llvm-project/llvm/utils/TableGen/GlobalISelEmitter.cpp

6230 lines
230 KiB
C++

//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CodeGenCoverage.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
"warn-on-skipped-patterns",
cl::desc("Explain why a pattern was skipped for inclusion "
"in the GlobalISel selector"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
static cl::opt<bool> GenerateCoverage(
"instrument-gisel-coverage",
cl::desc("Generate coverage instrumentation for GlobalISel"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
static cl::opt<std::string> UseCoverageFile(
"gisel-coverage-file", cl::init(""),
cl::desc("Specify file to retrieve coverage information from"),
cl::cat(GlobalISelEmitterCat));
static cl::opt<bool> OptimizeMatchTable(
"optimize-match-table",
cl::desc("Generate an optimized version of the match table"),
cl::init(true), cl::cat(GlobalISelEmitterCat));
namespace {
//===- Helper functions ---------------------------------------------------===//
/// Get the name of the enum value used to number the predicate function.
std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
if (Predicate.hasGISelPredicateCode())
return "GIPFP_MI_" + Predicate.getFnName();
return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
Predicate.getFnName();
}
/// Get the opcode used to check this predicate.
std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) {
return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
}
/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
LLT Ty;
public:
LLTCodeGen() = default;
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
std::string getCxxEnumValue() const {
std::string Str;
raw_string_ostream OS(Str);
emitCxxEnumValue(OS);
return OS.str();
}
void emitCxxEnumValue(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "GILLT_s" << Ty.getSizeInBits();
return;
}
if (Ty.isVector()) {
OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
return;
}
if (Ty.isPointer()) {
OS << "GILLT_p" << Ty.getAddressSpace();
if (Ty.getSizeInBits() > 0)
OS << "s" << Ty.getSizeInBits();
return;
}
llvm_unreachable("Unhandled LLT");
}
void emitCxxConstructorCall(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
return;
}
if (Ty.isVector()) {
OS << "LLT::vector(" << Ty.getNumElements() << ", "
<< Ty.getScalarSizeInBits() << ")";
return;
}
if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
<< Ty.getSizeInBits() << ")";
return;
}
llvm_unreachable("Unhandled LLT");
}
const LLT &get() const { return Ty; }
/// This ordering is used for std::unique() and llvm::sort(). There's no
/// particular logic behind the order but either A < B or B < A must be
/// true if A != B.
bool operator<(const LLTCodeGen &Other) const {
if (Ty.isValid() != Other.Ty.isValid())
return Ty.isValid() < Other.Ty.isValid();
if (!Ty.isValid())
return false;
if (Ty.isVector() != Other.Ty.isVector())
return Ty.isVector() < Other.Ty.isVector();
if (Ty.isScalar() != Other.Ty.isScalar())
return Ty.isScalar() < Other.Ty.isScalar();
if (Ty.isPointer() != Other.Ty.isPointer())
return Ty.isPointer() < Other.Ty.isPointer();
if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
return Ty.getNumElements() < Other.Ty.getNumElements();
return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
}
bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
};
// Track all types that are used so we can emit the corresponding enum.
std::set<LLTCodeGen> KnownTypes;
class InstructionMatcher;
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
MVT VT(SVT);
if (VT.isScalableVector())
return None;
if (VT.isFixedLengthVector() && VT.getVectorNumElements() != 1)
return LLTCodeGen(
LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
if (VT.isInteger() || VT.isFloatingPoint())
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
return None;
}
static std::string explainPredicates(const TreePatternNode *N) {
std::string Explanation;
StringRef Separator = "";
for (const TreePredicateCall &Call : N->getPredicateCalls()) {
const TreePredicateFn &P = Call.Fn;
Explanation +=
(Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
Separator = ", ";
if (P.isAlwaysTrue())
Explanation += " always-true";
if (P.isImmediatePattern())
Explanation += " immediate";
if (P.isUnindexed())
Explanation += " unindexed";
if (P.isNonExtLoad())
Explanation += " non-extload";
if (P.isAnyExtLoad())
Explanation += " extload";
if (P.isSignExtLoad())
Explanation += " sextload";
if (P.isZeroExtLoad())
Explanation += " zextload";
if (P.isNonTruncStore())
Explanation += " non-truncstore";
if (P.isTruncStore())
Explanation += " truncstore";
if (Record *VT = P.getMemoryVT())
Explanation += (" MemVT=" + VT->getName()).str();
if (Record *VT = P.getScalarMemoryVT())
Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
if (ListInit *AddrSpaces = P.getAddressSpaces()) {
raw_string_ostream OS(Explanation);
OS << " AddressSpaces=[";
StringRef AddrSpaceSeparator;
for (Init *Val : AddrSpaces->getValues()) {
IntInit *IntVal = dyn_cast<IntInit>(Val);
if (!IntVal)
continue;
OS << AddrSpaceSeparator << IntVal->getValue();
AddrSpaceSeparator = ", ";
}
OS << ']';
}
int64_t MinAlign = P.getMinAlignment();
if (MinAlign > 0)
Explanation += " MinAlign=" + utostr(MinAlign);
if (P.isAtomicOrderingMonotonic())
Explanation += " monotonic";
if (P.isAtomicOrderingAcquire())
Explanation += " acquire";
if (P.isAtomicOrderingRelease())
Explanation += " release";
if (P.isAtomicOrderingAcquireRelease())
Explanation += " acq_rel";
if (P.isAtomicOrderingSequentiallyConsistent())
Explanation += " seq_cst";
if (P.isAtomicOrderingAcquireOrStronger())
Explanation += " >=acquire";
if (P.isAtomicOrderingWeakerThanAcquire())
Explanation += " <acquire";
if (P.isAtomicOrderingReleaseOrStronger())
Explanation += " >=release";
if (P.isAtomicOrderingWeakerThanRelease())
Explanation += " <release";
}
return Explanation;
}
std::string explainOperator(Record *Operator) {
if (Operator->isSubClassOf("SDNode"))
return (" (" + Operator->getValueAsString("Opcode") + ")").str();
if (Operator->isSubClassOf("Intrinsic"))
return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
if (Operator->isSubClassOf("ComplexPattern"))
return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
")")
.str();
if (Operator->isSubClassOf("SDNodeXForm"))
return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
")")
.str();
return (" (Operator " + Operator->getName() + " not understood)").str();
}
/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
return make_error<StringError>(Reason, inconvertibleErrorCode());
}
static Error isTrivialOperatorNode(const TreePatternNode *N) {
std::string Explanation;
std::string Separator;
bool HasUnsupportedPredicate = false;
for (const TreePredicateCall &Call : N->getPredicateCalls()) {
const TreePredicateFn &Predicate = Call.Fn;
if (Predicate.isAlwaysTrue())
continue;
if (Predicate.isImmediatePattern())
continue;
if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
continue;
if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
continue;
if (Predicate.isLoad() && Predicate.getMemoryVT())
continue;
if (Predicate.isLoad() || Predicate.isStore()) {
if (Predicate.isUnindexed())
continue;
}
if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
const ListInit *AddrSpaces = Predicate.getAddressSpaces();
if (AddrSpaces && !AddrSpaces->empty())
continue;
if (Predicate.getMinAlignment() > 0)
continue;
}
if (Predicate.isAtomic() && Predicate.getMemoryVT())
continue;
if (Predicate.isAtomic() &&
(Predicate.isAtomicOrderingMonotonic() ||
Predicate.isAtomicOrderingAcquire() ||
Predicate.isAtomicOrderingRelease() ||
Predicate.isAtomicOrderingAcquireRelease() ||
Predicate.isAtomicOrderingSequentiallyConsistent() ||
Predicate.isAtomicOrderingAcquireOrStronger() ||
Predicate.isAtomicOrderingWeakerThanAcquire() ||
Predicate.isAtomicOrderingReleaseOrStronger() ||
Predicate.isAtomicOrderingWeakerThanRelease()))
continue;
if (Predicate.hasGISelPredicateCode())
continue;
HasUnsupportedPredicate = true;
Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
Separator = ", ";
Explanation += (Separator + "first-failing:" +
Predicate.getOrigPatFragRecord()->getRecord()->getName())
.str();
break;
}
if (!HasUnsupportedPredicate)
return Error::success();
return failedImport(Explanation);
}
static Record *getInitValueAsRegClass(Init *V) {
if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
return VDefInit->getDef()->getValueAsDef("RegClass");
if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
return VDefInit->getDef();
}
return nullptr;
}
std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
std::string Name = "GIFBS";
for (const auto &Feature : FeatureBitset)
Name += ("_" + Feature->getName()).str();
return Name;
}
static std::string getScopedName(unsigned Scope, const std::string &Name) {
return ("pred:" + Twine(Scope) + ":" + Name).str();
}
//===- MatchTable Helpers -------------------------------------------------===//
class MatchTable;
/// A record to be stored in a MatchTable.
///
/// This class represents any and all output that may be required to emit the
/// MatchTable. Instances are most often configured to represent an opcode or
/// value that will be emitted to the table with some formatting but it can also
/// represent commas, comments, and other formatting instructions.
struct MatchTableRecord {
enum RecordFlagsBits {
MTRF_None = 0x0,
/// Causes EmitStr to be formatted as comment when emitted.
MTRF_Comment = 0x1,
/// Causes the record value to be followed by a comma when emitted.
MTRF_CommaFollows = 0x2,
/// Causes the record value to be followed by a line break when emitted.
MTRF_LineBreakFollows = 0x4,
/// Indicates that the record defines a label and causes an additional
/// comment to be emitted containing the index of the label.
MTRF_Label = 0x8,
/// Causes the record to be emitted as the index of the label specified by
/// LabelID along with a comment indicating where that label is.
MTRF_JumpTarget = 0x10,
/// Causes the formatter to add a level of indentation before emitting the
/// record.
MTRF_Indent = 0x20,
/// Causes the formatter to remove a level of indentation after emitting the
/// record.
MTRF_Outdent = 0x40,
};
/// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
/// reference or define.
unsigned LabelID;
/// The string to emit. Depending on the MTRF_* flags it may be a comment, a
/// value, a label name.
std::string EmitStr;
private:
/// The number of MatchTable elements described by this record. Comments are 0
/// while values are typically 1. Values >1 may occur when we need to emit
/// values that exceed the size of a MatchTable element.
unsigned NumElements;
public:
/// A bitfield of RecordFlagsBits flags.
unsigned Flags;
/// The actual run-time value, if known
int64_t RawValue;
MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
unsigned NumElements, unsigned Flags,
int64_t RawValue = std::numeric_limits<int64_t>::min())
: LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr),
NumElements(NumElements), Flags(Flags), RawValue(RawValue) {
assert((!LabelID_.hasValue() || LabelID != ~0u) &&
"This value is reserved for non-labels");
}
MatchTableRecord(const MatchTableRecord &Other) = default;
MatchTableRecord(MatchTableRecord &&Other) = default;
/// Useful if a Match Table Record gets optimized out
void turnIntoComment() {
Flags |= MTRF_Comment;
Flags &= ~MTRF_CommaFollows;
NumElements = 0;
}
/// For Jump Table generation purposes
bool operator<(const MatchTableRecord &Other) const {
return RawValue < Other.RawValue;
}
int64_t getRawValue() const { return RawValue; }
void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
const MatchTable &Table) const;
unsigned size() const { return NumElements; }
};
class Matcher;
/// Holds the contents of a generated MatchTable to enable formatting and the
/// necessary index tracking needed to support GIM_Try.
class MatchTable {
/// An unique identifier for the table. The generated table will be named
/// MatchTable${ID}.
unsigned ID;
/// The records that make up the table. Also includes comments describing the
/// values being emitted and line breaks to format it.
std::vector<MatchTableRecord> Contents;
/// The currently defined labels.
DenseMap<unsigned, unsigned> LabelMap;
/// Tracks the sum of MatchTableRecord::NumElements as the table is built.
unsigned CurrentSize = 0;
/// A unique identifier for a MatchTable label.
unsigned CurrentLabelID = 0;
/// Determines if the table should be instrumented for rule coverage tracking.
bool IsWithCoverage;
public:
static MatchTableRecord LineBreak;
static MatchTableRecord Comment(StringRef Comment) {
return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
}
static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
unsigned ExtraFlags = 0;
if (IndentAdjust > 0)
ExtraFlags |= MatchTableRecord::MTRF_Indent;
if (IndentAdjust < 0)
ExtraFlags |= MatchTableRecord::MTRF_Outdent;
return MatchTableRecord(None, Opcode, 1,
MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
}
static MatchTableRecord NamedValue(StringRef NamedValue) {
return MatchTableRecord(None, NamedValue, 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
return MatchTableRecord(None, NamedValue, 1,
MatchTableRecord::MTRF_CommaFollows, RawValue);
}
static MatchTableRecord NamedValue(StringRef Namespace,
StringRef NamedValue) {
return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
int64_t RawValue) {
return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
MatchTableRecord::MTRF_CommaFollows, RawValue);
}
static MatchTableRecord IntValue(int64_t IntValue) {
return MatchTableRecord(None, llvm::to_string(IntValue), 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord Label(unsigned LabelID) {
return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
MatchTableRecord::MTRF_Label |
MatchTableRecord::MTRF_Comment |
MatchTableRecord::MTRF_LineBreakFollows);
}
static MatchTableRecord JumpTarget(unsigned LabelID) {
return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
MatchTableRecord::MTRF_JumpTarget |
MatchTableRecord::MTRF_Comment |
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
MatchTable(bool WithCoverage, unsigned ID = 0)
: ID(ID), IsWithCoverage(WithCoverage) {}
bool isWithCoverage() const { return IsWithCoverage; }
void push_back(const MatchTableRecord &Value) {
if (Value.Flags & MatchTableRecord::MTRF_Label)
defineLabel(Value.LabelID);
Contents.push_back(Value);
CurrentSize += Value.size();
}
unsigned allocateLabelID() { return CurrentLabelID++; }
void defineLabel(unsigned LabelID) {
LabelMap.insert(std::make_pair(LabelID, CurrentSize));
}
unsigned getLabelIndex(unsigned LabelID) const {
const auto I = LabelMap.find(LabelID);
assert(I != LabelMap.end() && "Use of undeclared label");
return I->second;
}
void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
void emitDeclaration(raw_ostream &OS) const {
unsigned Indentation = 4;
OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
LineBreak.emit(OS, true, *this);
OS << std::string(Indentation, ' ');
for (auto I = Contents.begin(), E = Contents.end(); I != E;
++I) {
bool LineBreakIsNext = false;
const auto &NextI = std::next(I);
if (NextI != E) {
if (NextI->EmitStr == "" &&
NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
LineBreakIsNext = true;
}
if (I->Flags & MatchTableRecord::MTRF_Indent)
Indentation += 2;
I->emit(OS, LineBreakIsNext, *this);
if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
OS << std::string(Indentation, ' ');
if (I->Flags & MatchTableRecord::MTRF_Outdent)
Indentation -= 2;
}
OS << "};\n";
}
};
MatchTableRecord MatchTable::LineBreak = {
None, "" /* Emit String */, 0 /* Elements */,
MatchTableRecord::MTRF_LineBreakFollows};
void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
const MatchTable &Table) const {
bool UseLineComment =
LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
UseLineComment = false;
if (Flags & MTRF_Comment)
OS << (UseLineComment ? "// " : "/*");
OS << EmitStr;
if (Flags & MTRF_Label)
OS << ": @" << Table.getLabelIndex(LabelID);
if ((Flags & MTRF_Comment) && !UseLineComment)
OS << "*/";
if (Flags & MTRF_JumpTarget) {
if (Flags & MTRF_Comment)
OS << " ";
OS << Table.getLabelIndex(LabelID);
}
if (Flags & MTRF_CommaFollows) {
OS << ",";
if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
OS << " ";
}
if (Flags & MTRF_LineBreakFollows)
OS << "\n";
}
MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
Table.push_back(Value);
return Table;
}
//===- Matchers -----------------------------------------------------------===//
class OperandMatcher;
class MatchAction;
class PredicateMatcher;
class RuleMatcher;
class Matcher {
public:
virtual ~Matcher() = default;
virtual void optimize() {}
virtual void emit(MatchTable &Table) = 0;
virtual bool hasFirstCondition() const = 0;
virtual const PredicateMatcher &getFirstCondition() const = 0;
virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
};
MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
bool WithCoverage) {
MatchTable Table(WithCoverage);
for (Matcher *Rule : Rules)
Rule->emit(Table);
return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
}
class GroupMatcher final : public Matcher {
/// Conditions that form a common prefix of all the matchers contained.
SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
/// All the nested matchers, sharing a common prefix.
std::vector<Matcher *> Matchers;
/// An owning collection for any auxiliary matchers created while optimizing
/// nested matchers contained.
std::vector<std::unique_ptr<Matcher>> MatcherStorage;
public:
/// Add a matcher to the collection of nested matchers if it meets the
/// requirements, and return true. If it doesn't, do nothing and return false.
///
/// Expected to preserve its argument, so it could be moved out later on.
bool addMatcher(Matcher &Candidate);
/// Mark the matcher as fully-built and ensure any invariants expected by both
/// optimize() and emit(...) methods. Generally, both sequences of calls
/// are expected to lead to a sensible result:
///
/// addMatcher(...)*; finalize(); optimize(); emit(...); and
/// addMatcher(...)*; finalize(); emit(...);
///
/// or generally
///
/// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
///
/// Multiple calls to optimize() are expected to be handled gracefully, though
/// optimize() is not expected to be idempotent. Multiple calls to finalize()
/// aren't generally supported. emit(...) is expected to be non-mutating and
/// producing the exact same results upon repeated calls.
