ValueDependent = true;
}
InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
}
void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
if (NumInits > InitExprs.size())
InitExprs.reserve(C, NumInits);
}
void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
Idx < LastIdx; ++Idx)
InitExprs[Idx]->Destroy(C);
InitExprs.resize(C, NumInits, 0);
}
Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
if (Init >= InitExprs.size()) {
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
InitExprs.back() = expr;
return 0;
}
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
InitExprs[Init] = expr;
return Result;
}
/// getFunctionType - Return the underlying function type for this block.
///
const FunctionType *BlockExpr::getFunctionType() const {
return getType()->getAs<BlockPointerType>()->
getPointeeType()->getAs<FunctionType>();
}
SourceLocation BlockExpr::getCaretLocation() const {
return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
return TheBlock->getBody();
}
//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
SourceRange &R2, ASTContext &Ctx) const {
// Don't warn if the expr is type dependent. The type could end up
// instantiating to void.
if (isTypeDependent())
return false;
switch (getStmtClass()) {
default:
if (getType()->isVoidType())
return false;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->
isUnusedResultAWarning(Loc, R1, R2, Ctx);
case UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(this);
switch (UO->getOpcode()) {
default: break;
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::PreInc:
case UnaryOperator::PreDec: // ++/--
return false; // Not a warning.
case UnaryOperator::Deref:
// Dereferencing a volatile pointer is a side-effect.
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
return false;
break;
case UnaryOperator::Real:
case UnaryOperator::Imag:
// accessing a piece of a volatile complex is a side-effect.
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
.isVolatileQualified())
return false;
break;
case UnaryOperator::Extension:
return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
}
Loc = UO->getOperatorLoc();
R1 = UO->getSubExpr()->getSourceRange();
return true;
}
case BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(this);
switch (BO->getOpcode()) {
default:
break;
// Consider the RHS of comma for side effects. LHS was checked by
// Sema::CheckCommaOperands.
case BinaryOperator::Comma:
// ((foo = <blah>), 0) is an idiom for hiding the result (and
// lvalue-ness) of an assignment written in a macro.
if (IntegerLiteral *IE =
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
if (IE->getValue() == 0)
return false;
return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
// Consider '||', '&&' to have side effects if the LHS or RHS does.
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
!BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
return false;
break;
}
if (BO->isAssignmentOp())
return false;
Loc = BO->getOperatorLoc();
R1 = BO->getLHS()->getSourceRange();
R2 = BO->getRHS()->getSourceRange();
return true;
}
case CompoundAssignOperatorClass:
case VAArgExprClass:
return false;
case ConditionalOperatorClass: {
// The condition must be evaluated, but if either the LHS or RHS is a
// warning, warn about them.
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
if (Exp->getLHS() &&
Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
return true;
return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
}
case MemberExprClass:
// If the base pointer or element is to a volatile pointer/field, accessing
// it is a side effect.
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
return false;
Loc = cast<MemberExpr>(this)->getMemberLoc();
R1 = SourceRange(Loc, Loc);
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
return true;
case ArraySubscriptExprClass:
// If the base pointer or element is to a volatile pointer/field, accessing
// it is a side effect.
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
return false;
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
return true;
case CallExprClass:
case CXXOperatorCallExprClass:
case CXXMemberCallExprClass: {
// If this is a direct call, get the callee.
const CallExpr *CE = cast<CallExpr>(this);
if (const Decl *FD = CE->getCalleeDecl()) {
// If the callee has attribute pure, const, or warn_unused_result, warn
// about it. void foo() { strlen("bar"); } should warn.
//
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
// updated to match for QoI.
if (FD->getAttr<WarnUnusedResultAttr>() ||
FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
Loc = CE->getCallee()->getLocStart();
R1 = CE->getCallee()->getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getLocStart(),
CE->getArg(NumArgs-1)->getLocEnd());
return true;
}
}
return false;
}
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass:
return false;
case ObjCMessageExprClass: {
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
const ObjCMethodDecl *MD = ME->getMethodDecl();
if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
Loc = getExprLoc();
return true;
}
return false;
}
case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send.
#if 0
const ObjCImplicitSetterGetterRefExpr *Ref =
cast<ObjCImplicitSetterGetterRefExpr>(this);
// FIXME: We really want the location of the '.' here.
Loc = Ref->getLocation();
R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
if (Ref->getBase())
R2 = Ref->getBase()->getSourceRange();
#else
Loc = getExprLoc();
R1 = getSourceRange();
#endif
return true;
}
case StmtExprClass: {
// Statement exprs don't logically have side effects themselves, but are
// sometimes used in macros in ways that give them a type that is unused.
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
// however, if the result of the stmt expr is dead, we don't want to emit a
// warning.
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
if (!CS->body_empty())
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
if (getType()->isVoidType())
return false;
Loc = cast<StmtExpr>(this)->getLParenLoc();
R1 = getSourceRange();
return true;
}
case CStyleCastExprClass:
// If this is an explicit cast to void, allow it. People do this when they
// think they know what they're doing :).
if (getType()->isVoidType())
return false;
Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
return true;
case CXXFunctionalCastExprClass: {
if (getType()->isVoidType())
return false;
const CastExpr *CE = cast<CastExpr>(this);
// If this is a cast to void or a constructor conversion, check the operand.
// Otherwise, the result of the cast is unused.
if (CE->getCastKind() == CastExpr::CK_ToVoid ||
CE->getCastKind() == CastExpr::CK_ConstructorConversion)
return (cast<CastExpr>(this)->getSubExpr()
->isUnusedResultAWarning(Loc, R1, R2, Ctx));
Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
return true;
}
case ImplicitCastExprClass:
// Check the operand, since implicit casts are inserted by Sema
return (cast<ImplicitCastExpr>(this)
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
case CXXDefaultArgExprClass:
return (cast<CXXDefaultArgExpr>(this)
->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
case CXXNewExprClass:
// FIXME: In theory, there might be new expressions that don't have side
// effects (e.g. a placement new with an uninitialized POD).
case CXXDeleteExprClass:
return false;
case CXXBindTemporaryExprClass:
return (cast<CXXBindTemporaryExpr>(this)
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
case CXXExprWithTemporariesClass:
return (cast<CXXExprWithTemporaries>(this)
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
}
}
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
switch (getStmtClass()) {
default:
return false;
case ObjCIvarRefExprClass:
return true;
case Expr::UnaryOperatorClass:
return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
case ImplicitCastExprClass:
return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
case CStyleCastExprClass:
return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
case DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(this)->getDecl();
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage())
return true;
QualType T = VD->getType();
// dereferencing to a pointer is always a gc'able candidate,
// unless it is __weak.
return T->isPointerType() &&
(Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
}
return false;
}
case MemberExprClass: {
const MemberExpr *M = cast<MemberExpr>(this);
return M->getBase()->isOBJCGCCandidate(Ctx);
}
case ArraySubscriptExprClass:
return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
}
}
Expr* Expr::IgnoreParens() {
Expr* E = this;
while (ParenExpr* P = dyn_cast<ParenExpr>(E))
E = P->getSubExpr();
return E;
}
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
/// or CastExprs or ImplicitCastExprs, returning their operand.
Expr *Expr::IgnoreParenCasts() {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E))
E = P->getSubExpr();
else if (CastExpr *P = dyn_cast<CastExpr>(E))
E = P->getSubExpr();
else
return E;
}
}
Expr *Expr::IgnoreParenImpCasts() {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E))
E = P->getSubExpr();
else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
E = P->getSubExpr();
else
return E;
}
}
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size). Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
// We ignore integer <-> casts that are of the same width, ptr<->ptr and
// ptr<->int casts of the same width. We also ignore all identity casts.
Expr *SE = P->getSubExpr();
if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
E = SE;
continue;
}
if ((E->getType()->isPointerType() ||
E->getType()->isIntegralType(Ctx)) &&
(SE->getType()->isPointerType() ||
SE->getType()->isIntegralType(Ctx)) &&
Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
E = SE;
continue;
}
}
return E;
}
}
bool Expr::isDefaultArgument() const {
const Expr *E = this;
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExprAsWritten();
return isa<CXXDefaultArgExpr>(E);
}
/// \brief Skip over any no-op casts and any temporary-binding
/// expressions.
static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CastExpr::CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
E = BE->getSubExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CastExpr::CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
return E;
}
const Expr *Expr::getTemporaryObject() const {
const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
// A cast can produce a temporary object. The object's construction
// is represented as a CXXConstructExpr.
if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
// Only user-defined and constructor conversions can produce
// temporary objects.
if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
return 0;
// Strip off temporary bindings and no-op casts.
const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
// If this is a constructor conversion, see if we have an object
// construction.
if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
return dyn_cast<CXXConstructExpr>(Sub);
// If this is a user-defined conversion, see if we have a call to
// a function that itself returns a temporary object.
if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
if (CE->getCallReturnType()->isRecordType())
return CE;
return 0;
}
// A call returning a class type returns a temporary.
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
if (CE->getCallReturnType()->isRecordType())
return CE;
return 0;
}
// Explicit temporary object constructors create temporaries.
return dyn_cast<CXXTemporaryObjectExpr>(E);
}
/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
for (unsigned I = 0; I < NumExprs; ++I)
if (Exprs[I]->isTypeDependent())
return true;
return false;
}
/// hasAnyValueDependentArguments - Determines if any of the expressions
/// in Exprs is value-dependent.
bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
for (unsigned I = 0; I < NumExprs; ++I)
if (Exprs[I]->isValueDependent())
return true;
return false;
}
bool Expr::isConstantInitializer(ASTContext &Ctx) const {
// This function is attempting whether an expression is an initializer
// which can be evaluated at compile-time. isEvaluatable handles most
// of the cases, but it can't deal with some initializer-specific
// expressions, and it can't deal with aggregates; we deal with those here,
// and fall back to isEvaluatable for the other cases.
// FIXME: This function assumes the variable being assigned to
// isn't a reference type!
switch (getStmtClass()) {
default: break;
case StringLiteralClass:
case ObjCStringLiteralClass:
case ObjCEncodeExprClass:
return true;
case CompoundLiteralExprClass: {
// This handles gcc's extension that allows global initializers like
// "struct x {int x;} x = (struct x) {};".
// FIXME: This accepts other cases it shouldn't!
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
return Exp->isConstantInitializer(Ctx);
}
case InitListExprClass: {
// FIXME: This doesn't deal with fields with reference types correctly.
// FIXME: This incorrectly allows pointers cast to integers to be assigned
// to bitfields.
const InitListExpr *Exp = cast<InitListExpr>(this);
unsigned numInits = Exp->getNumInits();
for (unsigned i = 0; i < numInits; i++) {
if (!Exp->getInit(i)->isConstantInitializer(Ctx))
return false;
}
return true;
}
case ImplicitValueInitExprClass:
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
case UnaryOperatorClass: {
const UnaryOperator* Exp = cast<UnaryOperator>(this);
if (Exp->getOpcode() == UnaryOperator::Extension)
return Exp->getSubExpr()->isConstantInitializer(Ctx);
break;
}
case BinaryOperatorClass: {
// Special case &&foo - &&bar. It would be nice to generalize this somehow
// but this handles the common case.
const BinaryOperator *Exp = cast<BinaryOperator>(this);
if (Exp->getOpcode() == BinaryOperator::Sub &&
isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
return true;
break;
}
case ImplicitCastExprClass:
case CStyleCastExprClass:
// Handle casts with a destination that's a struct or union; this
// deals with both the gcc no-op struct cast extension and the
// cast-to-union extension.
if (getType()->isRecordType())
return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
// Integer->integer casts can be handled here, which is important for
// things like (int)(&&x-&&y). Scary but true.
if (getType()->isIntegerType() &&
cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
break;
}
return isEvaluatable(Ctx);
}
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
/// integer constant expression with the value zero, or if this is one that is
/// cast to void*.
bool Expr::isNullPointerConstant(ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const {
if (isValueDependent()) {
switch (NPC) {
case NPC_NeverValueDependent:
assert(false && "Unexpected value dependent expression!");
// If the unthinkable happens, fall through to the safest alternative.
case NPC_ValueDependentIsNull:
return isTypeDependent() || getType()->isIntegralType(Ctx);
case NPC_ValueDependentIsNotNull:
return false;
}
}
// Strip off a cast to void*, if it exists. Except in C++.
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
if (!Ctx.getLangOptions().CPlusPlus) {
// Check that it is a cast to void*.
if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
QualType Pointee = PT->getPointeeType();
if (!Pointee.hasQualifiers() &&
Pointee->isVoidType() && // to void*
CE->getSubExpr()->getType()->isIntegerType()) // from int.
return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
}
}
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
// Ignore the ImplicitCastExpr type entirely.
return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
// Accept ((void*)0) as a null pointer constant, as many other
// implementations do.
return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const CXXDefaultArgExpr *DefaultArg
= dyn_cast<CXXDefaultArgExpr>(this)) {
// See through default argument expressions
return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
} else if (isa<GNUNullExpr>(this)) {
// The GNU __null extension is always a null pointer constant.
return true;
}
// C++0x nullptr_t is always a null pointer constant.
if (getType()->isNullPtrType())
return true;
// This expression must be an integer type.
if (!getType()->isIntegerType() ||
(Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
return false;
// If we have an integer constant expression, we need to *evaluate* it and
// test for the value 0.
llvm::APSInt Result;
return isIntegerConstantExpr(Result, Ctx) && Result == 0;
}
FieldDecl *Expr::getBitField() {
Expr *E = this->IgnoreParens();
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
if (Field->isBitField())
return Field;
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
if (BinOp->isAssignmentOp() && BinOp->getLHS())
return BinOp->getLHS()->getBitField();
return 0;
}
bool Expr::refersToVectorElement() const {
const Expr *E = this->IgnoreParens();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
return ASE->getBase()->getType()->isVectorType();
if (isa<ExtVectorElementExpr>(E))
return true;
return false;
}
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
return getBase()->getType()->isPointerType();
}
unsigned ExtVectorElementExpr::getNumElements() const {
if (const VectorType *VT = getType()->getAs<VectorType>())
return VT->getNumElements();
return 1;
}
/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
// FIXME: Refactor this code to an accessor on the AST node which returns the
// "type" of component access, and share with code below and in Sema.
llvm::StringRef Comp = Accessor->getName();
// Halving swizzles do not contain duplicate elements.
if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
return false;
// Advance past s-char prefix on hex swizzles.
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
for (unsigned i = 0, e = Comp.size(); i != e; ++i)
if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
return true;
return false;
}
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
llvm::SmallVectorImpl<unsigned> &Elts) const {
llvm::StringRef Comp = Accessor->getName();
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
bool isHi = Comp == "hi";
bool isLo = Comp == "lo";
bool isEven = Comp == "even";
bool isOdd = Comp == "odd";
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
uint64_t Index;
if (isHi)
Index = e + i;
else if (isLo)
Index = i;
else if (isEven)
Index = 2 * i;
else if (isOdd)
Index = 2 * i + 1;
else
Index = ExtVectorType::getAccessorIdx(Comp[i]);
Elts.push_back(Index);
}
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc)
: Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false,
/*ValueDependent=*/false),
NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
HasMethod(Method != 0), SuperLoc(SuperLoc),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
setReceiverPointer(SuperType.getAsOpaquePtr());
if (NumArgs)
memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc)
: Expr(ObjCMessageExprClass, T, T->isDependentType(),
(T->isDependentType() ||
hasAnyValueDependentArguments(Args, NumArgs))),
NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
setReceiverPointer(Receiver);
if (NumArgs)
memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc)
: Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(),
(Receiver->isTypeDependent() ||
hasAnyValueDependentArguments(Args, NumArgs))),
NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
setReceiverPointer(Receiver);
if (NumArgs)
memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc) {
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
NumArgs * sizeof(Expr *);
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper,
SuperType, Sel, Method, Args, NumArgs,
RBracLoc);
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc) {
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
NumArgs * sizeof(Expr *);
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
NumArgs, RBracLoc);
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ObjCMethodDecl *Method,
Expr **Args, unsigned NumArgs,
SourceLocation RBracLoc) {
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
NumArgs * sizeof(Expr *);
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
NumArgs, RBracLoc);
}
ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
unsigned NumArgs) {
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
NumArgs * sizeof(Expr *);
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
}
Selector ObjCMessageExpr::getSelector() const {
if (HasMethod)
return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
->getSelector();
return Selector(SelectorOrMethod);
}
ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
switch (getReceiverKind()) {
case Instance:
if (const ObjCObjectPointerType *Ptr
= getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
return Ptr->getInterfaceDecl();
break;
case Class:
if (const ObjCObjectType *Ty
= getClassReceiver()->getAs<ObjCObjectType>())
return Ty->getInterface();
break;
case SuperInstance:
if (const ObjCObjectPointerType *Ptr
= getSuperType()->getAs<ObjCObjectPointerType>())
return Ptr->getInterfaceDecl();
break;
case SuperClass:
if (const ObjCObjectPointerType *Iface
= getSuperType()->getAs<ObjCObjectPointerType>())
return Iface->getInterfaceDecl();
break;
}
return 0;
}
bool ChooseExpr::isConditionTrue(ASTContext &C) const {
return getCond()->EvaluateAsInt(C) != 0;
}
void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
unsigned NumExprs) {
if (SubExprs) C.Deallocate(SubExprs);
SubExprs = new (C) Stmt* [NumExprs];
this->NumExprs = NumExprs;
memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
}
void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
DestroyChildren(C);
if (SubExprs) C.Deallocate(SubExprs);
this->~ShuffleVectorExpr();
C.Deallocate(this);
}
void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
// Override default behavior of traversing children. If this has a type
// operand and the type is a variable-length array, the child iteration
// will iterate over the size expression. However, this expression belongs
// to the type, not to this, so we don't want to delete it.
// We still want to delete this expression.
if (isArgumentType()) {
this->~SizeOfAlignOfExpr();
C.Deallocate(this);
}
else
Expr::DoDestroy(C);
}
//===----------------------------------------------------------------------===//
// DesignatedInitExpr
//===----------------------------------------------------------------------===//
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
else
return getField()->getIdentifier();
}
DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
unsigned NumDesignators,
const Designator *Designators,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
Expr **IndexExprs,
unsigned NumIndexExprs,
Expr *Init)
: Expr(DesignatedInitExprClass, Ty,
Init->isTypeDependent(), Init->isValueDependent()),
EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
this->Designators = new (C) Designator[NumDesignators];
// Record the initializer itself.
child_iterator Child = child_begin();
*Child++ = Init;
// Copy the designators and their subexpressions, computing
// value-dependence along the way.
unsigned IndexIdx = 0;
for (unsigned I = 0; I != NumDesignators; ++I) {
this->Designators[I] = Designators[I];
if (this->Designators[I].isArrayDesignator()) {
// Compute type- and value-dependence.
Expr *Index = IndexExprs[IndexIdx];
ValueDependent = ValueDependent ||
Index->isTypeDependent() || Index->isValueDependent();
// Copy the index expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
} else if (this->Designators[I].isArrayRangeDesignator()) {
// Compute type- and value-dependence.
Expr *Start = IndexExprs[IndexIdx];
Expr *End = IndexExprs[IndexIdx + 1];
ValueDependent = ValueDependent ||
Start->isTypeDependent() || Start->isValueDependent() ||
End->isTypeDependent() || End->isValueDependent();
// Copy the start/end expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
*Child++ = IndexExprs[IndexIdx++];
}
}
assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
}
DesignatedInitExpr *
DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
unsigned NumDesignators,
Expr **IndexExprs, unsigned NumIndexExprs,
SourceLocation ColonOrEqualLoc,
bool UsesColonSyntax, Expr *Init) {
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
ColonOrEqualLoc, UsesColonSyntax,
IndexExprs, NumIndexExprs, Init);
}
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
unsigned NumIndexExprs) {
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}
void DesignatedInitExpr::setDesignators(ASTContext &C,
const Designator *Desigs,
unsigned NumDesigs) {
DestroyDesignators(C);
Designators = new (C) Designator[NumDesigs];
NumDesignators = NumDesigs;
for (unsigned I = 0; I != NumDesigs; ++I)
Designators[I] = Desigs[I];
}
SourceRange DesignatedInitExpr::getSourceRange() const {
SourceLocation StartLoc;
Designator &First =
*const_cast<DesignatedInitExpr*>(this)->designators_begin();
if (First.isFieldDesignator()) {
if (GNUSyntax)
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
else
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
} else
StartLoc =
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
}
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
}
/// \brief Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
const Designator *First,
const Designator *Last) {
unsigned NumNewDesignators = Last - First;
if (NumNewDesignators == 0) {
std::copy_backward(Designators + Idx + 1,
Designators + NumDesignators,
Designators + Idx);
--NumNewDesignators;
return;
} else if (NumNewDesignators == 1) {
Designators[Idx] = *First;
return;
}
Designator *NewDesignators
= new (C) Designator[NumDesignators - 1 + NumNewDesignators];
std::copy(Designators, Designators + Idx, NewDesignators);
std::copy(First, Last, NewDesignators + Idx);
std::copy(Designators + Idx + 1, Designators + NumDesignators,
NewDesignators + Idx + NumNewDesignators);
DestroyDesignators(C);
Designators = NewDesignators;
NumDesignators = NumDesignators - 1 + NumNewDesignators;
}
void DesignatedInitExpr::DoDestroy(ASTContext &C) {
DestroyDesignators(C);
Expr::DoDestroy(C);
}
void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
for (unsigned I = 0; I != NumDesignators; ++I)
Designators[I].~Designator();
C.Deallocate(Designators);
Designators = 0;
}
ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
Expr **exprs, unsigned nexprs,
SourceLocation rparenloc)
: Expr(ParenListExprClass, QualType(),
hasAnyTypeDependentArguments(exprs, nexprs),
hasAnyValueDependentArguments(exprs, nexprs)),
NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
Exprs = new (C) Stmt*[nexprs];
for (unsigned i = 0; i != nexprs; ++i)
Exprs[i] = exprs[i];
}
void ParenListExpr::DoDestroy(ASTContext& C) {
DestroyChildren(C);
if (Exprs) C.Deallocate(Exprs);
this->~ParenListExpr();
C.Deallocate(this);
}
//===----------------------------------------------------------------------===//
// ExprIterator.
//===----------------------------------------------------------------------===//
Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator[](size_t idx) const {
return cast<Expr>(I[idx]);
}
const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// DeclRefExpr
Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
// ObjCIvarRefExpr
Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
// ObjCPropertyRefExpr
Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
// ObjCImplicitSetterGetterRefExpr
Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
// If this is accessing a class member, skip that entry.
if (Base) return &Base;
return &Base+1;
}
Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
return &Base+1;
}
// ObjCSuperExpr
Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
// ObjCIsaExpr
Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
// PredefinedExpr
Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
// IntegerLiteral
Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
// CharacterLiteral
Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
// FloatingLiteral
Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
// ImaginaryLiteral
Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
// StringLiteral
Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
// ParenExpr
Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
// UnaryOperator
Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
// OffsetOfExpr
Stmt::child_iterator OffsetOfExpr::child_begin() {
return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
+ NumComps);
}
Stmt::child_iterator OffsetOfExpr::child_end() {
return child_iterator(&*child_begin() + NumExprs);
}
// SizeOfAlignOfExpr
Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
// If this is of a type and the type is a VLA type (and not a typedef), the
// size expression of the VLA needs to be treated as an executable expression.
// Why isn't this weirdness documented better in StmtIterator?
if (isArgumentType()) {
if (VariableArrayType* T = dyn_cast<VariableArrayType>(
getArgumentType().getTypePtr()))
return child_iterator(T);
return child_iterator();
}
return child_iterator(&Argument.Ex);
}
Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
if (isArgumentType())
return child_iterator();
return child_iterator(&Argument.Ex + 1);
}
// ArraySubscriptExpr
Stmt::child_iterator ArraySubscriptExpr::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator ArraySubscriptExpr::child_end() {
return &SubExprs[0]+END_EXPR;
}
// CallExpr
Stmt::child_iterator CallExpr::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator CallExpr::child_end() {
return &SubExprs[0]+NumArgs+ARGS_START;
}
// MemberExpr
Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
// ExtVectorElementExpr
Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
// CompoundLiteralExpr
Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
// CastExpr
Stmt::child_iterator CastExpr::child_begin() { return &Op; }
Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
// BinaryOperator
Stmt::child_iterator BinaryOperator::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator BinaryOperator::child_end() {
return &SubExprs[0]+END_EXPR;
}
// ConditionalOperator
Stmt::child_iterator ConditionalOperator::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator ConditionalOperator::child_end() {
return &SubExprs[0]+END_EXPR;
}
// AddrLabelExpr
Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
// StmtExpr
Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
// TypesCompatibleExpr
Stmt::child_iterator TypesCompatibleExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator TypesCompatibleExpr::child_end() {
return child_iterator();
}
// ChooseExpr
Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
// GNUNullExpr
Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
// ShuffleVectorExpr
Stmt::child_iterator ShuffleVectorExpr::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator ShuffleVectorExpr::child_end() {
return &SubExprs[0]+NumExprs;
}
// VAArgExpr
Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
// InitListExpr
Stmt::child_iterator InitListExpr::child_begin() {
return InitExprs.size() ? &InitExprs[0] : 0;
}
Stmt::child_iterator InitListExpr::child_end() {
return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
}
// DesignatedInitExpr
Stmt::child_iterator DesignatedInitExpr::child_begin() {
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
}
Stmt::child_iterator DesignatedInitExpr::child_end() {
return child_iterator(&*child_begin() + NumSubExprs);
}
// ImplicitValueInitExpr
Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator ImplicitValueInitExpr::child_end() {
return child_iterator();
}
// ParenListExpr
Stmt::child_iterator ParenListExpr::child_begin() {
return &Exprs[0];
}
Stmt::child_iterator ParenListExpr::child_end() {
return &Exprs[0]+NumExprs;
}
// ObjCStringLiteral
Stmt::child_iterator ObjCStringLiteral::child_begin() {
return &String;
}
Stmt::child_iterator ObjCStringLiteral::child_end() {
return &String+1;
}
// ObjCEncodeExpr
Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
// ObjCSelectorExpr
Stmt::child_iterator ObjCSelectorExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator ObjCSelectorExpr::child_end() {
return child_iterator();
}
// ObjCProtocolExpr
Stmt::child_iterator ObjCProtocolExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator ObjCProtocolExpr::child_end() {
return child_iterator();
}
// ObjCMessageExpr
Stmt::child_iterator ObjCMessageExpr::child_begin() {
if (getReceiverKind() == Instance)
return reinterpret_cast<Stmt **>(this + 1);
return getArgs();
}
Stmt::child_iterator ObjCMessageExpr::child_end() {
return getArgs() + getNumArgs();
}
// Blocks
Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }