llvm-project/polly
Michael Kruse 7037fde427 Remove references to AssumptionCache. NFC.
The AssumptionCache was removed in r289756 after being replaced by the an
addtional operand list of affected values in r289755. The absence of that cache
means that we have now have to manually search for llvm.assume intrinsics as
now done by other passes (LazyValueInfo, CodeMetrics) do not take into
account an llvm::Instruction's user lists (ScalarEvolution).

llvm-svn: 289791
2016-12-15 09:25:14 +00:00
..
cmake Remove -fvisibility=hidden and FORCE_STATIC. 2016-09-12 18:25:00 +00:00
docs docs: Remove reference to PoCC 2016-05-17 19:44:16 +00:00
include/polly Remove references to AssumptionCache. NFC. 2016-12-15 09:25:14 +00:00
lib Remove references to AssumptionCache. NFC. 2016-12-15 09:25:14 +00:00
test [ScopInfo] Fold constant coefficients in array dimensions to the right 2016-12-02 08:10:56 +00:00
tools GPURuntime: ensure compilation with C99 2016-09-11 07:32:50 +00:00
unittests Add unittests for foreach(Elt|Piece). NFC. 2016-12-07 17:48:02 +00:00
utils Revise polly-{update|check}-format targets 2015-09-14 16:59:50 +00:00
www www: Add Loopy publication 2016-09-29 18:17:30 +00:00
.arcconfig Upgrade all the .arcconfigs to https. 2016-07-14 13:15:37 +00:00
.arclint Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.gitattributes
.gitignore Add git patch files to .gitignore 2015-06-23 20:55:01 +00:00
CMakeLists.txt Remove POLLY_LINK_LIBS, it is not used 2016-11-04 00:32:32 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt Update copyright year to 2016. 2016-03-30 22:41:38 +00:00
README

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.