///
/// addMatcher() calls after the finalize() call are not supported.
///
/// finalize() and optimize() are both allowed to mutate the contained
/// matchers, so moving them out after finalize() is not supported.
void finalize();
void optimize() override;
void emit(MatchTable &Table) override;
/// Could be used to move out the matchers added previously, unless finalize()
/// has been already called. If any of the matchers are moved out, the group
/// becomes safe to destroy, but not safe to re-use for anything else.
iterator_range<std::vector<Matcher *>::iterator> matchers() {
return make_range(Matchers.begin(), Matchers.end());
}
size_t size() const { return Matchers.size(); }
bool empty() const { return Matchers.empty(); }
std::unique_ptr<PredicateMatcher> popFirstCondition() override {
assert(!Conditions.empty() &&
"Trying to pop a condition from a condition-less group");
std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
Conditions.erase(Conditions.begin());
return P;
}
const PredicateMatcher &getFirstCondition() const override {
assert(!Conditions.empty() &&
"Trying to get a condition from a condition-less group");
return *Conditions.front();
}
bool hasFirstCondition() const override { return !Conditions.empty(); }
private:
/// See if a candidate matcher could be added to this group solely by
/// analyzing its first condition.
bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
};
class SwitchMatcher : public Matcher {
/// All the nested matchers, representing distinct switch-cases. The first
/// conditions (as Matcher::getFirstCondition() reports) of all the nested
/// matchers must share the same type and path to a value they check, in other
/// words, be isIdenticalDownToValue, but have different values they check
/// against.
std::vector<Matcher *> Matchers;
/// The representative condition, with a type and a path (InsnVarID and OpIdx
/// in most cases) shared by all the matchers contained.
std::unique_ptr<PredicateMatcher> Condition = nullptr;
/// Temporary set used to check that the case values don't repeat within the
/// same switch.
std::set<MatchTableRecord> Values;
/// An owning collection for any auxiliary matchers created while optimizing
/// nested matchers contained.
std::vector<std::unique_ptr<Matcher>> MatcherStorage;
public:
bool addMatcher(Matcher &Candidate);
void finalize();
void emit(MatchTable &Table) override;
iterator_range<std::vector<Matcher *>::iterator> matchers() {
return make_range(Matchers.begin(), Matchers.end());
}
size_t size() const { return Matchers.size(); }
bool empty() const { return Matchers.empty(); }
std::unique_ptr<PredicateMatcher> popFirstCondition() override {
// SwitchMatcher doesn't have a common first condition for its cases, as all
// the cases only share a kind of a value (a type and a path to it) they
// match, but deliberately differ in the actual value they match.
llvm_unreachable("Trying to pop a condition from a condition-less group");
}
const PredicateMatcher &getFirstCondition() const override {
llvm_unreachable("Trying to pop a condition from a condition-less group");
}
bool hasFirstCondition() const override { return false; }
private:
/// See if the predicate type has a Switch-implementation for it.
static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
/// emit()-helper
static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
MatchTable &Table);
};
/// Generates code to check that a match rule matches.
class RuleMatcher : public Matcher {
public:
using ActionList = std::list<std::unique_ptr<MatchAction>>;
using action_iterator = ActionList::iterator;
protected:
/// A list of matchers that all need to succeed for the current rule to match.
/// FIXME: This currently supports a single match position but could be
/// extended to support multiple positions to support div/rem fusion or
/// load-multiple instructions.
using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
MatchersTy Matchers;
/// A list of actions that need to be taken when all predicates in this rule
/// have succeeded.
ActionList Actions;
using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
/// A map of instruction matchers to the local variables
DefinedInsnVariablesMap InsnVariableIDs;
using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
// The set of instruction matchers that have not yet been claimed for mutation
// by a BuildMI.
MutatableInsnSet MutatableInsns;
/// A map of named operands defined by the matchers that may be referenced by
/// the renderers.
StringMap<OperandMatcher *> DefinedOperands;
/// A map of anonymous physical register operands defined by the matchers that
/// may be referenced by the renderers.
DenseMap<Record *, OperandMatcher *> PhysRegOperands;
/// ID for the next instruction variable defined with implicitlyDefineInsnVar()
unsigned NextInsnVarID;
/// ID for the next output instruction allocated with allocateOutputInsnID()
unsigned NextOutputInsnID;
/// ID for the next temporary register ID allocated with allocateTempRegID()
unsigned NextTempRegID;
std::vector<Record *> RequiredFeatures;
std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
ArrayRef<SMLoc> SrcLoc;
typedef std::tuple<Record *, unsigned, unsigned>
DefinedComplexPatternSubOperand;
typedef StringMap<DefinedComplexPatternSubOperand>
DefinedComplexPatternSubOperandMap;
/// A map of Symbolic Names to ComplexPattern sub-operands.
DefinedComplexPatternSubOperandMap ComplexSubOperands;
/// A map used to for multiple referenced error check of ComplexSubOperand.
/// ComplexSubOperand can't be referenced multiple from different operands,
/// however multiple references from same operand are allowed since that is
/// how 'same operand checks' are generated.
StringMap<std::string> ComplexSubOperandsParentName;
uint64_t RuleID;
static uint64_t NextRuleID;
public:
RuleMatcher(ArrayRef<SMLoc> SrcLoc)
: Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
RuleID(NextRuleID++) {}
RuleMatcher(RuleMatcher &&Other) = default;
RuleMatcher &operator=(RuleMatcher &&Other) = default;
uint64_t getRuleID() const { return RuleID; }
InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
void addRequiredFeature(Record *Feature);
const std::vector<Record *> &getRequiredFeatures() const;
template <class Kind, class... Args> Kind &addAction(Args &&... args);
template <class Kind, class... Args>
action_iterator insertAction(action_iterator InsertPt, Args &&... args);
/// Define an instruction without emitting any code to do so.
unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
return InsnVariableIDs.begin();
}
DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
return InsnVariableIDs.end();
}
iterator_range<typename DefinedInsnVariablesMap::const_iterator>
defined_insn_vars() const {
return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
}
MutatableInsnSet::const_iterator mutatable_insns_begin() const {
return MutatableInsns.begin();
}
MutatableInsnSet::const_iterator mutatable_insns_end() const {
return MutatableInsns.end();
}
iterator_range<typename MutatableInsnSet::const_iterator>
mutatable_insns() const {
return make_range(mutatable_insns_begin(), mutatable_insns_end());
}
void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
bool R = MutatableInsns.erase(InsnMatcher);
assert(R && "Reserving a mutatable insn that isn't available");
(void)R;
}
action_iterator actions_begin() { return Actions.begin(); }
action_iterator actions_end() { return Actions.end(); }
iterator_range<action_iterator> actions() {
return make_range(actions_begin(), actions_end());
}
void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
unsigned RendererID, unsigned SubOperandID,
StringRef ParentSymbolicName) {
std::string ParentName(ParentSymbolicName);
if (ComplexSubOperands.count(SymbolicName)) {
const std::string &RecordedParentName =
ComplexSubOperandsParentName[SymbolicName];
if (RecordedParentName != ParentName)
return failedImport("Error: Complex suboperand " + SymbolicName +
" referenced by different operands: " +
RecordedParentName + " and " + ParentName + ".");
// Complex suboperand referenced more than once from same the operand is
// used to generate 'same operand check'. Emitting of
// GIR_ComplexSubOperandRenderer for them is already handled.
return Error::success();
}
ComplexSubOperands[SymbolicName] =
std::make_tuple(ComplexPattern, RendererID, SubOperandID);
ComplexSubOperandsParentName[SymbolicName] = ParentName;
return Error::success();
}
Optional<DefinedComplexPatternSubOperand>
getComplexSubOperand(StringRef SymbolicName) const {
const auto &I = ComplexSubOperands.find(SymbolicName);
if (I == ComplexSubOperands.end())
return None;
return I->second;
}
InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
const OperandMatcher &getOperandMatcher(StringRef Name) const;
const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
void optimize() override;
void emit(MatchTable &Table) override;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;
/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countRendererFns() const;
std::unique_ptr<PredicateMatcher> popFirstCondition() override;
const PredicateMatcher &getFirstCondition() const override;
LLTCodeGen getFirstConditionAsRootType();
bool hasFirstCondition() const override;
unsigned getNumOperands() const;
StringRef getOpcode() const;
// FIXME: Remove this as soon as possible
InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
unsigned allocateTempRegID() { return NextTempRegID++; }
iterator_range<MatchersTy::iterator> insnmatchers() {
return make_range(Matchers.begin(), Matchers.end());
}
bool insnmatchers_empty() const { return Matchers.empty(); }
void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
};
uint64_t RuleMatcher::NextRuleID = 0;
using action_iterator = RuleMatcher::action_iterator;
template <class PredicateTy> class PredicateListMatcher {
private:
/// Template instantiations should specialize this to return a string to use
/// for the comment emitted when there are no predicates.
std::string getNoPredicateComment() const;
protected:
using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
PredicatesTy Predicates;
/// Track if the list of predicates was manipulated by one of the optimization
/// methods.
bool Optimized = false;
public:
typename PredicatesTy::iterator predicates_begin() {
return Predicates.begin();
}
typename PredicatesTy::iterator predicates_end() {
return Predicates.end();
}
iterator_range<typename PredicatesTy::iterator> predicates() {
return make_range(predicates_begin(), predicates_end());
}
typename PredicatesTy::size_type predicates_size() const {
return Predicates.size();
}
bool predicates_empty() const { return Predicates.empty(); }
std::unique_ptr<PredicateTy> predicates_pop_front() {
std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
Predicates.pop_front();
Optimized = true;
return Front;
}
void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
Predicates.push_front(std::move(Predicate));
}
void eraseNullPredicates() {
const auto NewEnd =
std::stable_partition(Predicates.begin(), Predicates.end(),
std::logical_not<std::unique_ptr<PredicateTy>>());
if (NewEnd != Predicates.begin()) {
Predicates.erase(Predicates.begin(), NewEnd);
Optimized = true;
}
}
/// Emit MatchTable opcodes that tests whether all the predicates are met.
template <class... Args>
void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
if (Predicates.empty() && !Optimized) {
Table << MatchTable::Comment(getNoPredicateComment())
<< MatchTable::LineBreak;
return;
}
for (const auto &Predicate : predicates())
Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
}
/// Provide a function to avoid emitting certain predicates. This is used to
/// defer some predicate checks until after others
using PredicateFilterFunc = std::function<bool(const PredicateTy&)>;
/// Emit MatchTable opcodes for predicates which satisfy \p
/// ShouldEmitPredicate. This should be called multiple times to ensure all
/// predicates are eventually added to the match table.
template <class... Args>
void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,
MatchTable &Table, Args &&... args) {
if (Predicates.empty() && !Optimized) {
Table << MatchTable::Comment(getNoPredicateComment())
<< MatchTable::LineBreak;
return;
}
for (const auto &Predicate : predicates()) {
if (ShouldEmitPredicate(*Predicate))
Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
}
}
};
class PredicateMatcher {
public:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
///
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
/// but OPM_Int must have priority over OPM_RegBank since constant integers
/// are represented by a virtual register defined by a G_CONSTANT instruction.
///
/// Note: The relative priority between IPM_ and OPM_ does not matter, they
/// are currently not compared between each other.
enum PredicateKind {
IPM_Opcode,
IPM_NumOperands,
IPM_ImmPredicate,
IPM_Imm,
IPM_AtomicOrderingMMO,
IPM_MemoryLLTSize,
IPM_MemoryVsLLTSize,
IPM_MemoryAddressSpace,
IPM_MemoryAlignment,
IPM_VectorSplatImm,
IPM_GenericPredicate,
OPM_SameOperand,
OPM_ComplexPattern,
OPM_IntrinsicID,
OPM_CmpPredicate,
OPM_Instruction,
OPM_Int,
OPM_LiteralInt,
OPM_LLT,
OPM_PointerToAny,
OPM_RegBank,
OPM_MBB,
OPM_RecordNamedOperand,
};
protected:
PredicateKind Kind;
unsigned InsnVarID;
unsigned OpIdx;
public:
PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
: Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
unsigned getInsnVarID() const { return InsnVarID; }
unsigned getOpIdx() const { return OpIdx; }
virtual ~PredicateMatcher() = default;
/// Emit MatchTable opcodes that check the predicate for the given operand.
virtual void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
PredicateKind getKind() const { return Kind; }
bool dependsOnOperands() const {
// Custom predicates really depend on the context pattern of the
// instruction, not just the individual instruction. This therefore
// implicitly depends on all other pattern constraints.
return Kind == IPM_GenericPredicate;
}
virtual bool isIdentical(const PredicateMatcher &B) const {
return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
OpIdx == B.OpIdx;
}
virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
return hasValue() && PredicateMatcher::isIdentical(B);
}
virtual MatchTableRecord getValue() const {
assert(hasValue() && "Can not get a value of a value-less predicate!");
llvm_unreachable("Not implemented yet");
}
virtual bool hasValue() const { return false; }
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countRendererFns() const { return 0; }
};
/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher : public PredicateMatcher {
public:
OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
unsigned OpIdx)
: PredicateMatcher(Kind, InsnVarID, OpIdx) {}
virtual ~OperandPredicateMatcher() {}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
};
template <>
std::string
PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
return "No operand predicates";
}
/// Generates code to check that a register operand is defined by the same exact
/// one as another.
class SameOperandMatcher : public OperandPredicateMatcher {
std::string MatchingName;
public:
SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
: OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
MatchingName(MatchingName) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_SameOperand;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override;
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
}
};
/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
LLTCodeGen Ty;
public:
static std::map<LLTCodeGen, unsigned> TypeIDValues;
static void initTypeIDValuesMap() {
TypeIDValues.clear();
unsigned ID = 0;
for (const LLTCodeGen &LLTy : KnownTypes)
TypeIDValues[LLTy] = ID++;
}
LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
: OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
KnownTypes.insert(Ty);
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_LLT;
}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Ty == cast<LLTOperandMatcher>(&B)->Ty;
}
MatchTableRecord getValue() const override {
const auto VI = TypeIDValues.find(Ty);
if (VI == TypeIDValues.end())
return MatchTable::NamedValue(getTy().getCxxEnumValue());
return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
}
bool hasValue() const override {
if (TypeIDValues.size() != KnownTypes.size())
initTypeIDValuesMap();
return TypeIDValues.count(Ty);
}
LLTCodeGen getTy() const { return Ty; }
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
<< MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
<< getValue() << MatchTable::LineBreak;
}
};
std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
/// Generates code to check that an operand is a pointer to any address space.
///
/// In SelectionDAG, the types did not describe pointers or address spaces. As a
/// result, iN is used to describe a pointer of N bits to any address space and
/// PatFrag predicates are typically used to constrain the address space. There's
/// no reliable means to derive the missing type information from the pattern so
/// imported rules must test the components of a pointer separately.
///
/// If SizeInBits is zero, then the pointer size will be obtained from the
/// subtarget.
class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
protected:
unsigned SizeInBits;
public:
PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
unsigned SizeInBits)
: OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
SizeInBits(SizeInBits) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_PointerToAny;
}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckPointerToAny")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("SizeInBits")
<< MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
}
};
/// Generates code to record named operand in RecordedOperands list at StoreIdx.
/// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as
/// an argument to predicate's c++ code once all operands have been matched.
class RecordNamedOperandMatcher : public OperandPredicateMatcher {
protected:
unsigned StoreIdx;
std::string Name;
public:
RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
unsigned StoreIdx, StringRef Name)
: OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx),
StoreIdx(StoreIdx), Name(Name) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_RecordNamedOperand;
}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx &&
Name == cast<RecordNamedOperandMatcher>(&B)->Name;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_RecordNamedOperand")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx)
<< MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
const OperandMatcher &Operand;
const Record &TheDef;
unsigned getAllocatedTemporariesBaseID() const;
public:
bool isIdentical(const PredicateMatcher &B) const override { return false; }
ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const OperandMatcher &Operand,
const Record &TheDef)
: OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
Operand(Operand), TheDef(TheDef) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_ComplexPattern;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
unsigned ID = getAllocatedTemporariesBaseID();
Table << MatchTable::Opcode("GIM_CheckComplexPattern")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
<< MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
<< MatchTable::LineBreak;
}
unsigned countRendererFns() const override {
return 1;
}
};
/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenRegisterClass &RC;
public:
RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const CodeGenRegisterClass &RC)
: OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_RegBank;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("RC")
<< MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
<< MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
: OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_MBB;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
<< MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
}
};
class ImmOperandMatcher : public OperandPredicateMatcher {
public:
ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
: OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_Imm;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
<< MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is a G_CONSTANT with a particular
/// int.
class ConstantIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
: OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Value == cast<ConstantIntOperandMatcher>(&B)->Value;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_Int;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckConstantInt")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::IntValue(Value) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is a raw int (where MO.isImm() or
/// MO.isCImm() is true).
class LiteralIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
: OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
Value(Value) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Value == cast<LiteralIntOperandMatcher>(&B)->Value;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_LiteralInt;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckLiteralInt")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::IntValue(Value) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is an CmpInst predicate
class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
protected:
std::string PredName;
public:
CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
std::string P)
: OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_CmpPredicate;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("Predicate")
<< MatchTable::NamedValue("CmpInst", PredName)
<< MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is an intrinsic ID.
class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenIntrinsic *II;
public:
IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const CodeGenIntrinsic *II)
: OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
II == cast<IntrinsicIDOperandMatcher>(&B)->II;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_IntrinsicID;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::NamedValue("Intrinsic::" + II->EnumName)
<< MatchTable::LineBreak;
}
};
/// Generates code to check that this operand is an immediate whose value meets
/// an immediate predicate.
class OperandImmPredicateMatcher : public OperandPredicateMatcher {
protected:
TreePredicateFn Predicate;
public:
OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx,
const TreePredicateFn &Predicate)
: OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx),
Predicate(Predicate) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Predicate.getOrigPatFragRecord() ==
cast<OperandImmPredicateMatcher>(&B)
->Predicate.getOrigPatFragRecord();
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_ImmPredicate;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("Predicate")
<< MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
<< MatchTable::LineBreak;
}
};
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
InstructionMatcher &Insn;
unsigned OpIdx;
std::string SymbolicName;
/// The index of the first temporary variable allocated to this operand. The
/// number of allocated temporaries can be found with
/// countRendererFns().
unsigned AllocatedTemporariesBaseID;
public:
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID)
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
bool hasSymbolicName() const { return !SymbolicName.empty(); }
StringRef getSymbolicName() const { return SymbolicName; }
void setSymbolicName(StringRef Name) {
assert(SymbolicName.empty() && "Operand already has a symbolic name");
SymbolicName = std::string(Name);
}
/// Construct a new operand predicate and add it to the matcher.
template <class Kind, class... Args>
Optional<Kind *> addPredicate(Args &&... args) {
if (isSameAsAnotherOperand())
return None;
Predicates.emplace_back(std::make_unique<Kind>(
getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
return static_cast<Kind *>(Predicates.back().get());
}
unsigned getOpIdx() const { return OpIdx; }
unsigned getInsnVarID() const;
std::string getOperandExpr(unsigned InsnVarID) const {
return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
llvm::to_string(OpIdx) + ")";
}
InstructionMatcher &getInstructionMatcher() const { return Insn; }
Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
bool OperandIsAPointer);
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarID matches all the predicates and all the operands.
void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
if (!Optimized) {
std::string Comment;
raw_string_ostream CommentOS(Comment);
CommentOS << "MIs[" << getInsnVarID() << "] ";
if (SymbolicName.empty())
CommentOS << "Operand " << OpIdx;
else
CommentOS << SymbolicName;
Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
}
emitPredicateListOpcodes(Table, Rule);
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(OperandMatcher &B) {
// Operand matchers involving more predicates have higher priority.
if (predicates_size() > B.predicates_size())
return true;
if (predicates_size() < B.predicates_size())
return false;
// This assumes that predicates are added in a consistent order.
for (auto &&Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the operand
/// matcher.
unsigned countRendererFns() {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
return A + Predicate->countRendererFns();
});
}
unsigned getAllocatedTemporariesBaseID() const {
return AllocatedTemporariesBaseID;
}
bool isSameAsAnotherOperand() {
for (const auto &Predicate : predicates())
if (isa<SameOperandMatcher>(Predicate))
return true;
return false;
}
};
Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
bool OperandIsAPointer) {
if (!VTy.isMachineValueType())
return failedImport("unsupported typeset");
if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
addPredicate<PointerToAnyOperandMatcher>(0);
return Error::success();
}
auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
if (!OpTyOrNone)
return failedImport("unsupported type");
if (OperandIsAPointer)
addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
else if (VTy.isPointer())
addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
OpTyOrNone->get().getSizeInBits()));
else
addPredicate<LLTOperandMatcher>(*OpTyOrNone);
return Error::success();
}
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
return Operand.getAllocatedTemporariesBaseID();
}
/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher : public PredicateMatcher {
public:
InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
: PredicateMatcher(Kind, InsnVarID) {}
virtual ~InstructionPredicateMatcher() {}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
return Kind < B.Kind;
};
};
template <>
std::string
PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
return "No instruction predicates";
}
/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
// Allow matching one to several, similar opcodes that share properties. This
// is to handle patterns where one SelectionDAG operation maps to multiple
// GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first
// is treated as the canonical opcode.
SmallVector<const CodeGenInstruction *, 2> Insts;
static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
MatchTableRecord getInstValue(const CodeGenInstruction *I) const {
const auto VI = OpcodeValues.find(I);
if (VI != OpcodeValues.end())
return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
VI->second);
return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
}
public:
static void initOpcodeValuesMap(const CodeGenTarget &Target) {
OpcodeValues.clear();
unsigned OpcodeValue = 0;
for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
OpcodeValues[I] = OpcodeValue++;
}
InstructionOpcodeMatcher(unsigned InsnVarID,
ArrayRef<const CodeGenInstruction *> I)
: InstructionPredicateMatcher(IPM_Opcode, InsnVarID),
Insts(I.begin(), I.end()) {
assert((Insts.size() == 1 || Insts.size() == 2) &&
"unexpected number of opcode alternatives");
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_Opcode;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
Insts == cast<InstructionOpcodeMatcher>(&B)->Insts;
}
bool hasValue() const override {
return Insts.size() == 1 && OpcodeValues.count(Insts[0]);
}
// TODO: This is used for the SwitchMatcher optimization. We should be able to
// return a list of the opcodes to match.
MatchTableRecord getValue() const override {
assert(Insts.size() == 1);
const CodeGenInstruction *I = Insts[0];
const auto VI = OpcodeValues.find(I);
if (VI != OpcodeValues.end())
return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
VI->second);
return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
StringRef CheckType = Insts.size() == 1 ?
"GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither";
Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID);
for (const CodeGenInstruction *I : Insts)
Table << getInstValue(I);
Table << MatchTable::LineBreak;
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
return false;
// Prioritize opcodes for cosmetic reasons in the generated source. Although
// this is cosmetic at the moment, we may want to drive a similar ordering
// using instruction frequency information to improve compile time.
if (const InstructionOpcodeMatcher *BO =
dyn_cast<InstructionOpcodeMatcher>(&B))
return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName();
return false;
};
bool isConstantInstruction() const {
return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT";
}
// The first opcode is the canonical opcode, and later are alternatives.
StringRef getOpcode() const {
return Insts[0]->TheDef->getName();
}
ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() {
return Insts;
}
bool isVariadicNumOperands() const {
// If one is variadic, they all should be.
return Insts[0]->Operands.isVariadic;
}
StringRef getOperandType(unsigned OpIdx) const {
// Types expected to be uniform for all alternatives.
return Insts[0]->Operands[OpIdx].OperandType;
}
};
DenseMap<const CodeGenInstruction *, unsigned>
InstructionOpcodeMatcher::OpcodeValues;
class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
unsigned NumOperands = 0;
public:
InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
: InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
NumOperands(NumOperands) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_NumOperands;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckNumOperands")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Expected")
<< MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
}
};
/// Generates code to check that this instruction is a constant whose value
/// meets an immediate predicate.
///
/// Immediates are slightly odd since they are typically used like an operand
/// but are represented as an operator internally. We typically write simm8:$src
/// in a tablegen pattern, but this is just syntactic sugar for
/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
/// that will be matched and the predicate (which is attached to the imm
/// operator) that will be tested. In SelectionDAG this describes a
/// ConstantSDNode whose internal value will be tested using the simm8 predicate.
///
/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
/// this representation, the immediate could be tested with an
/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
/// OperandPredicateMatcher-subclass to check the Value meets the predicate but
/// there are two implementation issues with producing that matcher
/// configuration from the SelectionDAG pattern:
/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
/// were we to sink the immediate predicate to the operand we would have to
/// have two partial implementations of PatFrag support, one for immediates
/// and one for non-immediates.
/// * At the point we handle the predicate, the OperandMatcher hasn't been
/// created yet. If we were to sink the predicate to the OperandMatcher we
/// would also have to complicate (or duplicate) the code that descends and
/// creates matchers for the subtree.
/// Overall, it's simpler to handle it in the place it was found.
class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
protected:
TreePredicateFn Predicate;
public:
InstructionImmPredicateMatcher(unsigned InsnVarID,
const TreePredicateFn &Predicate)
: InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
Predicate(Predicate) {}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
Predicate.getOrigPatFragRecord() ==
cast<InstructionImmPredicateMatcher>(&B)
->Predicate.getOrigPatFragRecord();
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_ImmPredicate;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate))
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Predicate")
<< MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
<< MatchTable::LineBreak;
}
};
/// Generates code to check that a memory instruction has a atomic ordering
/// MachineMemoryOperand.
class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
public:
enum AOComparator {
AO_Exactly,
AO_OrStronger,
AO_WeakerThan,
};
protected:
StringRef Order;
AOComparator Comparator;
public:
AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
AOComparator Comparator = AO_Exactly)
: InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
Order(Order), Comparator(Comparator) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_AtomicOrderingMMO;
}
bool isIdentical(const PredicateMatcher &B) const override {
if (!InstructionPredicateMatcher::isIdentical(B))
return false;
const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
return Order == R.Order && Comparator == R.Comparator;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
StringRef Opcode = "GIM_CheckAtomicOrdering";
if (Comparator == AO_OrStronger)
Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
if (Comparator == AO_WeakerThan)
Opcode = "GIM_CheckAtomicOrderingWeakerThan";
Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
<< MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
<< MatchTable::LineBreak;
}
};
/// Generates code to check that the size of an MMO is exactly N bytes.
class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
protected:
unsigned MMOIdx;
uint64_t Size;
public:
MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
: InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
MMOIdx(MMOIdx), Size(Size) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_MemoryLLTSize;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
Size == cast<MemorySizePredicateMatcher>(&B)->Size;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
<< MatchTable::Comment("Size") << MatchTable::IntValue(Size)
<< MatchTable::LineBreak;
}
};
class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
protected:
unsigned MMOIdx;
SmallVector<unsigned, 4> AddrSpaces;
public:
MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
ArrayRef<unsigned> AddrSpaces)
: InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_MemoryAddressSpace;
}
bool isIdentical(const PredicateMatcher &B) const override {
if (!InstructionPredicateMatcher::isIdentical(B))
return false;
auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
// Encode number of address spaces to expect.
<< MatchTable::Comment("NumAddrSpace")
<< MatchTable::IntValue(AddrSpaces.size());
for (unsigned AS : AddrSpaces)
Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
Table << MatchTable::LineBreak;
}
};
class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
protected:
unsigned MMOIdx;
int MinAlign;
public:
MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
int MinAlign)
: InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
MMOIdx(MMOIdx), MinAlign(MinAlign) {
assert(MinAlign > 0);
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_MemoryAlignment;
}
bool isIdentical(const PredicateMatcher &B) const override {
if (!InstructionPredicateMatcher::isIdentical(B))
return false;
auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
<< MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
<< MatchTable::LineBreak;
}
};
/// Generates code to check that the size of an MMO is less-than, equal-to, or
/// greater than a given LLT.
class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
public:
enum RelationKind {
GreaterThan,
EqualTo,
LessThan,
};
protected:
unsigned MMOIdx;
RelationKind Relation;
unsigned OpIdx;
public:
MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
enum RelationKind Relation,
unsigned OpIdx)
: InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_MemoryVsLLTSize;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode(Relation == EqualTo
? "GIM_CheckMemorySizeEqualToLLT"
: Relation == GreaterThan
? "GIM_CheckMemorySizeGreaterThanLLT"
: "GIM_CheckMemorySizeLessThanLLT")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
<< MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
<< MatchTable::LineBreak;
}
};
// Matcher for immAllOnesV/immAllZerosV
class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher {
public:
enum SplatKind {
AllZeros,
AllOnes
};
private:
SplatKind Kind;
public:
VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K)
: InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_VectorSplatImm;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
if (Kind == AllOnes)
Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes");
else
Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros");
Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID);
Table << MatchTable::LineBreak;
}
};
/// Generates code to check an arbitrary C++ instruction predicate.
class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
protected:
TreePredicateFn Predicate;
public:
GenericInstructionPredicateMatcher(unsigned InsnVarID,
TreePredicateFn Predicate)
: InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
Predicate(Predicate) {}
static bool classof(const InstructionPredicateMatcher *P) {
return P->getKind() == IPM_GenericPredicate;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
Predicate ==
static_cast<const GenericInstructionPredicateMatcher &>(B)
.Predicate;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("FnId")
<< MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
<< MatchTable::LineBreak;
}
};
/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
protected:
typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
RuleMatcher &Rule;
/// The operands to match. All rendered operands must be present even if the
/// condition is always true.
OperandVec Operands;
bool NumOperandsCheck = true;
std::string SymbolicName;
unsigned InsnVarID;
/// PhysRegInputs - List list has an entry for each explicitly specified
/// physreg input to the pattern. The first elt is the Register node, the
/// second is the recorded slot number the input pattern match saved it in.
SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
public:
InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName,
bool NumOpsCheck = true)
: Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) {
// We create a new instruction matcher.
// Get a new ID for that instruction.
InsnVarID = Rule.implicitlyDefineInsnVar(*this);
}
/// Construct a new instruction predicate and add it to the matcher.
template <class Kind, class... Args>
Optional<Kind *> addPredicate(Args &&... args) {
Predicates.emplace_back(
std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
return static_cast<Kind *>(Predicates.back().get());
}
RuleMatcher &getRuleMatcher() const { return Rule; }
unsigned getInsnVarID() const { return InsnVarID; }
/// Add an operand to the matcher.
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID) {
Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
AllocatedTemporariesBaseID));
if (!SymbolicName.empty())
Rule.defineOperand(SymbolicName, *Operands.back());
return *Operands.back();
}
OperandMatcher &getOperand(unsigned OpIdx) {
auto I = llvm::find_if(Operands,
[&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
return X->getOpIdx() == OpIdx;
});
if (I != Operands.end())
return **I;
llvm_unreachable("Failed to lookup operand");
}
OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
unsigned TempOpIdx) {
assert(SymbolicName.empty());
OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
Operands.emplace_back(OM);
Rule.definePhysRegOperand(Reg, *OM);
PhysRegInputs.emplace_back(Reg, OpIdx);
return *OM;
}
ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
return PhysRegInputs;
}
StringRef getSymbolicName() const { return SymbolicName; }
unsigned getNumOperands() const { return Operands.size(); }
OperandVec::iterator operands_begin() { return Operands.begin(); }
OperandVec::iterator operands_end() { return Operands.end(); }
iterator_range<OperandVec::iterator> operands() {
return make_range(operands_begin(), operands_end());
}
OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
OperandVec::const_iterator operands_end() const { return Operands.end(); }
iterator_range<OperandVec::const_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
bool operands_empty() const { return Operands.empty(); }
void pop_front() { Operands.erase(Operands.begin()); }
void optimize();
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarName matches all the predicates and all the operands.
void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
if (NumOperandsCheck)
InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
.emitPredicateOpcodes(Table, Rule);
// First emit all instruction level predicates need to be verified before we
// can verify operands.
emitFilteredPredicateListOpcodes(
[](const PredicateMatcher &P) {
return !P.dependsOnOperands();
}, Table, Rule);
// Emit all operand constraints.
for (const auto &Operand : Operands)
Operand->emitPredicateOpcodes(Table, Rule);
// All of the tablegen defined predicates should now be matched. Now emit
// any custom predicates that rely on all generated checks.
emitFilteredPredicateListOpcodes(
[](const PredicateMatcher &P) {
return P.dependsOnOperands();
}, Table, Rule);
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(InstructionMatcher &B) {
// Instruction matchers involving more operands have higher priority.
if (Operands.size() > B.Operands.size())
return true;
if (Operands.size() < B.Operands.size())
return false;
for (auto &&P : zip(predicates(), B.predicates())) {
auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
if (L->isHigherPriorityThan(*R))
return true;
if (R->isHigherPriorityThan(*L))
return false;
}
for (auto Operand : zip(Operands, B.Operands)) {
if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
return true;
if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the instruction
/// matcher.
unsigned countRendererFns() {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<PredicateMatcher> &Predicate) {
return A + Predicate->countRendererFns();
}) +
std::accumulate(
Operands.begin(), Operands.end(), 0,
[](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
return A + Operand->countRendererFns();
});
}
InstructionOpcodeMatcher &getOpcodeMatcher() {
for (auto &P : predicates())
if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
return *OpMatcher;
llvm_unreachable("Didn't find an opcode matcher");
}
bool isConstantInstruction() {
return getOpcodeMatcher().isConstantInstruction();
}
StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
};
StringRef RuleMatcher::getOpcode() const {
return Matchers.front()->getOpcode();
}
unsigned RuleMatcher::getNumOperands() const {
return Matchers.front()->getNumOperands();
}
LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
InstructionMatcher &InsnMatcher = *Matchers.front();
if (!InsnMatcher.predicates_empty())
if (const auto *TM =
dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
return TM->getTy();
return {};
}
/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
/// (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
std::unique_ptr<InstructionMatcher> InsnMatcher;
public:
InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
RuleMatcher &Rule, StringRef SymbolicName,
bool NumOpsCheck = true)
: OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_Instruction;
}
InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
Table << MatchTable::Opcode("GIM_RecordInsn")
<< MatchTable::Comment("DefineMI")
<< MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
<< MatchTable::IntValue(getInsnVarID())
<< MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
<< MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
<< MatchTable::LineBreak;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
emitCaptureOpcodes(Table, Rule);
InsnMatcher->emitPredicateOpcodes(Table, Rule);
}
bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
if (OperandPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
return false;
if (const InstructionOperandMatcher *BP =
dyn_cast<InstructionOperandMatcher>(&B))
if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
return true;
return false;
}
};
void InstructionMatcher::optimize() {
SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
const auto &OpcMatcher = getOpcodeMatcher();
Stash.push_back(predicates_pop_front());
if (Stash.back().get() == &OpcMatcher) {
if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
Stash.emplace_back(
new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
NumOperandsCheck = false;
for (auto &OM : Operands)
for (auto &OP : OM->predicates())
if (isa<IntrinsicIDOperandMatcher>(OP)) {
Stash.push_back(std::move(OP));
OM->eraseNullPredicates();
break;
}
}
if (InsnVarID > 0) {
assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
for (auto &OP : Operands[0]->predicates())
OP.reset();
Operands[0]->eraseNullPredicates();
}
for (auto &OM : Operands) {
for (auto &OP : OM->predicates())
if (isa<LLTOperandMatcher>(OP))
Stash.push_back(std::move(OP));
OM->eraseNullPredicates();
}
while (!Stash.empty())
prependPredicate(Stash.pop_back_val());
}
//===- Actions ------------------------------------------------------------===//
class OperandRenderer {
public:
enum RendererKind {
OR_Copy,
OR_CopyOrAddZeroReg,
OR_CopySubReg,
OR_CopyPhysReg,
OR_CopyConstantAsImm,
OR_CopyFConstantAsFPImm,
OR_Imm,
OR_SubRegIndex,
OR_Register,
OR_TempRegister,
OR_ComplexPattern,
OR_Custom,
OR_CustomOperand
};
protected:
RendererKind Kind;
public:
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
virtual ~OperandRenderer() {}
RendererKind getKind() const { return Kind; }
virtual void emitRenderOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
};
/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const StringRef SymbolicName;
public:
CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
SymbolicName(SymbolicName) {
assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Copy;
}
StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
<< MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOpIdx())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopyRenderer emits code to copy a virtual register to a specific physical
/// register.
class CopyPhysRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
Record *PhysReg;
public:
CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
: OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
PhysReg(Reg) {
assert(PhysReg);
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyPhysReg;
}
Record *getPhysReg() const { return PhysReg; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
<< MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOpIdx())
<< MatchTable::Comment(PhysReg->getName())
<< MatchTable::LineBreak;
}
};
/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
/// existing instruction to the one being built. If the operand turns out to be
/// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
class CopyOrAddZeroRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const StringRef SymbolicName;
const Record *ZeroRegisterDef;
public:
CopyOrAddZeroRegRenderer(unsigned NewInsnID,
StringRef SymbolicName, Record *ZeroRegisterDef)
: OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyOrAddZeroReg;
}
StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOpIdx())
<< MatchTable::NamedValue(
(ZeroRegisterDef->getValue("Namespace")
? ZeroRegisterDef->getValueAsString("Namespace")
: ""),
ZeroRegisterDef->getName())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
/// an extended immediate operand.
class CopyConstantAsImmRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const std::string SymbolicName;
bool Signed;
public:
CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), Signed(true) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyConstantAsImm;
}
StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
: "GIR_CopyConstantAsUImm")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
/// instruction to an extended immediate operand.
class CopyFConstantAsFPImmRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const std::string SymbolicName;
public:
CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyFConstantAsFPImm;
}
StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopySubRegRenderer emits code to copy a single register operand from an
/// existing instruction to the one being built and indicate that only a
/// subregister should be copied.
class CopySubRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const StringRef SymbolicName;
/// The subregister to extract.
const CodeGenSubRegIndex *SubReg;
public:
CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
const CodeGenSubRegIndex *SubReg)
: OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), SubReg(SubReg) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopySubReg;
}
StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_CopySubReg")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOpIdx())
<< MatchTable::Comment("SubRegIdx")
<< MatchTable::IntValue(SubReg->EnumValue)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const Record *RegisterDef;
bool IsDef;
const CodeGenTarget &Target;
public:
AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target,
const Record *RegisterDef, bool IsDef = false)
: OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
IsDef(IsDef), Target(Target) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Register;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddRegister")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID);
if (RegisterDef->getName() != "zero_reg") {
Table << MatchTable::NamedValue(
(RegisterDef->getValue("Namespace")
? RegisterDef->getValueAsString("Namespace")
: ""),
RegisterDef->getName());
} else {
Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister");
}
Table << MatchTable::Comment("AddRegisterRegFlags");
// TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
// really needed for a physical register reference. We can pack the
// register and flags in a single field.
if (IsDef)
Table << MatchTable::NamedValue("RegState::Define");
else
Table << MatchTable::IntValue(0);
Table << MatchTable::LineBreak;
}
};
/// Adds a specific temporary virtual register to the instruction being built.
/// This is used to chain instructions together when emitting multiple
/// instructions.
class TempRegRenderer : public OperandRenderer {
protected:
unsigned InsnID;
unsigned TempRegID;
const CodeGenSubRegIndex *SubRegIdx;
bool IsDef;
bool IsDead;
public:
TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false,
const CodeGenSubRegIndex *SubReg = nullptr,
bool IsDead = false)
: OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_TempRegister;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
if (SubRegIdx) {
assert(!IsDef);
Table << MatchTable::Opcode("GIR_AddTempSubRegister");
} else
Table << MatchTable::Opcode("GIR_AddTempRegister");
Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
<< MatchTable::Comment("TempRegFlags");
if (IsDef) {
SmallString<32> RegFlags;
RegFlags += "RegState::Define";
if (IsDead)
RegFlags += "|RegState::Dead";
Table << MatchTable::NamedValue(RegFlags);
} else
Table << MatchTable::IntValue(0);
if (SubRegIdx)
Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName());
Table << MatchTable::LineBreak;
}
};
/// Adds a specific immediate to the instruction being built.
class ImmRenderer : public OperandRenderer {
protected:
unsigned InsnID;
int64_t Imm;
public:
ImmRenderer(unsigned InsnID, int64_t Imm)
: OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Imm;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
<< MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
<< MatchTable::IntValue(Imm) << MatchTable::LineBreak;
}
};
/// Adds an enum value for a subreg index to the instruction being built.
class SubRegIndexRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const CodeGenSubRegIndex *SubRegIdx;
public:
SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
: OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_SubRegIndex;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
<< MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
<< MatchTable::IntValue(SubRegIdx->EnumValue)
<< MatchTable::LineBreak;
}
};
/// Adds operands by calling a renderer function supplied by the ComplexPattern
/// matcher function.
class RenderComplexPatternOperand : public OperandRenderer {
private:
unsigned InsnID;
const Record &TheDef;
/// The name of the operand.
const StringRef SymbolicName;
/// The renderer number. This must be unique within a rule since it's used to
/// identify a temporary variable to hold the renderer function.
unsigned RendererID;
/// When provided, this is the suboperand of the ComplexPattern operand to
/// render. Otherwise all the suboperands will be rendered.
Optional<unsigned> SubOperand;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
StringRef SymbolicName, unsigned RendererID,
Optional<unsigned> SubOperand = None)
: OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
SymbolicName(SymbolicName), RendererID(RendererID),
SubOperand(SubOperand) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_ComplexPattern;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
: "GIR_ComplexRenderer")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("RendererID")
<< MatchTable::IntValue(RendererID);
if (SubOperand.hasValue())
Table << MatchTable::Comment("SubOperand")
<< MatchTable::IntValue(SubOperand.getValue());
Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
class CustomRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const Record &Renderer;
/// The name of the operand.
const std::string SymbolicName;
public:
CustomRenderer(unsigned InsnID, const Record &Renderer,
StringRef SymbolicName)
: OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Custom;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode("GIR_CustomRenderer")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment("Renderer")
<< MatchTable::NamedValue(
"GICR_" + Renderer.getValueAsString("RendererFn").str())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
class CustomOperandRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const Record &Renderer;
/// The name of the operand.
const std::string SymbolicName;
public:
CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
StringRef SymbolicName)
: OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CustomOperand;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OpdMatcher.getInsnVarID())
<< MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(OpdMatcher.getOpIdx())
<< MatchTable::Comment("OperandRenderer")
<< MatchTable::NamedValue(
"GICR_" + Renderer.getValueAsString("RendererFn").str())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
virtual ~MatchAction() {}
/// Emit the MatchTable opcodes to implement the action.
virtual void emitActionOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
};
/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
std::string S;
public:
DebugCommentAction(StringRef S) : S(std::string(S)) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Comment(S) << MatchTable::LineBreak;
}
};
/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
unsigned InsnID;
const CodeGenInstruction *I;
InstructionMatcher *Matched;
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
/// True if the instruction can be built solely by mutating the opcode.
bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
if (!Insn)
return false;
if (OperandRenderers.size() != Insn->getNumOperands())
return false;
for (const auto &Renderer : enumerate(OperandRenderers)) {
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
if (Insn != &OM.getInstructionMatcher() ||
OM.getOpIdx() != Renderer.index())
return false;
} else
return false;
}
return true;
}
public:
BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
: InsnID(InsnID), I(I), Matched(nullptr) {}
unsigned getInsnID() const { return InsnID; }
const CodeGenInstruction *getCGI() const { return I; }
void chooseInsnToMutate(RuleMatcher &Rule) {
for (auto *MutateCandidate : Rule.mutatable_insns()) {
if (canMutate(Rule, MutateCandidate)) {
// Take the first one we're offered that we're able to mutate.
Rule.reserveInsnMatcherForMutation(MutateCandidate);
Matched = MutateCandidate;
return;
}
}
}
template <class Kind, class... Args>
Kind &addRenderer(Args&&... args) {
OperandRenderers.emplace_back(
std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
return *static_cast<Kind *>(OperandRenderers.back().get());
}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
if (Matched) {
assert(canMutate(Rule, Matched) &&
"Arranged to mutate an insn that isn't mutatable");
unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
Table << MatchTable::Opcode("GIR_MutateOpcode")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("RecycleInsnID")
<< MatchTable::IntValue(RecycleInsnID)
<< MatchTable::Comment("Opcode")
<< MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
<< MatchTable::LineBreak;
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
for (auto Def : I->ImplicitDefs) {
auto Namespace = Def->getValue("Namespace")
? Def->getValueAsString("Namespace")
: "";
Table << MatchTable::Opcode("GIR_AddImplicitDef")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::NamedValue(Namespace, Def->getName())
<< MatchTable::LineBreak;
}
for (auto Use : I->ImplicitUses) {
auto Namespace = Use->getValue("Namespace")
? Use->getValueAsString("Namespace")
: "";
Table << MatchTable::Opcode("GIR_AddImplicitUse")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::NamedValue(Namespace, Use->getName())
<< MatchTable::LineBreak;
}
}
return;
}
// TODO: Simple permutation looks like it could be almost as common as
// mutation due to commutative operations.
Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
<< MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
<< MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
<< MatchTable::LineBreak;
for (const auto &Renderer : OperandRenderers)
Renderer->emitRenderOpcodes(Table, Rule);
if (I->mayLoad || I->mayStore) {
Table << MatchTable::Opcode("GIR_MergeMemOperands")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("MergeInsnID's");
// Emit the ID's for all the instructions that are matched by this rule.
// TODO: Limit this to matched instructions that mayLoad/mayStore or have
// some other means of having a memoperand. Also limit this to
// emitted instructions that expect to have a memoperand too. For
// example, (G_SEXT (G_LOAD x)) that results in separate load and
// sign-extend instructions shouldn't put the memoperand on the
// sign-extend since it has no effect there.
std::vector<unsigned> MergeInsnIDs;
for (const auto &IDMatcherPair : Rule.defined_insn_vars())
MergeInsnIDs.push_back(IDMatcherPair.second);
llvm::sort(MergeInsnIDs);
for (const auto &MergeInsnID : MergeInsnIDs)
Table << MatchTable::IntValue(MergeInsnID);
Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
<< MatchTable::LineBreak;
}
// FIXME: This is a hack but it's sufficient for ISel. We'll need to do
// better for combines. Particularly when there are multiple match
// roots.
if (InsnID == 0)
Table << MatchTable::Opcode("GIR_EraseFromParent")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
}
};
/// Generates code to constrain the operands of an output instruction to the
/// register classes specified by the definition of that instruction.
class ConstrainOperandsToDefinitionAction : public MatchAction {
unsigned InsnID;
public:
ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
}
};
/// Generates code to constrain the specified operand of an output instruction
/// to the specified register class.
class ConstrainOperandToRegClassAction : public MatchAction {
unsigned InsnID;
unsigned OpIdx;
const CodeGenRegisterClass &RC;
public:
ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
const CodeGenRegisterClass &RC)
: InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
<< MatchTable::LineBreak;
}
};
/// Generates code to create a temporary register which can be used to chain
/// instructions together.
class MakeTempRegisterAction : public MatchAction {
private:
LLTCodeGen Ty;
unsigned TempRegID;
public:
MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
: Ty(Ty), TempRegID(TempRegID) {
KnownTypes.insert(Ty);
}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_MakeTempReg")
<< MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
<< MatchTable::Comment("TypeID")
<< MatchTable::NamedValue(Ty.getCxxEnumValue())
<< MatchTable::LineBreak;
}
};
InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
MutatableInsns.insert(Matchers.back().get());
return *Matchers.back();
}
void RuleMatcher::addRequiredFeature(Record *Feature) {
RequiredFeatures.push_back(Feature);
}
const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
return RequiredFeatures;
}
// Emplaces an action of the specified Kind at the end of the action list.
//
// Returns a reference to the newly created action.
//
// Like std::vector::emplace_back(), may invalidate all iterators if the new
// size exceeds the capacity. Otherwise, only invalidates the past-the-end
// iterator.
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Actions.back().get());
}
// Emplaces an action of the specified Kind before the given insertion point.
//
// Returns an iterator pointing at the newly created instruction.
//
// Like std::vector::insert(), may invalidate all iterators if the new size
// exceeds the capacity. Otherwise, only invalidates the iterators from the
// insertion point onwards.
template <class Kind, class... Args>
action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
Args &&... args) {
return Actions.emplace(InsertPt,
std::make_unique<Kind>(std::forward<Args>(args)...));
}
unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
unsigned NewInsnVarID = NextInsnVarID++;
InsnVariableIDs[&Matcher] = NewInsnVarID;
return NewInsnVarID;
}
unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
const auto &I = InsnVariableIDs.find(&InsnMatcher);
if (I != InsnVariableIDs.end())
return I->second;
llvm_unreachable("Matched Insn was not captured in a local variable");
}
void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
DefinedOperands[SymbolicName] = &OM;
return;
}
// If the operand is already defined, then we must ensure both references in
// the matcher have the exact same node.
OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
}
void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
PhysRegOperands[Reg] = &OM;
return;
}
}
InstructionMatcher &
RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
for (const auto &I : InsnVariableIDs)
if (I.first->getSymbolicName() == SymbolicName)
return *I.first;
llvm_unreachable(
("Failed to lookup instruction " + SymbolicName).str().c_str());
}
const OperandMatcher &
RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
const auto &I = PhysRegOperands.find(Reg);
if (I == PhysRegOperands.end()) {
PrintFatalError(SrcLoc, "Register " + Reg->getName() +
" was not declared in matcher");
}
return *I->second;
}
const OperandMatcher &
RuleMatcher::getOperandMatcher(StringRef Name) const {
const auto &I = DefinedOperands.find(Name);
if (I == DefinedOperands.end())
PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
return *I->second;
}
void RuleMatcher::emit(MatchTable &Table) {
if (Matchers.empty())
llvm_unreachable("Unexpected empty matcher!");
// The representation supports rules that require multiple roots such as:
// %ptr(p0) = ...
// %elt0(s32) = G_LOAD %ptr
// %1(p0) = G_ADD %ptr, 4
// %elt1(s32) = G_LOAD p0 %1
// which could be usefully folded into:
// %ptr(p0) = ...
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
// on some targets but we don't need to make use of that yet.
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
unsigned LabelID = Table.allocateLabelID();
Table << MatchTable::Opcode("GIM_Try", +1)
<< MatchTable::Comment("On fail goto")
<< MatchTable::JumpTarget(LabelID)
<< MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
<< MatchTable::LineBreak;
if (!RequiredFeatures.empty()) {
Table << MatchTable::Opcode("GIM_CheckFeatures")
<< MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
<< MatchTable::LineBreak;
}
Matchers.front()->emitPredicateOpcodes(Table, *this);
// We must also check if it's safe to fold the matched instructions.
if (InsnVariableIDs.size() >= 2) {
// Invert the map to create stable ordering (by var names)
SmallVector<unsigned, 2> InsnIDs;
for (const auto &Pair : InsnVariableIDs) {
// Skip the root node since it isn't moving anywhere. Everything else is
// sinking to meet it.
if (Pair.first == Matchers.front().get())
continue;
InsnIDs.push_back(Pair.second);
}
llvm::sort(InsnIDs);
for (const auto &InsnID : InsnIDs) {
// Reject the difficult cases until we have a more accurate check.
Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
// account for unsafe cases.
//
// Example:
// MI1--> %0 = ...
// %1 = ... %0
// MI0--> %2 = ... %0
// It's not safe to erase MI1. We currently handle this by not
// erasing %0 (even when it's dead).
//
// Example:
// MI1--> %0 = load volatile @a
// %1 = load volatile @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// MI1--> %0 = load @a
// %1 = store @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// G_CONDBR %cond, @BB1
// BB0:
// MI1--> %0 = load @a
// G_BR @BB1
// BB1:
// MI0--> %2 = ... %0
// It's not always safe to sink %0 across control flow. In this
// case it may introduce a memory fault. We currentl handle this
// by rejecting all loads.
}
}
for (const auto &PM : EpilogueMatchers)
PM->emitPredicateOpcodes(Table, *this);
for (const auto &MA : Actions)
MA->emitActionOpcodes(Table, *this);
if (Table.isWithCoverage())
Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
<< MatchTable::LineBreak;
else
Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
<< MatchTable::LineBreak;
Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
<< MatchTable::Label(LabelID);
++NumPatternEmitted;
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
// Rules involving more match roots have higher priority.
if (Matchers.size() > B.Matchers.size())
return true;
if (Matchers.size() < B.Matchers.size())
return false;
for (auto Matcher : zip(Matchers, B.Matchers)) {
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
return true;
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
return false;
}
return false;
}
unsigned RuleMatcher::countRendererFns() const {
return std::accumulate(
Matchers.begin(), Matchers.end(), 0,
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
return A + Matcher->countRendererFns();
});
}
bool OperandPredicateMatcher::isHigherPriorityThan(
const OperandPredicateMatcher &B) const {
// Generally speaking, an instruction is more important than an Int or a
// LiteralInt because it can cover more nodes but theres an exception to
// this. G_CONSTANT's are less important than either of those two because they
// are more permissive.
const InstructionOperandMatcher *AOM =
dyn_cast<InstructionOperandMatcher>(this);
const InstructionOperandMatcher *BOM =
dyn_cast<InstructionOperandMatcher>(&B);
bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
if (AOM && BOM) {
// The relative priorities between a G_CONSTANT and any other instruction
// don't actually matter but this code is needed to ensure a strict weak
// ordering. This is particularly important on Windows where the rules will
// be incorrectly sorted without it.
if (AIsConstantInsn != BIsConstantInsn)
return AIsConstantInsn < BIsConstantInsn;
return false;
}
if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
return false;
if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
return true;
return Kind < B.Kind;
}
void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const {
const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("OtherMI")
<< MatchTable::IntValue(OtherInsnVarID)
<< MatchTable::Comment("OtherOpIdx")
<< MatchTable::IntValue(OtherOM.getOpIdx())
<< MatchTable::LineBreak;
}
//===- GlobalISelEmitter class --------------------------------------------===//
static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) {
ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
Optional<LLTCodeGen> MaybeOpTy;
if (ChildTypes.front().isMachineValueType()) {
MaybeOpTy =
MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
}
if (!MaybeOpTy)
return failedImport("Dst operand has an unsupported type");
return *MaybeOpTy;
}
class GlobalISelEmitter {
public:
explicit GlobalISelEmitter(RecordKeeper &RK);
void run(raw_ostream &OS);
private:
const RecordKeeper &RK;
const CodeGenDAGPatterns CGP;
const CodeGenTarget &Target;
CodeGenRegBank &CGRegs;
/// Keep track of the equivalence between SDNodes and Instruction by mapping
/// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
/// check for attributes on the relation such as CheckMMOIsNonAtomic.
/// This is defined using 'GINodeEquiv' in the target description.
DenseMap<Record *, Record *> NodeEquivs;
/// Keep track of the equivalence between ComplexPattern's and
/// GIComplexOperandMatcher. Map entries are specified by subclassing
/// GIComplexPatternEquiv.
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
/// Keep track of the equivalence between SDNodeXForm's and
/// GICustomOperandRenderer. Map entries are specified by subclassing
/// GISDNodeXFormEquiv.
DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
/// Keep track of Scores of PatternsToMatch similar to how the DAG does.
/// This adds compatibility for RuleMatchers to use this for ordering rules.
DenseMap<uint64_t, int> RuleMatcherScores;
// Map of predicates to their subtarget features.
SubtargetFeatureInfoMap SubtargetFeatures;
// Rule coverage information.
Optional<CodeGenCoverage> RuleCoverage;
/// Variables used to help with collecting of named operands for predicates
/// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set
/// to the number of named operands that predicate expects. Store locations in
/// StoreIdxForName correspond to the order in which operand names appear in
/// predicate's argument list.
/// When we visit named leaf operand and WaitingForNamedOperands is not zero,
/// add matcher that will record operand and decrease counter.
unsigned WaitingForNamedOperands = 0;
StringMap<unsigned> StoreIdxForName;
void gatherOpcodeValues();
void gatherTypeIDValues();
void gatherNodeEquivs();
Record *findNodeEquiv(Record *N) const;
const CodeGenInstruction *getEquivNode(Record &Equiv,
const TreePatternNode *N) const;
Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates);
Expected<InstructionMatcher &>
createAndImportSelDAGMatcher(RuleMatcher &Rule,
InstructionMatcher &InsnMatcher,
const TreePatternNode *Src, unsigned &TempOpIdx);
Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
unsigned &TempOpIdx) const;
Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild,
bool OperandIsAPointer, bool OperandIsImmArg,
unsigned OpIdx, unsigned &TempOpIdx);
Expected<BuildMIAction &> createAndImportInstructionRenderer(
RuleMatcher &M, InstructionMatcher &InsnMatcher,
const TreePatternNode *Src, const TreePatternNode *Dst);
Expected<action_iterator> createAndImportSubInstructionRenderer(
action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
unsigned TempReg);
Expected<action_iterator>
createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
const TreePatternNode *Dst);
Expected<action_iterator>
importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M,
BuildMIAction &DstMIBuilder,
const TreePatternNode *Dst);
Expected<action_iterator>
importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
BuildMIAction &DstMIBuilder,
const llvm::TreePatternNode *Dst);
Expected<action_iterator>
importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild);
Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
BuildMIAction &DstMIBuilder,
DagInit *DefaultOps) const;
Error
importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const;
void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
StringRef TypeIdentifier, StringRef ArgType,
StringRef ArgName, StringRef AdditionalArgs,
StringRef AdditionalDeclarations,
std::function<bool(const Record *R)> Filter);
void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
StringRef ArgType,
std::function<bool(const Record *R)> Filter);
void emitMIPredicateFns(raw_ostream &OS);
/// Analyze pattern \p P, returning a matcher for it if possible.
/// Otherwise, return an Error explaining why we don't support it.
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
void declareSubtargetFeature(Record *Predicate);
MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
bool WithCoverage);
/// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
/// CodeGenRegisterClass will support the CodeGenRegisterClass of
/// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
/// If no register class is found, return None.
Optional<const CodeGenRegisterClass *>
inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
TreePatternNode *SuperRegNode,
TreePatternNode *SubRegIdxNode);
Optional<CodeGenSubRegIndex *>
inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
/// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
/// Return None if no such class exists.
Optional<const CodeGenRegisterClass *>
inferSuperRegisterClass(const TypeSetByHwMode &Ty,
TreePatternNode *SubRegIdxNode);
/// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
Optional<const CodeGenRegisterClass *>
getRegClassFromLeaf(TreePatternNode *Leaf);
/// Return a CodeGenRegisterClass for \p N if one can be found. Return None
/// otherwise.
Optional<const CodeGenRegisterClass *>
inferRegClassFromPattern(TreePatternNode *N);
/// Return the size of the MemoryVT in this predicate, if possible.
Optional<unsigned>
getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate);
// Add builtin predicates.
Expected<InstructionMatcher &>
addBuiltinPredicates(const Record *SrcGIEquivOrNull,
const TreePredicateFn &Predicate,
InstructionMatcher &InsnMatcher, bool &HasAddedMatcher);
public:
/// Takes a sequence of \p Rules and group them based on the predicates
/// they share. \p MatcherStorage is used as a memory container
/// for the group that are created as part of this process.
///
/// What this optimization does looks like if GroupT = GroupMatcher:
/// Output without optimization:
/// \verbatim
/// # R1
/// # predicate A
/// # predicate B
/// ...
/// # R2
/// # predicate A // <-- effectively this is going to be checked twice.
/// // Once in R1 and once in R2.
/// # predicate C
/// \endverbatim
/// Output with optimization:
/// \verbatim
/// # Group1_2
/// # predicate A // <-- Check is now shared.
/// # R1
/// # predicate B
/// # R2
/// # predicate C
/// \endverbatim
template <class GroupT>
static std::vector<Matcher *> optimizeRules(
ArrayRef<Matcher *> Rules,
std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
};
void GlobalISelEmitter::gatherOpcodeValues() {
InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
}
void GlobalISelEmitter::gatherTypeIDValues() {
LLTOperandMatcher::initTypeIDValuesMap();
}
void GlobalISelEmitter::gatherNodeEquivs() {
assert(NodeEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
assert(ComplexPatternEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
}
assert(SDNodeXFormEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
}
}
Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
return NodeEquivs.lookup(N);
}
const CodeGenInstruction *
GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
if (N->getNumChildren() >= 1) {
// setcc operation maps to two different G_* instructions based on the type.
if (!Equiv.isValueUnset("IfFloatingPoint") &&
MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
}
for (const TreePredicateCall &Call : N->getPredicateCalls()) {
const TreePredicateFn &Predicate = Call.Fn;
if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
Predicate.isSignExtLoad())
return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
Predicate.isZeroExtLoad())
return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
}
return &Target.getInstruction(Equiv.getValueAsDef("I"));
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
CGRegs(Target.getRegBank()) {}
//===- Emitter ------------------------------------------------------------===//
Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
ArrayRef<Record *> Predicates) {
for (Record *Pred : Predicates) {
if (Pred->getValueAsString("CondString").empty())
continue;
declareSubtargetFeature(Pred);
M.addRequiredFeature(Pred);
}
return Error::success();
}
Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) {
Optional<LLTCodeGen> MemTyOrNone =
MVTToLLT(getValueType(Predicate.getMemoryVT()));
if (!MemTyOrNone)
return None;
// Align so unusual types like i1 don't get rounded down.
return llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
}
Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates(
const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate,
InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) {
if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
SmallVector<unsigned, 4> ParsedAddrSpaces;
for (Init *Val : AddrSpaces->getValues()) {
IntInit *IntVal = dyn_cast<IntInit>(Val);
if (!IntVal)
return failedImport("Address space is not an integer");
ParsedAddrSpaces.push_back(IntVal->getValue());
}
if (!ParsedAddrSpaces.empty()) {
InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
0, ParsedAddrSpaces);
}
}
int64_t MinAlign = Predicate.getMinAlignment();
if (MinAlign > 0)
InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
}
// G_LOAD is used for both non-extending and any-extending loads.
if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
return InsnMatcher;
}
if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
return InsnMatcher;
}
if (Predicate.isStore()) {
if (Predicate.isTruncStore()) {
if (Predicate.getMemoryVT() != nullptr) {
// FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
if (!MemSizeInBits)
return failedImport("MemVT could not be converted to LLT");
InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits /
8);
} else {
InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
}
return InsnMatcher;
}
if (Predicate.isNonTruncStore()) {
// We need to check the sizes match here otherwise we could incorrectly
// match truncating stores with non-truncating ones.
InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
}
}
// No check required. We already did it by swapping the opcode.
if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
Predicate.isSignExtLoad())
return InsnMatcher;
// No check required. We already did it by swapping the opcode.
if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
Predicate.isZeroExtLoad())
return InsnMatcher;
// No check required. G_STORE by itself is a non-extending store.
if (Predicate.isNonTruncStore())
return InsnMatcher;
if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
if (Predicate.getMemoryVT() != nullptr) {
auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
if (!MemSizeInBits)
return failedImport("MemVT could not be converted to LLT");
InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0,
*MemSizeInBits / 8);
return InsnMatcher;
}
}
if (Predicate.isLoad() || Predicate.isStore()) {
// No check required. A G_LOAD/G_STORE is an unindexed load.
if (Predicate.isUnindexed())
return InsnMatcher;
}
if (Predicate.isAtomic()) {
if (Predicate.isAtomicOrderingMonotonic()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic");
return InsnMatcher;
}
if (Predicate.isAtomicOrderingAcquire()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
return InsnMatcher;
}
if (Predicate.isAtomicOrderingRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
return InsnMatcher;
}
if (Predicate.isAtomicOrderingAcquireRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"AcquireRelease");
return InsnMatcher;
}
if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"SequentiallyConsistent");
return InsnMatcher;
}
}
if (Predicate.isAtomicOrderingAcquireOrStronger()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
return InsnMatcher;
}
if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
return InsnMatcher;
}
if (Predicate.isAtomicOrderingReleaseOrStronger()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
return InsnMatcher;
}
if (Predicate.isAtomicOrderingWeakerThanRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
return InsnMatcher;
}
HasAddedMatcher = false;
return InsnMatcher;
}
Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *Src, unsigned &TempOpIdx) {
Record *SrcGIEquivOrNull = nullptr;
const CodeGenInstruction *SrcGIOrNull = nullptr;
// Start with the defined operands (i.e., the results of the root operator).
if (Src->getExtTypes().size() > 1)
return failedImport("Src pattern has multiple results");
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (isa<IntInit>(SrcInit)) {
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
&Target.getInstruction(RK.getDef("G_CONSTANT")));
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
if (!SrcGIEquivOrNull)
return failedImport("Pattern operator lacks an equivalent Instruction" +
explainOperator(Src->getOperator()));
SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
// The operators look good: match the opcode
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
}
unsigned OpIdx = 0;
for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
// Results don't have a name unless they are the root node. The caller will
// set the name if appropriate.
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
return failedImport(toString(std::move(Error)) +
" for result of Src pattern operator");
}
for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
const TreePredicateFn &Predicate = Call.Fn;
bool HasAddedBuiltinMatcher = true;
if (Predicate.isAlwaysTrue())
continue;
if (Predicate.isImmediatePattern()) {
InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
continue;
}
auto InsnMatcherOrError = addBuiltinPredicates(
SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher);
if (auto Error = InsnMatcherOrError.takeError())
return std::move(Error);
if (Predicate.hasGISelPredicateCode()) {
if (Predicate.usesOperands()) {
assert(WaitingForNamedOperands == 0 &&
"previous predicate didn't find all operands or "
"nested predicate that uses operands");
TreePattern *TP = Predicate.getOrigPatFragRecord();
WaitingForNamedOperands = TP->getNumArgs();
for (unsigned i = 0; i < WaitingForNamedOperands; ++i)
StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i;
}
InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
continue;
}
if (!HasAddedBuiltinMatcher) {
return failedImport("Src pattern child has predicate (" +
explainPredicates(Src) + ")");
}
}
bool IsAtomic = false;
if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
IsAtomic = true;
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
}
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
assert(SrcGIOrNull &&
"Expected to have already found an equivalent Instruction");
if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
// imm/fpimm still have operands but we don't need to do anything with it
// here since we don't support ImmLeaf predicates yet. However, we still
// need to note the hidden operand to get GIM_CheckNumOperands correct.
InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
return InsnMatcher;
}
// Special case because the operand order is changed from setcc. The
// predicate operand needs to be swapped from the last operand to the first
// source.
unsigned NumChildren = Src->getNumChildren();
bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
if (SrcChild->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
Record *CCDef = DI ? DI->getDef() : nullptr;
if (!CCDef || !CCDef->isSubClassOf("CondCode"))
return failedImport("Unable to handle CondCode");
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
CCDef->getValueAsString("ICmpPredicate");
if (!PredType.empty()) {
OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType));
// Process the other 2 operands normally.
--NumChildren;
}
}
}
// Hack around an unfortunate mistake in how atomic store (and really
// atomicrmw in general) operands were ordered. A ISD::STORE used the order
// <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite,
// <pointer>, <stored value>. In GlobalISel there's just the one store
// opcode, so we need to swap the operands here to get the right type check.
if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") {
assert(NumChildren == 2 && "wrong operands for atomic store");
TreePatternNode *PtrChild = Src->getChild(0);
TreePatternNode *ValueChild = Src->getChild(1);
if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true,
false, 1, TempOpIdx))
return std::move(Error);
if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false,
false, 0, TempOpIdx))
return std::move(Error);
return InsnMatcher;
}
// Match the used operands (i.e. the children of the operator).
bool IsIntrinsic =
SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
if (IsIntrinsic && !II)
return failedImport("Expected IntInit containing intrinsic ID)");
for (unsigned i = 0; i != NumChildren; ++i) {
TreePatternNode *SrcChild = Src->getChild(i);
// We need to determine the meaning of a literal integer based on the
// context. If this is a field required to be an immediate (such as an
// immarg intrinsic argument), the required predicates are different than
// a constant which may be materialized in a register. If we have an
// argument that is required to be an immediate, we should not emit an LLT
// type check, and should not be looking for a G_CONSTANT defined
// register.
bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
// SelectionDAG allows pointers to be represented with iN since it doesn't
// distinguish between pointers and integers but they are different types in GlobalISel.
// Coerce integers to pointers to address space 0 if the context indicates a pointer.
//
bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
if (IsIntrinsic) {
// For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
// following the defs is an intrinsic ID.
if (i == 0) {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
OM.addPredicate<IntrinsicIDOperandMatcher>(II);
continue;
}
// We have to check intrinsics for llvm_anyptr_ty and immarg parameters.
//
// Note that we have to look at the i-1th parameter, because we don't
// have the intrinsic ID in the intrinsic's parameter list.
OperandIsAPointer |= II->isParamAPointer(i - 1);
OperandIsImmArg |= II->isParamImmArg(i - 1);
}
if (auto Error =
importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
OperandIsImmArg, OpIdx++, TempOpIdx))
return std::move(Error);
}
}
return InsnMatcher;
}
Error GlobalISelEmitter::importComplexPatternOperandMatcher(
OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
const auto &ComplexPattern = ComplexPatternEquivs.find(R);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
") not mapped to GlobalISel");
OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
TempOpIdx++;
return Error::success();
}
// Get the name to use for a pattern operand. For an anonymous physical register
// input, this should use the register name.
static StringRef getSrcChildName(const TreePatternNode *SrcChild,
Record *&PhysReg) {
StringRef SrcChildName = SrcChild->getName();
if (SrcChildName.empty() && SrcChild->isLeaf()) {
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
if (ChildRec->isSubClassOf("Register")) {
SrcChildName = ChildRec->getName();
PhysReg = ChildRec;
}
}
}
return SrcChildName;
}
Error GlobalISelEmitter::importChildMatcher(
RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild, bool OperandIsAPointer,
bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
Record *PhysReg = nullptr;
std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg));
if (!SrcChild->isLeaf() &&
SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
// The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
// "MY_PAT:op1:op2" and the ones with same "name" represent same operand.
std::string PatternName = std::string(SrcChild->getOperator()->getName());
for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) {
PatternName += ":";
PatternName += SrcChild->getChild(i)->getName();
}
SrcChildName = PatternName;
}
OperandMatcher &OM =
PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx)
: InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
if (OM.isSameAsAnotherOperand())
return Error::success();
ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Src pattern child has multiple results");
// Check MBB's before the type check since they are not a known type.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
OM.addPredicate<MBBOperandMatcher>();
return Error::success();
}
if (SrcChild->getOperator()->getName() == "timm") {
OM.addPredicate<ImmOperandMatcher>();
// Add predicates, if any
for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) {
const TreePredicateFn &Predicate = Call.Fn;
// Only handle immediate patterns for now
if (Predicate.isImmediatePattern()) {
OM.addPredicate<OperandImmPredicateMatcher>(Predicate);
}
}
return Error::success();
}
}
}
// Immediate arguments have no meaningful type to check as they don't have
// registers.
if (!OperandIsImmArg) {
if (auto Error =
OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
return failedImport(toString(std::move(Error)) + " for Src operand (" +
to_string(*SrcChild) + ")");
}
// Check for nested instructions.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
// When a ComplexPattern is used as an operator, it should do the same
// thing as when used as a leaf. However, the children of the operator
// name the sub-operands that make up the complex operand and we must
// prepare to reference them in the renderer too.
unsigned RendererID = TempOpIdx;
if (auto Error = importComplexPatternOperandMatcher(
OM, SrcChild->getOperator(), TempOpIdx))
return Error;
for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
auto *SubOperand = SrcChild->getChild(i);
if (!SubOperand->getName().empty()) {
if (auto Error = Rule.defineComplexSubOperand(
SubOperand->getName(), SrcChild->getOperator(), RendererID, i,
SrcChildName))
return Error;
}
}
return Error::success();
}
auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
InsnMatcher.getRuleMatcher(), SrcChild->getName());
if (!MaybeInsnOperand.hasValue()) {
// This isn't strictly true. If the user were to provide exactly the same
// matchers as the original operand then we could allow it. However, it's
// simpler to not permit the redundant specification.
return failedImport("Nested instruction cannot be the same as another operand");
}
// Map the node to a gMIR instruction.
InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
auto InsnMatcherOrError = createAndImportSelDAGMatcher(
Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return Error;
return Error::success();
}
if (SrcChild->hasAnyPredicate())
return failedImport("Src pattern child has unsupported predicate");
// Check for constant immediates.
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
if (OperandIsImmArg) {
// Checks for argument directly in operand list
OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
} else {
// Checks for materialized constant
OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
}
return Error::success();
}
// Check for def's like register classes or ComplexPattern's.
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
if (WaitingForNamedOperands) {
auto PA = SrcChild->getNamesAsPredicateArg().begin();
std::string Name = getScopedName(PA->getScope(), PA->getIdentifier());
OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name);
--WaitingForNamedOperands;
}
// Check for register classes.
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand")) {
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
return Error::success();
}
if (ChildRec->isSubClassOf("Register")) {
// This just be emitted as a copy to the specific register.
ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
const CodeGenRegisterClass *RC
= CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
if (!RC) {
return failedImport(
"Could not determine physical register class of pattern source");
}
OM.addPredicate<RegisterBankOperandMatcher>(*RC);
return Error::success();
}
// Check for ValueType.
if (ChildRec->isSubClassOf("ValueType")) {
// We already added a type check as standard practice so this doesn't need
// to do anything.
return Error::success();
}
// Check for ComplexPattern's.
if (ChildRec->isSubClassOf("ComplexPattern"))
return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
if (ChildRec->isSubClassOf("ImmLeaf")) {
return failedImport(
"Src pattern child def is an unsupported tablegen class (ImmLeaf)");
}
// Place holder for SRCVALUE nodes. Nothing to do here.
if (ChildRec->getName() == "srcvalue")
return Error::success();
const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV";
if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") {
auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
InsnMatcher.getRuleMatcher(), SrcChild->getName(), false);
InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode();
const CodeGenInstruction &BuildVector
= Target.getInstruction(RK.getDef("G_BUILD_VECTOR"));
const CodeGenInstruction &BuildVectorTrunc
= Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC"));
// Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC
// as an alternative.
InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>(
makeArrayRef({&BuildVector, &BuildVectorTrunc}));
// TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could
// theoretically not emit any opcode check, but getOpcodeMatcher currently
// has to succeed.
OperandMatcher &OM =
InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx);
if (auto Error =
OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
return failedImport(toString(std::move(Error)) +
" for result of Src pattern operator");
InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>(
ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes
: VectorSplatImmPredicateMatcher::AllZeros);
return Error::success();
}
return failedImport(
"Src pattern child def is an unsupported tablegen class");
}
return failedImport("Src pattern child is an unsupported kind");
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild) {
const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
if (SubOperand.hasValue()) {
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*std::get<0>(*SubOperand), DstChild->getName(),
std::get<1>(*SubOperand), std::get<2>(*SubOperand));
return InsertPt;
}
if (!DstChild->isLeaf()) {
if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
auto Child = DstChild->getChild(0);
auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
if (I != SDNodeXFormEquivs.end()) {
Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
if (XFormOpc->getName() == "timm") {
// If this is a TargetConstant, there won't be a corresponding
// instruction to transform. Instead, this will refer directly to an
// operand in an instruction's operand list.
DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
Child->getName());
} else {
DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
Child->getName());
}
return InsertPt;
}
return failedImport("SDNodeXForm " + Child->getName() +
" has no custom renderer");
}
// We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
// inline, but in MI it's just another operand.
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
return InsertPt;
}
}
// Similarly, imm is an operator in TreePatternNode's view but must be
// rendered as operands.
// FIXME: The target should be able to choose sign-extended when appropriate
// (e.g. on Mips).
if (DstChild->getOperator()->getName() == "timm") {
DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
return InsertPt;
} else if (DstChild->getOperator()->getName() == "imm") {
DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
return InsertPt;
} else if (DstChild->getOperator()->getName() == "fpimm") {
DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
DstChild->getName());
return InsertPt;
}
if (DstChild->getOperator()->isSubClassOf("Instruction")) {
auto OpTy = getInstResultType(DstChild);
if (!OpTy)
return OpTy.takeError();
unsigned TempRegID = Rule.allocateTempRegID();
InsertPt = Rule.insertAction<MakeTempRegisterAction>(
InsertPt, *OpTy, TempRegID);
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
auto InsertPtOrError = createAndImportSubInstructionRenderer(
++InsertPt, Rule, DstChild, TempRegID);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
return InsertPtOrError.get();
}
return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
}
// It could be a specific immediate in which case we should just check for
// that immediate.
if (const IntInit *ChildIntInit =
dyn_cast<IntInit>(DstChild->getLeafValue())) {
DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
return InsertPt;
}
// Otherwise, we're looking for a bog-standard RegisterClass operand.
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
Optional<LLTCodeGen> OpTyOrNone = None;
if (ChildTypes.front().isMachineValueType())
OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
if (ChildRec->isSubClassOf("Register")) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec);
return InsertPt;
}
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand") ||
ChildRec->isSubClassOf("ValueType")) {
if (ChildRec->isSubClassOf("RegisterOperand") &&
!ChildRec->isValueUnset("GIZeroRegister")) {
DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
return InsertPt;
}
DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
return InsertPt;
}
if (ChildRec->isSubClassOf("SubRegIndex")) {
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
return InsertPt;
}
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*ComplexPattern->second, DstChild->getName(),
OM.getAllocatedTemporariesBaseID());
return InsertPt;
}
return failedImport(
"Dst pattern child def is an unsupported tablegen class");
}
return failedImport("Dst pattern child is an unsupported kind");
}
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
const TreePatternNode *Dst) {
auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
action_iterator InsertPt = InsertPtOrError.get();
BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
InsertPt = M.insertAction<BuildMIAction>(
InsertPt, M.allocateOutputInsnID(),
&Target.getInstruction(RK.getDef("COPY")));
BuildMIAction &CopyToPhysRegMIBuilder =
*static_cast<BuildMIAction *>(InsertPt->get());
CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target,
PhysInput.first,
true);
CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
}
if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst)
.takeError())
return std::move(Error);
if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
.takeError())
return std::move(Error);
return DstMIBuilder;
}
Expected<action_iterator>
GlobalISelEmitter::createAndImportSubInstructionRenderer(
const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
unsigned TempRegID) {
auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
// TODO: Assert there's exactly one result.
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
BuildMIAction &DstMIBuilder =
*static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
// Assign the result to TempReg.
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
InsertPtOrError =
importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
// We need to make sure that when we import an INSERT_SUBREG as a
// subinstruction that it ends up being constrained to the correct super
// register and subregister classes.
auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
if (OpName == "INSERT_SUBREG") {
auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
if (!SubClass)
return failedImport(
"Cannot infer register class from INSERT_SUBREG operand #1");
Optional<const CodeGenRegisterClass *> SuperClass =
inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
Dst->getChild(2));
if (!SuperClass)
return failedImport(
"Cannot infer register class for INSERT_SUBREG operand #0");
// The destination and the super register source of an INSERT_SUBREG must
// be the same register class.
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
return InsertPtOrError.get();
}
if (OpName == "EXTRACT_SUBREG") {
// EXTRACT_SUBREG selects into a subregister COPY but unlike most
// instructions, the result register class is controlled by the
// subregisters of the operand. As a result, we must constrain the result
// class rather than check that it's already the right one.
auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
if (!SuperClass)
return failedImport(
"Cannot infer register class from EXTRACT_SUBREG operand #0");
auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
if (!SubIdx)
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
const auto SrcRCDstRCPair =
(*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
return InsertPtOrError.get();
}
// Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
// subinstruction.
if (OpName == "SUBREG_TO_REG") {
auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
if (!SubClass)
return failedImport(
"Cannot infer register class from SUBREG_TO_REG child #1");
auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
Dst->getChild(2));
if (!SuperClass)
return failedImport(
"Cannot infer register class for SUBREG_TO_REG operand #0");
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
return InsertPtOrError.get();
}
if (OpName == "REG_SEQUENCE") {
auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
unsigned Num = Dst->getNumChildren();
for (unsigned I = 1; I != Num; I += 2) {
TreePatternNode *SubRegChild = Dst->getChild(I + 1);
auto SubIdx = inferSubRegIndexForNode(SubRegChild);
if (!SubIdx)
return failedImport("REG_SEQUENCE child is not a subreg index");
const auto SrcRCDstRCPair =
(*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
M.insertAction<ConstrainOperandToRegClassAction>(
InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second);
}
return InsertPtOrError.get();
}
M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
DstMIBuilder.getInsnID());
return InsertPtOrError.get();
}
Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction")) {
if (DstOp->isSubClassOf("ValueType"))
return failedImport(
"Pattern operator isn't an instruction (it's a ValueType)");
return failedImport("Pattern operator isn't an instruction");
}
CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
// COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
// attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
StringRef Name = DstI->TheDef->getName();
if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
DstI = &Target.getInstruction(RK.getDef("COPY"));
return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
DstI);
}
Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers(
action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
const TreePatternNode *Dst) {
const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
const unsigned NumDefs = DstI->Operands.NumDefs;
if (NumDefs == 0)
return InsertPt;
DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name);
// Some instructions have multiple defs, but are missing a type entry
// (e.g. s_cc_out operands).
if (Dst->getExtTypes().size() < NumDefs)
return failedImport("unhandled discarded def");
// Patterns only handle a single result, so any result after the first is an
// implicitly dead def.
for (unsigned I = 1; I < NumDefs; ++I) {
const TypeSetByHwMode &ExtTy = Dst->getExtType(I);
if (!ExtTy.isMachineValueType())
return failedImport("unsupported typeset");
auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy);
if (!OpTy)
return failedImport("unsupported type");
unsigned TempRegID = M.allocateTempRegID();
InsertPt =
M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID);
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true);
}
return InsertPt;
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
const llvm::TreePatternNode *Dst) {
const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
StringRef Name = OrigDstI->TheDef->getName();
unsigned ExpectedDstINumUses = Dst->getNumChildren();
// EXTRACT_SUBREG needs to use a subregister COPY.
if (Name == "EXTRACT_SUBREG") {
if (!Dst->getChild(1)->isLeaf())
return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
if (!SubRegInit)
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
TreePatternNode *ValChild = Dst->getChild(0);
if (!ValChild->isLeaf()) {
// We really have to handle the source instruction, and then insert a
// copy from the subregister.
auto ExtractSrcTy = getInstResultType(ValChild);
if (!ExtractSrcTy)
return ExtractSrcTy.takeError();
unsigned TempRegID = M.allocateTempRegID();
InsertPt = M.insertAction<MakeTempRegisterAction>(
InsertPt, *ExtractSrcTy, TempRegID);
auto InsertPtOrError = createAndImportSubInstructionRenderer(
++InsertPt, M, ValChild, TempRegID);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx);
return InsertPt;
}
// If this is a source operand, this is just a subregister copy.
Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue());
if (!RCDef)
return failedImport("EXTRACT_SUBREG child #0 could not "
"be coerced to a register class");
CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
const auto SrcRCDstRCPair =
RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
if (SrcRCDstRCPair.hasValue()) {
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
if (SrcRCDstRCPair->first != RC)
return failedImport("EXTRACT_SUBREG requires an additional COPY");
}
DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
SubIdx);
return InsertPt;
}
if (Name == "REG_SEQUENCE") {
if (!Dst->getChild(0)->isLeaf())
return failedImport("REG_SEQUENCE child #0 is not a leaf");
Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (!RCDef)
return failedImport("REG_SEQUENCE child #0 could not "
"be coerced to a register class");
if ((ExpectedDstINumUses - 1) % 2 != 0)
return failedImport("Malformed REG_SEQUENCE");
for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
TreePatternNode *ValChild = Dst->getChild(I);
TreePatternNode *SubRegChild = Dst->getChild(I + 1);
if (DefInit *SubRegInit =
dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
auto InsertPtOrError =
importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
InsertPt = InsertPtOrError.get();
DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
}
}
return InsertPt;
}
// Render the explicit uses.
unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
if (Name == "COPY_TO_REGCLASS") {
DstINumUses--; // Ignore the class constraint.
ExpectedDstINumUses--;
}
// NumResults - This is the number of results produced by the instruction in
// the "outs" list.
unsigned NumResults = OrigDstI->Operands.NumDefs;
// Number of operands we know the output instruction must have. If it is
// variadic, we could have more operands.
unsigned NumFixedOperands = DstI->Operands.size();
// Loop over all of the fixed operands of the instruction pattern, emitting
// code to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases where
// there are predicate operands for an instruction, we need to fill in the
// 'execute always' values. Match up the node operands to the instruction
// operands to do this.
unsigned Child = 0;
// Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
// number of operands at the end of the list which have default values.
// Those can come from the pattern if it provides enough arguments, or be
// filled in with the default if the pattern hasn't provided them. But any
// operand with a default value _before_ the last mandatory one will be
// filled in with their defaults unconditionally.
unsigned NonOverridableOperands = NumFixedOperands;
while (NonOverridableOperands > NumResults &&
CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
--NonOverridableOperands;
unsigned NumDefaultOps = 0;
for (unsigned I = 0; I != DstINumUses; ++I) {
unsigned InstOpNo = DstI->Operands.NumDefs + I;
// Determine what to emit for this operand.
Record *OperandNode = DstI->Operands[InstOpNo].Rec;
// If the operand has default values, introduce them now.
if (CGP.operandHasDefault(OperandNode) &&
(InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
// This is a predicate or optional def operand which the pattern has not
// overridden, or which we aren't letting it override; emit the 'default
// ops' operands.
const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
if (auto Error = importDefaultOperandRenderers(
InsertPt, M, DstMIBuilder, DefaultOps))
return std::move(Error);
++NumDefaultOps;
continue;
}
auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
Dst->getChild(Child));
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
InsertPt = InsertPtOrError.get();
++Child;
}
if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
return failedImport("Expected " + llvm::to_string(DstINumUses) +
" used operands but found " +
llvm::to_string(ExpectedDstINumUses) +
" explicit ones and " + llvm::to_string(NumDefaultOps) +
" default ones");
return InsertPt;
}
Error GlobalISelEmitter::importDefaultOperandRenderers(
action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
DagInit *DefaultOps) const {
for (const auto *DefaultOp : DefaultOps->getArgs()) {
Optional<LLTCodeGen> OpTyOrNone = None;
// Look through ValueType operators.
if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
if (const DefInit *DefaultDagOperator =
dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
OpTyOrNone = MVTToLLT(getValueType(
DefaultDagOperator->getDef()));
DefaultOp = DefaultDagOp->getArg(0);
}
}
}
if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
auto Def = DefaultDefOp->getDef();
if (Def->getName() == "undef_tied_input") {
unsigned TempRegID = M.allocateTempRegID();
M.insertAction<MakeTempRegisterAction>(
InsertPt, OpTyOrNone.getValue(), TempRegID);
InsertPt = M.insertAction<BuildMIAction>(
InsertPt, M.allocateOutputInsnID(),
&Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
InsertPt->get());
IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
} else {
DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def);
}
continue;
}
if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
continue;
}
return failedImport("Could not add default op");
}
return Error::success();
}
Error GlobalISelEmitter::importImplicitDefRenderers(
BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const {
if (!ImplicitDefs.empty())
return failedImport("Pattern defines a physical register");
return Error::success();
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
assert(Leaf && "Expected node?");
assert(Leaf->isLeaf() && "Expected leaf?");
Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
if (!RCRec)
return None;
CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
if (!RC)
return None;
return RC;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
if (!N)
return None;
if (N->isLeaf())
return getRegClassFromLeaf(N);
// We don't have a leaf node, so we have to try and infer something. Check
// that we have an instruction that we an infer something from.
// Only handle things that produce a single type.
if (N->getNumTypes() != 1)
return None;
Record *OpRec = N->getOperator();
// We only want instructions.
if (!OpRec->isSubClassOf("Instruction"))
return None;
// Don't want to try and infer things when there could potentially be more
// than one candidate register class.
auto &Inst = Target.getInstruction(OpRec);
if (Inst.Operands.NumDefs > 1)
return None;
// Handle any special-case instructions which we can safely infer register
// classes from.
StringRef InstName = Inst.TheDef->getName();
bool IsRegSequence = InstName == "REG_SEQUENCE";
if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
// If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
// has the desired register class as the first child.
TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
if (!RCChild->isLeaf())
return None;
return getRegClassFromLeaf(RCChild);
}
if (InstName == "INSERT_SUBREG") {
TreePatternNode *Child0 = N->getChild(0);
assert(Child0->getNumTypes() == 1 && "Unexpected number of types!");
const TypeSetByHwMode &VTy = Child0->getExtType(0);
return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2));
}
if (InstName == "EXTRACT_SUBREG") {
assert(N->getNumTypes() == 1 && "Unexpected number of types!");
const TypeSetByHwMode &VTy = N->getExtType(0);
return inferSuperRegisterClass(VTy, N->getChild(1));
}
// Handle destination record types that we can safely infer a register class
// from.
const auto &DstIOperand = Inst.Operands[0];
Record *DstIOpRec = DstIOperand.Rec;
if (DstIOpRec->isSubClassOf("RegisterOperand")) {
DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
return &RC;
}
if (DstIOpRec->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
return &RC;
}
return None;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
TreePatternNode *SubRegIdxNode) {
assert(SubRegIdxNode && "Expected subregister index node!");
// We need a ValueTypeByHwMode for getSuperRegForSubReg.
if (!Ty.isValueTypeByHwMode(false))
return None;
if (!SubRegIdxNode->isLeaf())
return None;
DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
if (!SubRegInit)
return None;
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
// Use the information we found above to find a minimal register class which
// supports the subregister and type we want.
auto RC =
Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx,
/* MustBeAllocatable */ true);
if (!RC)
return None;
return *RC;
}
Optional<const CodeGenRegisterClass *>
GlobalISelEmitter::inferSuperRegisterClassForNode(
const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
TreePatternNode *SubRegIdxNode) {
assert(SuperRegNode && "Expected super register node!");
// Check if we already have a defined register class for the super register
// node. If we do, then we should preserve that rather than inferring anything
// from the subregister index node. We can assume that whoever wrote the
// pattern in the first place made sure that the super register and
// subregister are compatible.
if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
inferRegClassFromPattern(SuperRegNode))
return *SuperRegisterClass;
return inferSuperRegisterClass(Ty, SubRegIdxNode);
}
Optional<CodeGenSubRegIndex *>
GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
if (!SubRegIdxNode->isLeaf())
return None;
DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
if (!SubRegInit)
return None;
return CGRegs.getSubRegIdx(SubRegInit->getDef());
}
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
// Keep track of the matchers and actions to emit.
int Score = P.getPatternComplexity(CGP);
RuleMatcher M(P.getSrcRecord()->getLoc());
RuleMatcherScores[M.getRuleID()] = Score;
M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
" => " +
llvm::to_string(*P.getDstPattern()));
SmallVector<Record *, 4> Predicates;
P.getPredicateRecords(Predicates);
if (auto Error = importRulePredicates(M, Predicates))
return std::move(Error);
// Next, analyze the pattern operators.
TreePatternNode *Src = P.getSrcPattern();
TreePatternNode *Dst = P.getDstPattern();
// If the root of either pattern isn't a simple operator, ignore it.
if (auto Err = isTrivialOperatorNode(Dst))
return failedImport("Dst pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
if (auto Err = isTrivialOperatorNode(Src))
return failedImport("Src pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
// The different predicates and matchers created during
// addInstructionMatcher use the RuleMatcher M to set up their
// instruction ID (InsnVarID) that are going to be used when
// M is going to be emitted.
// However, the code doing the emission still relies on the IDs
// returned during that process by the RuleMatcher when issuing
// the recordInsn opcodes.
// Because of that:
// 1. The order in which we created the predicates
// and such must be the same as the order in which we emit them,
// and
// 2. We need to reset the generation of the IDs in M somewhere between
// addInstructionMatcher and emit
//
// FIXME: Long term, we don't want to have to rely on this implicit
// naming being the same. One possible solution would be to have
// explicit operator for operation capture and reference those.
// The plus side is that it would expose opportunities to share
// the capture accross rules. The downside is that it would
// introduce a dependency between predicates (captures must happen
// before their first use.)
InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
unsigned TempOpIdx = 0;
auto InsnMatcherOrError =
createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return std::move(Error);
InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
if (Dst->isLeaf()) {
Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
if (RCDef) {
const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
// We need to replace the def and all its uses with the specified
// operand. However, we must also insert COPY's wherever needed.
// For now, emit a copy and let the register allocator clean up.
auto &DstI = Target.getInstruction(RK.getDef("COPY"));
const auto &DstIOperand = DstI.Operands[0];
OperandMatcher &OM0 = InsnMatcher.getOperand(0);
OM0.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM0.getSymbolicName(), OM0);
OM0.addPredicate<RegisterBankOperandMatcher>(RC);
auto &DstMIBuilder =
M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
return failedImport("Dst pattern root isn't a known leaf");
}
// Start with the defined operands (i.e., the results of the root operator).
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
StringRef DstIName = DstI.TheDef->getName();
if (DstI.Operands.NumDefs < Src->getExtTypes().size())
return failedImport("Src pattern result has more defs than dst MI (" +
to_string(Src->getExtTypes().size()) + " def(s) vs " +
to_string(DstI.Operands.NumDefs) + " def(s))");
// The root of the match also has constraints on the register bank so that it
// matches the result instruction.
unsigned OpIdx = 0;
for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
(void)VTy;
const auto &DstIOperand = DstI.Operands[OpIdx];
Record *DstIOpRec = DstIOperand.Rec;
if (DstIName == "COPY_TO_REGCLASS") {
DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport(
"COPY_TO_REGCLASS operand #1 isn't a register class");
} else if (DstIName == "REG_SEQUENCE") {
DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("REG_SEQUENCE operand #0 isn't a register class");
} else if (DstIName == "EXTRACT_SUBREG") {
auto InferredClass = inferRegClassFromPattern(Dst->getChild(0));
if (!InferredClass)
return failedImport("Could not infer class for EXTRACT_SUBREG operand #0");
// We can assume that a subregister is in the same bank as it's super
// register.
DstIOpRec = (*InferredClass)->getDef();
} else if (DstIName == "INSERT_SUBREG") {
auto MaybeSuperClass = inferSuperRegisterClassForNode(
VTy, Dst->getChild(0), Dst->getChild(2));
if (!MaybeSuperClass)
return failedImport(
"Cannot infer register class for INSERT_SUBREG operand #0");
// Move to the next pattern here, because the register class we found
// doesn't necessarily have a record associated with it. So, we can't
// set DstIOpRec using this.
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM.getSymbolicName(), OM);
OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
++OpIdx;
continue;
} else if (DstIName == "SUBREG_TO_REG") {
auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
if (!MaybeRegClass)
return failedImport(
"Cannot infer register class for SUBREG_TO_REG operand #0");
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM.getSymbolicName(), OM);
OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
++OpIdx;
continue;
} else if (DstIOpRec->isSubClassOf("RegisterOperand"))
DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
else if (!DstIOpRec->isSubClassOf("RegisterClass"))
return failedImport("Dst MI def isn't a register class" +
to_string(*Dst));
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM.getSymbolicName(), OM);
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(DstIOpRec));
++OpIdx;
}
auto DstMIBuilderOrError =
createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
if (auto Error = DstMIBuilderOrError.takeError())
return std::move(Error);
BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
// Render the implicit defs.
// These are only added to the root of the result.
if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
return std::move(Error);
DstMIBuilder.chooseInsnToMutate(M);
// Constrain the registers to classes. This is normally derived from the
// emitted instruction but a few instructions require special handling.
if (DstIName == "COPY_TO_REGCLASS") {
// COPY_TO_REGCLASS does not provide operand constraints itself but the
// result is constrained to the class given by the second child.
Record *DstIOpRec =
getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
M.addAction<ConstrainOperandToRegClassAction>(
0, 0, Target.getRegisterClass(DstIOpRec));
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
if (DstIName == "EXTRACT_SUBREG") {
auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
if (!SuperClass)
return failedImport(
"Cannot infer register class from EXTRACT_SUBREG operand #0");
auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
if (!SubIdx)
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
// It would be nice to leave this constraint implicit but we're required
// to pick a register class so constrain the result to a register class
// that can hold the correct MVT.
//
// FIXME: This may introduce an extra copy if the chosen class doesn't
// actually contain the subregisters.
assert(Src->getExtTypes().size() == 1 &&
"Expected Src of EXTRACT_SUBREG to have one result type");
const auto SrcRCDstRCPair =
(*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
if (!SrcRCDstRCPair) {
return failedImport("subreg index is incompatible "
"with inferred reg class");
}
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
if (DstIName == "INSERT_SUBREG") {
assert(Src->getExtTypes().size() == 1 &&
"Expected Src of INSERT_SUBREG to have one result type");
// We need to constrain the destination, a super regsister source, and a
// subregister source.
auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
if (!SubClass)
return failedImport(
"Cannot infer register class from INSERT_SUBREG operand #1");
auto SuperClass = inferSuperRegisterClassForNode(
Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
if (!SuperClass)
return failedImport(
"Cannot infer register class for INSERT_SUBREG operand #0");
M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
++NumPatternImported;
return std::move(M);
}
if (DstIName == "SUBREG_TO_REG") {
// We need to constrain the destination and subregister source.
assert(Src->getExtTypes().size() == 1 &&
"Expected Src of SUBREG_TO_REG to have one result type");
// Attempt to infer the subregister source from the first child. If it has
// an explicitly given register class, we'll use that. Otherwise, we will
// fail.
auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
if (!SubClass)
return failedImport(
"Cannot infer register class from SUBREG_TO_REG child #1");
// We don't have a child to look at that might have a super register node.
auto SuperClass =
inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
if (!SuperClass)
return failedImport(
"Cannot infer register class for SUBREG_TO_REG operand #0");
M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
++NumPatternImported;
return std::move(M);
}
if (DstIName == "REG_SEQUENCE") {
auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
unsigned Num = Dst->getNumChildren();
for (unsigned I = 1; I != Num; I += 2) {
TreePatternNode *SubRegChild = Dst->getChild(I + 1);
auto SubIdx = inferSubRegIndexForNode(SubRegChild);
if (!SubIdx)
return failedImport("REG_SEQUENCE child is not a subreg index");
const auto SrcRCDstRCPair =
(*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
M.addAction<ConstrainOperandToRegClassAction>(0, I,
*SrcRCDstRCPair->second);
}
++NumPatternImported;
return std::move(M);
}
M.addAction<ConstrainOperandsToDefinitionAction>(0);
// We're done with this pattern! It's eligible for GISel emission; return it.
++NumPatternImported;
return std::move(M);
}
// Emit imm predicate table and an enum to reference them with.
// The 'Predicate_' part of the name is redundant but eliminating it is more
// trouble than it's worth.
void GlobalISelEmitter::emitCxxPredicateFns(
raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs,
StringRef AdditionalDeclarations,
std::function<bool(const Record *R)> Filter) {
std::vector<const Record *> MatchedRecords;
const auto &Defs = RK.getAllDerivedDefinitions("PatFrags");
std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
[&](Record *Record) {
return !Record->getValueAsString(CodeFieldName).empty() &&
Filter(Record);
});
if (!MatchedRecords.empty()) {
OS << "// PatFrag predicates.\n"
<< "enum {\n";
std::string EnumeratorSeparator =
(" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
for (const auto *Record : MatchedRecords) {
OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
<< EnumeratorSeparator;
EnumeratorSeparator = ",\n";
}
OS << "};\n";
}
OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
<< "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
<< ArgName << AdditionalArgs <<") const {\n"
<< AdditionalDeclarations;
if (!AdditionalDeclarations.empty())
OS << "\n";
if (!MatchedRecords.empty())
OS << " switch (PredicateID) {\n";
for (const auto *Record : MatchedRecords) {
OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
<< Record->getName() << ": {\n"
<< " " << Record->getValueAsString(CodeFieldName) << "\n"
<< " llvm_unreachable(\"" << CodeFieldName
<< " should have returned\");\n"
<< " return false;\n"
<< " }\n";
}
if (!MatchedRecords.empty())
OS << " }\n";
OS << " llvm_unreachable(\"Unknown predicate\");\n"
<< " return false;\n"
<< "}\n";
}
void GlobalISelEmitter::emitImmPredicateFns(
raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
std::function<bool(const Record *R)> Filter) {
return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
"Imm", "", "", Filter);
}
void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
return emitCxxPredicateFns(
OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
", const std::array<const MachineOperand *, 3> &Operands",
" const MachineFunction &MF = *MI.getParent()->getParent();\n"
" const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
" (void)MRI;",
[](const Record *R) { return true; });
}
template <class GroupT>
std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
ArrayRef<Matcher *> Rules,
std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
std::vector<Matcher *> OptRules;
std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
assert(CurrentGroup->empty() && "Newly created group isn't empty!");
unsigned NumGroups = 0;
auto ProcessCurrentGroup = [&]() {
if (CurrentGroup->empty())
// An empty group is good to be reused:
return;
// If the group isn't large enough to provide any benefit, move all the
// added rules out of it and make sure to re-create the group to properly
// re-initialize it:
if (CurrentGroup->size() < 2)
append_range(OptRules, CurrentGroup->matchers());
else {
CurrentGroup->finalize();
OptRules.push_back(CurrentGroup.get());
MatcherStorage.emplace_back(std::move(CurrentGroup));
++NumGroups;
}
CurrentGroup = std::make_unique<GroupT>();
};
for (Matcher *Rule : Rules) {
// Greedily add as many matchers as possible to the current group:
if (CurrentGroup->addMatcher(*Rule))
continue;
ProcessCurrentGroup();
assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
// Try to add the pending matcher to a newly created empty group:
if (!CurrentGroup->addMatcher(*Rule))
// If we couldn't add the matcher to an empty group, that group type
// doesn't support that kind of matchers at all, so just skip it:
OptRules.push_back(Rule);
}
ProcessCurrentGroup();
LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
assert(CurrentGroup->empty() && "The last group wasn't properly processed");
return OptRules;
}
MatchTable
GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
bool Optimize, bool WithCoverage) {
std::vector<Matcher *> InputRules;
for (Matcher &Rule : Rules)
InputRules.push_back(&Rule);
if (!Optimize)
return MatchTable::buildTable(InputRules, WithCoverage);
unsigned CurrentOrdering = 0;
StringMap<unsigned> OpcodeOrder;
for (RuleMatcher &Rule : Rules) {
const StringRef Opcode = Rule.getOpcode();
assert(!Opcode.empty() && "Didn't expect an undefined opcode");
if (OpcodeOrder.count(Opcode) == 0)
OpcodeOrder[Opcode] = CurrentOrdering++;
}
llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
const Matcher *B) {
auto *L = static_cast<const RuleMatcher *>(A);
auto *R = static_cast<const RuleMatcher *>(B);
return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
});
for (Matcher *Rule : InputRules)
Rule->optimize();
std::vector<std::unique_ptr<Matcher>> MatcherStorage;
std::vector<Matcher *> OptRules =
optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
for (Matcher *Rule : OptRules)
Rule->optimize();
OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
return MatchTable::buildTable(OptRules, WithCoverage);
}
void GroupMatcher::optimize() {
// Make sure we only sort by a specific predicate within a range of rules that
// all have that predicate checked against a specific value (not a wildcard):
auto F = Matchers.begin();
auto T = F;
auto E = Matchers.end();
while (T != E) {
while (T != E) {
auto *R = static_cast<RuleMatcher *>(*T);
if (!R->getFirstConditionAsRootType().get().isValid())
break;
++T;
}
std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
auto *L = static_cast<RuleMatcher *>(A);
auto *R = static_cast<RuleMatcher *>(B);
return L->getFirstConditionAsRootType() <
R->getFirstConditionAsRootType();
});
if (T != E)
F = ++T;
}
GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
.swap(Matchers);
GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
.swap(Matchers);
}
void GlobalISelEmitter::run(raw_ostream &OS) {
if (!UseCoverageFile.empty()) {
RuleCoverage = CodeGenCoverage();
auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
if (!RuleCoverageBufOrErr) {
PrintWarning(SMLoc(), "Missing rule coverage data");
RuleCoverage = None;
} else {
if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
RuleCoverage = None;
}
}
}
// Track the run-time opcode values
gatherOpcodeValues();
// Track the run-time LLT ID values
gatherTypeIDValues();
// Track the GINodeEquiv definitions.
gatherNodeEquivs();
emitSourceFileHeader(("Global Instruction Selector for the " +
Target.getName() + " target").str(), OS);
std::vector<RuleMatcher> Rules;
// Look through the SelectionDAG patterns we found, possibly emitting some.
for (const PatternToMatch &Pat : CGP.ptms()) {
++NumPatternTotal;
auto MatcherOrErr = runOnPattern(Pat);
// The pattern analysis can fail, indicating an unsupported pattern.
// Report that if we've been asked to do so.
if (auto Err = MatcherOrErr.takeError()) {
if (WarnOnSkippedPatterns) {
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Skipped pattern: " + toString(std::move(Err)));
} else {
consumeError(std::move(Err));
}
++NumPatternImportsSkipped;
continue;
}
if (RuleCoverage) {
if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
++NumPatternsTested;
else
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Pattern is not covered by a test");
}
Rules.push_back(std::move(MatcherOrErr.get()));
}
// Comparison function to order records by name.
auto orderByName = [](const Record *A, const Record *B) {
return A->getName() < B->getName();
};
std::vector<Record *> ComplexPredicates =
RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
llvm::sort(ComplexPredicates, orderByName);
std::vector<StringRef> CustomRendererFns;
transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"),
std::back_inserter(CustomRendererFns), [](const auto &Record) {
return Record->getValueAsString("RendererFn");
});
// Sort and remove duplicates to get a list of unique renderer functions, in
// case some were mentioned more than once.
llvm::sort(CustomRendererFns);
CustomRendererFns.erase(
std::unique(CustomRendererFns.begin(), CustomRendererFns.end()),
CustomRendererFns.end());
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
<< "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
<< ";\n"
<< "using PredicateBitset = "
"llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
<< " mutable MatcherState State;\n"
<< " typedef "
"ComplexRendererFns("
<< Target.getName()
<< "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
<< " typedef void(" << Target.getName()
<< "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
"MachineInstr &, int) "
"const;\n"
<< " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
"CustomRendererFn> "
"ISelInfo;\n";
OS << " static " << Target.getName()
<< "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
<< " static " << Target.getName()
<< "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
<< " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
"override;\n"
<< " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
"const override;\n"
<< " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
"&Imm) const override;\n"
<< " const int64_t *getMatchTable() const override;\n"
<< " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI"
", const std::array<const MachineOperand *, 3> &Operands) "
"const override;\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
<< ", State(" << MaxTemporaries << "),\n"
<< "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
<< ", ComplexPredicateFns, CustomRenderers)\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
OS << "#ifdef GET_GLOBALISEL_IMPL\n";
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
OS);
// Separate subtarget features by how often they must be recomputed.
SubtargetFeatureInfoMap ModuleFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(ModuleFeatures, ModuleFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return !X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfoMap FunctionFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(FunctionFeatures, FunctionFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
ModuleFeatures, OS);
OS << "void " << Target.getName() << "InstructionSelector"
"::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
" AvailableFunctionFeatures = computeAvailableFunctionFeatures("
"(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n"
"}\n";
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector",
"computeAvailableFunctionFeatures", FunctionFeatures, OS,
"const MachineFunction *MF");
// Emit a table containing the LLT objects needed by the matcher and an enum
// for the matcher to reference them with.
std::vector<LLTCodeGen> TypeObjects;
append_range(TypeObjects, KnownTypes);
llvm::sort(TypeObjects);
OS << "// LLT Objects.\n"
<< "enum {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxEnumValue(OS);
OS << ",\n";
}
OS << "};\n";
OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
<< "const static LLT TypeObjects[] = {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxConstructorCall(OS);
OS << ",\n";
}
OS << "};\n\n";
// Emit a table containing the PredicateBitsets objects needed by the matcher
// and an enum for the matcher to reference them with.
std::vector<std::vector<Record *>> FeatureBitsets;
for (auto &Rule : Rules)
FeatureBitsets.push_back(Rule.getRequiredFeatures());
llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
const std::vector<Record *> &B) {
if (A.size() < B.size())
return true;
if (A.size() > B.size())
return false;
for (auto Pair : zip(A, B)) {
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
return true;
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
return false;
}
return false;
});
FeatureBitsets.erase(
std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
FeatureBitsets.end());
OS << "// Feature bitsets.\n"
<< "enum {\n"
<< " GIFBS_Invalid,\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
}
OS << "};\n"
<< "const static PredicateBitset FeatureBitsets[] {\n"
<< " {}, // GIFBS_Invalid\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " {";
for (const auto &Feature : FeatureBitset) {
const auto &I = SubtargetFeatures.find(Feature);
assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
OS << I->second.getEnumBitName() << ", ";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit complex predicate table and an enum to reference them with.
OS << "// ComplexPattern predicates.\n"
<< "enum {\n"
<< " GICP_Invalid,\n";
for (const auto &Record : ComplexPredicates)
OS << " GICP_" << Record->getName() << ",\n";
OS << "};\n"
<< "// See constructor for table contents\n\n";
emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
bool Unset;
return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
!R->getValueAsBit("IsAPInt");
});
emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
bool Unset;
return R->getValueAsBitOrUnset("IsAPFloat", Unset);
});
emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
return R->getValueAsBit("IsAPInt");
});
emitMIPredicateFns(OS);
OS << "\n";
OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
<< Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
<< " nullptr, // GICP_Invalid\n";
for (const auto &Record : ComplexPredicates)
OS << " &" << Target.getName()
<< "InstructionSelector::" << Record->getValueAsString("MatcherFn")
<< ", // " << Record->getName() << "\n";
OS << "};\n\n";
OS << "// Custom renderers.\n"
<< "enum {\n"
<< " GICR_Invalid,\n";
for (const auto &Fn : CustomRendererFns)
OS << " GICR_" << Fn << ",\n";
OS << "};\n";
OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
<< Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
<< " nullptr, // GICR_Invalid\n";
for (const auto &Fn : CustomRendererFns)
OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n";
OS << "};\n\n";
llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
int ScoreA = RuleMatcherScores[A.getRuleID()];
int ScoreB = RuleMatcherScores[B.getRuleID()];
if (ScoreA > ScoreB)
return true;
if (ScoreB > ScoreA)
return false;
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
OS << "bool " << Target.getName()
<< "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
"&CoverageInfo) const {\n"
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
<< " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
<< " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
<< " NewMIVector OutMIs;\n"
<< " State.MIs.clear();\n"
<< " State.MIs.push_back(&I);\n\n"
<< " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
<< ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
<< ", CoverageInfo)) {\n"
<< " return true;\n"
<< " }\n\n"
<< " return false;\n"
<< "}\n\n";
const MatchTable Table =
buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
OS << "const int64_t *" << Target.getName()
<< "InstructionSelector::getMatchTable() const {\n";
Table.emitDeclaration(OS);
OS << " return ";
Table.emitUse(OS);
OS << ";\n}\n";
OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
<< "PredicateBitset AvailableModuleFeatures;\n"
<< "mutable PredicateBitset AvailableFunctionFeatures;\n"
<< "PredicateBitset getAvailableFeatures() const {\n"
<< " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
<< "}\n"
<< "PredicateBitset\n"
<< "computeAvailableModuleFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const;\n"
<< "PredicateBitset\n"
<< "computeAvailableFunctionFeatures(const " << Target.getName()
<< "Subtarget *Subtarget,\n"
<< " const MachineFunction *MF) const;\n"
<< "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
<< "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
<< "AvailableFunctionFeatures()\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}
void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
if (SubtargetFeatures.count(Predicate) == 0)
SubtargetFeatures.emplace(
Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}
void RuleMatcher::optimize() {
for (auto &Item : InsnVariableIDs) {
InstructionMatcher &InsnMatcher = *Item.first;
for (auto &OM : InsnMatcher.operands()) {
// Complex Patterns are usually expensive and they relatively rarely fail
// on their own: more often we end up throwing away all the work done by a
// matching part of a complex pattern because some other part of the
// enclosing pattern didn't match. All of this makes it beneficial to
// delay complex patterns until the very end of the rule matching,
// especially for targets having lots of complex patterns.
for (auto &OP : OM->predicates())
if (isa<ComplexPatternOperandMatcher>(OP))
EpilogueMatchers.emplace_back(std::move(OP));
OM->eraseNullPredicates();
}
InsnMatcher.optimize();
}
llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
const std::unique_ptr<PredicateMatcher> &R) {
return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
});
}
bool RuleMatcher::hasFirstCondition() const {
if (insnmatchers_empty())
return false;
InstructionMatcher &Matcher = insnmatchers_front();
if (!Matcher.predicates_empty())
return true;
for (auto &OM : Matcher.operands())
for (auto &OP : OM->predicates())
if (!isa<InstructionOperandMatcher>(OP))
return true;
return false;
}
const PredicateMatcher &RuleMatcher::getFirstCondition() const {
assert(!insnmatchers_empty() &&
"Trying to get a condition from an empty RuleMatcher");
InstructionMatcher &Matcher = insnmatchers_front();
if (!Matcher.predicates_empty())
return **Matcher.predicates_begin();
// If there is no more predicate on the instruction itself, look at its
// operands.
for (auto &OM : Matcher.operands())
for (auto &OP : OM->predicates())
if (!isa<InstructionOperandMatcher>(OP))
return *OP;
llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
"no conditions");
}
std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
assert(!insnmatchers_empty() &&
"Trying to pop a condition from an empty RuleMatcher");
InstructionMatcher &Matcher = insnmatchers_front();
if (!Matcher.predicates_empty())
return Matcher.predicates_pop_front();
// If there is no more predicate on the instruction itself, look at its
// operands.
for (auto &OM : Matcher.operands())
for (auto &OP : OM->predicates())
if (!isa<InstructionOperandMatcher>(OP)) {
std::unique_ptr<PredicateMatcher> Result = std::move(OP);
OM->eraseNullPredicates();
return Result;
}
llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
"no conditions");
}
bool GroupMatcher::candidateConditionMatches(
const PredicateMatcher &Predicate) const {
if (empty()) {
// Sharing predicates for nested instructions is not supported yet as we
// currently don't hoist the GIM_RecordInsn's properly, therefore we can
// only work on the original root instruction (InsnVarID == 0):
if (Predicate.getInsnVarID() != 0)
return false;
// ... otherwise an empty group can handle any predicate with no specific
// requirements:
return true;
}
const Matcher &Representative = **Matchers.begin();
const auto &RepresentativeCondition = Representative.getFirstCondition();
// ... if not empty, the group can only accomodate matchers with the exact
// same first condition:
return Predicate.isIdentical(RepresentativeCondition);
}
bool GroupMatcher::addMatcher(Matcher &Candidate) {
if (!Candidate.hasFirstCondition())
return false;
const PredicateMatcher &Predicate = Candidate.getFirstCondition();
if (!candidateConditionMatches(Predicate))
return false;
Matchers.push_back(&Candidate);
return true;
}
void GroupMatcher::finalize() {
assert(Conditions.empty() && "Already finalized?");
if (empty())
return;
Matcher &FirstRule = **Matchers.begin();
for (;;) {
// All the checks are expected to succeed during the first iteration:
for (const auto &Rule : Matchers)
if (!Rule->hasFirstCondition())
return;
const auto &FirstCondition = FirstRule.getFirstCondition();
for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
return;
Conditions.push_back(FirstRule.popFirstCondition());
for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
Matchers[I]->popFirstCondition();
}
}
void GroupMatcher::emit(MatchTable &Table) {
unsigned LabelID = ~0U;
if (!Conditions.empty()) {
LabelID = Table.allocateLabelID();
Table << MatchTable::Opcode("GIM_Try", +1)
<< MatchTable::Comment("On fail goto")
<< MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
}
for (auto &Condition : Conditions)
Condition->emitPredicateOpcodes(
Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
for (const auto &M : Matchers)
M->emit(Table);
// Exit the group
if (!Conditions.empty())
Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
<< MatchTable::Label(LabelID);
}
bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
}
bool SwitchMatcher::candidateConditionMatches(
const PredicateMatcher &Predicate) const {
if (empty()) {
// Sharing predicates for nested instructions is not supported yet as we
// currently don't hoist the GIM_RecordInsn's properly, therefore we can
// only work on the original root instruction (InsnVarID == 0):
if (Predicate.getInsnVarID() != 0)
return false;
// ... while an attempt to add even a root matcher to an empty SwitchMatcher
// could fail as not all the types of conditions are supported:
if (!isSupportedPredicateType(Predicate))
return false;
// ... or the condition might not have a proper implementation of
// getValue() / isIdenticalDownToValue() yet:
if (!Predicate.hasValue())
return false;
// ... otherwise an empty Switch can accomodate the condition with no
// further requirements:
return true;
}
const Matcher &CaseRepresentative = **Matchers.begin();
const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
// Switch-cases must share the same kind of condition and path to the value it
// checks:
if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
return false;
const auto Value = Predicate.getValue();
// ... but be unique with respect to the actual value they check:
return Values.count(Value) == 0;
}
bool SwitchMatcher::addMatcher(Matcher &Candidate) {
if (!Candidate.hasFirstCondition())
return false;
const PredicateMatcher &Predicate = Candidate.getFirstCondition();
if (!candidateConditionMatches(Predicate))
return false;
const auto Value = Predicate.getValue();
Values.insert(Value);
Matchers.push_back(&Candidate);
return true;
}
void SwitchMatcher::finalize() {
assert(Condition == nullptr && "Already finalized");
assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
if (empty())
return;
llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) {
return L->getFirstCondition().getValue() <
R->getFirstCondition().getValue();
});
Condition = Matchers[0]->popFirstCondition();
for (unsigned I = 1, E = Values.size(); I < E; ++I)
Matchers[I]->popFirstCondition();
}
void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
MatchTable &Table) {
assert(isSupportedPredicateType(P) && "Predicate type is not supported");
if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
<< MatchTable::IntValue(Condition->getInsnVarID());
return;
}
if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
<< MatchTable::IntValue(Condition->getInsnVarID())
<< MatchTable::Comment("Op")
<< MatchTable::IntValue(Condition->getOpIdx());
return;
}
llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
"predicate type that is claimed to be supported");
}
void SwitchMatcher::emit(MatchTable &Table) {
assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
if (empty())
return;
assert(Condition != nullptr &&
"Broken SwitchMatcher, hasn't been finalized?");
std::vector<unsigned> LabelIDs(Values.size());
std::generate(LabelIDs.begin(), LabelIDs.end(),
[&Table]() { return Table.allocateLabelID(); });
const unsigned Default = Table.allocateLabelID();
const int64_t LowerBound = Values.begin()->getRawValue();
const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
emitPredicateSpecificOpcodes(*Condition, Table);
Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
<< MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
<< MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
int64_t J = LowerBound;
auto VI = Values.begin();
for (unsigned I = 0, E = Values.size(); I < E; ++I) {
auto V = *VI++;
while (J++ < V.getRawValue())
Table << MatchTable::IntValue(0);
V.turnIntoComment();
Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
}
Table << MatchTable::LineBreak;
for (unsigned I = 0, E = Values.size(); I < E; ++I) {
Table << MatchTable::Label(LabelIDs[I]);
Matchers[I]->emit(Table);
Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
}
Table << MatchTable::Label(Default);
}
unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace