forked from OSchip/llvm-project
495 lines
19 KiB
C++
495 lines
19 KiB
C++
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the common interface used by the various execution engine
|
|
// subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "Interpreter/Interpreter.h"
|
|
#include "JIT/JIT.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/IntrinsicLowering.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/DynamicLinker.h"
|
|
#include "Config/dlfcn.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
|
|
Statistic<> NumGlobals ("lli", "Number of global vars initialized");
|
|
}
|
|
|
|
ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
|
|
CurMod(*P->getModule()), MP(P) {
|
|
assert(P && "ModuleProvider is null?");
|
|
}
|
|
|
|
ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
|
|
assert(M && "Module is null?");
|
|
}
|
|
|
|
ExecutionEngine::~ExecutionEngine() {
|
|
delete MP;
|
|
}
|
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
/// at the specified address.
|
|
///
|
|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
|
|
// If we haven't computed the reverse mapping yet, do so first.
|
|
if (GlobalAddressReverseMap.empty()) {
|
|
for (std::map<const GlobalValue*, void *>::iterator I =
|
|
GlobalAddressMap.begin(), E = GlobalAddressMap.end(); I != E; ++I)
|
|
GlobalAddressReverseMap.insert(std::make_pair(I->second, I->first));
|
|
}
|
|
|
|
std::map<void *, const GlobalValue*>::iterator I =
|
|
GlobalAddressReverseMap.find(Addr);
|
|
return I != GlobalAddressReverseMap.end() ? I->second : 0;
|
|
}
|
|
|
|
// CreateArgv - Turn a vector of strings into a nice argv style array of
|
|
// pointers to null terminated strings.
|
|
//
|
|
static void *CreateArgv(ExecutionEngine *EE,
|
|
const std::vector<std::string> &InputArgv) {
|
|
unsigned PtrSize = EE->getTargetData().getPointerSize();
|
|
char *Result = new char[(InputArgv.size()+1)*PtrSize];
|
|
|
|
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
|
|
const Type *SBytePtr = PointerType::get(Type::SByteTy);
|
|
|
|
for (unsigned i = 0; i != InputArgv.size(); ++i) {
|
|
unsigned Size = InputArgv[i].size()+1;
|
|
char *Dest = new char[Size];
|
|
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
|
|
|
|
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
|
|
Dest[Size-1] = 0;
|
|
|
|
// Endian safe: Result[i] = (PointerTy)Dest;
|
|
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
|
|
SBytePtr);
|
|
}
|
|
|
|
// Null terminate it
|
|
EE->StoreValueToMemory(PTOGV(0),
|
|
(GenericValue*)(Result+InputArgv.size()*PtrSize),
|
|
SBytePtr);
|
|
return Result;
|
|
}
|
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
/// and envp parameters.
|
|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
|
|
const std::vector<std::string> &argv,
|
|
const char * const * envp) {
|
|
std::vector<GenericValue> GVArgs;
|
|
GenericValue GVArgc;
|
|
GVArgc.IntVal = argv.size();
|
|
GVArgs.push_back(GVArgc); // Arg #0 = argc.
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
|
|
assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv");
|
|
|
|
std::vector<std::string> EnvVars;
|
|
for (unsigned i = 0; envp[i]; ++i)
|
|
EnvVars.push_back(envp[i]);
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
|
|
return runFunction(Fn, GVArgs).IntVal;
|
|
}
|
|
|
|
|
|
|
|
/// If possible, create a JIT, unless the caller specifically requests an
|
|
/// Interpreter or there's an error. If even an Interpreter cannot be created,
|
|
/// NULL is returned.
|
|
///
|
|
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
|
|
bool ForceInterpreter,
|
|
IntrinsicLowering *IL) {
|
|
ExecutionEngine *EE = 0;
|
|
|
|
// Unless the interpreter was explicitly selected, try making a JIT.
|
|
if (!ForceInterpreter)
|
|
EE = JIT::create(MP, IL);
|
|
|
|
// If we can't make a JIT, make an interpreter instead.
|
|
if (EE == 0) {
|
|
try {
|
|
Module *M = MP->materializeModule();
|
|
try {
|
|
EE = Interpreter::create(M, IL);
|
|
} catch (...) {
|
|
std::cerr << "Error creating the interpreter!\n";
|
|
}
|
|
} catch (...) {
|
|
std::cerr << "Error reading the bytecode file!\n";
|
|
}
|
|
}
|
|
|
|
if (EE == 0) delete IL;
|
|
return EE;
|
|
}
|
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
/// value. This may involve code generation if it's a function.
|
|
///
|
|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
|
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
|
|
return getPointerToFunction(F);
|
|
|
|
assert(GlobalAddressMap[GV] && "Global hasn't had an address allocated yet?");
|
|
return GlobalAddressMap[GV];
|
|
}
|
|
|
|
/// FIXME: document
|
|
///
|
|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
|
GenericValue Result;
|
|
|
|
if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr: {
|
|
Result = getConstantValue(CE->getOperand(0));
|
|
std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
|
|
uint64_t Offset =
|
|
TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
|
|
|
|
Result.LongVal += Offset;
|
|
return Result;
|
|
}
|
|
case Instruction::Cast: {
|
|
// We only need to handle a few cases here. Almost all casts will
|
|
// automatically fold, just the ones involving pointers won't.
|
|
//
|
|
Constant *Op = CE->getOperand(0);
|
|
|
|
// Handle cast of pointer to pointer...
|
|
if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID())
|
|
return getConstantValue(Op);
|
|
|
|
// Handle a cast of pointer to any integral type...
|
|
if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
|
|
return getConstantValue(Op);
|
|
|
|
// Handle cast of long to pointer...
|
|
if (isa<PointerType>(C->getType()) && (Op->getType() == Type::LongTy ||
|
|
Op->getType() == Type::ULongTy))
|
|
return getConstantValue(Op);
|
|
break;
|
|
}
|
|
|
|
case Instruction::Add:
|
|
if (CE->getOperand(0)->getType() == Type::LongTy ||
|
|
CE->getOperand(0)->getType() == Type::ULongTy)
|
|
Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
|
|
getConstantValue(CE->getOperand(1)).LongVal;
|
|
else
|
|
break;
|
|
return Result;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
|
|
abort();
|
|
}
|
|
|
|
switch (C->getType()->getPrimitiveID()) {
|
|
#define GET_CONST_VAL(TY, CLASS) \
|
|
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
|
|
GET_CONST_VAL(Bool , ConstantBool);
|
|
GET_CONST_VAL(UByte , ConstantUInt);
|
|
GET_CONST_VAL(SByte , ConstantSInt);
|
|
GET_CONST_VAL(UShort , ConstantUInt);
|
|
GET_CONST_VAL(Short , ConstantSInt);
|
|
GET_CONST_VAL(UInt , ConstantUInt);
|
|
GET_CONST_VAL(Int , ConstantSInt);
|
|
GET_CONST_VAL(ULong , ConstantUInt);
|
|
GET_CONST_VAL(Long , ConstantSInt);
|
|
GET_CONST_VAL(Float , ConstantFP);
|
|
GET_CONST_VAL(Double , ConstantFP);
|
|
#undef GET_CONST_VAL
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(C)) {
|
|
Result.PointerVal = 0;
|
|
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
|
|
if (Function *F =
|
|
const_cast<Function*>(dyn_cast<Function>(CPR->getValue())))
|
|
Result = PTOGV(getPointerToFunctionOrStub(F));
|
|
else
|
|
Result = PTOGV(getOrEmitGlobalVariable(
|
|
cast<GlobalVariable>(CPR->getValue())));
|
|
|
|
} else {
|
|
assert(0 && "Unknown constant pointer type!");
|
|
}
|
|
break;
|
|
default:
|
|
std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
|
|
abort();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// FIXME: document
|
|
///
|
|
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
|
|
const Type *Ty) {
|
|
if (getTargetData().isLittleEndian()) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
|
|
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
|
|
break;
|
|
Store4BytesLittleEndian:
|
|
case Type::FloatTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
|
|
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
|
|
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
|
|
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
|
|
break;
|
|
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
|
|
goto Store4BytesLittleEndian;
|
|
case Type::DoubleTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
|
|
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
|
|
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
|
|
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
|
|
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
|
|
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
|
|
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
|
|
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
|
|
break;
|
|
default:
|
|
std::cout << "Cannot store value of type " << Ty << "!\n";
|
|
}
|
|
} else {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
|
|
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
|
|
break;
|
|
Store4BytesBigEndian:
|
|
case Type::FloatTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
|
|
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
|
|
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
|
|
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
|
|
break;
|
|
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
|
|
goto Store4BytesBigEndian;
|
|
case Type::DoubleTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
|
|
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
|
|
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
|
|
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
|
|
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
|
|
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
|
|
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
|
|
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
|
|
break;
|
|
default:
|
|
std::cout << "Cannot store value of type " << Ty << "!\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
/// FIXME: document
|
|
///
|
|
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
|
|
const Type *Ty) {
|
|
GenericValue Result;
|
|
if (getTargetData().isLittleEndian()) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
|
|
((unsigned)Ptr->Untyped[1] << 8);
|
|
break;
|
|
Load4BytesLittleEndian:
|
|
case Type::FloatTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
|
|
((unsigned)Ptr->Untyped[1] << 8) |
|
|
((unsigned)Ptr->Untyped[2] << 16) |
|
|
((unsigned)Ptr->Untyped[3] << 24);
|
|
break;
|
|
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
|
|
goto Load4BytesLittleEndian;
|
|
case Type::DoubleTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
|
|
((uint64_t)Ptr->Untyped[1] << 8) |
|
|
((uint64_t)Ptr->Untyped[2] << 16) |
|
|
((uint64_t)Ptr->Untyped[3] << 24) |
|
|
((uint64_t)Ptr->Untyped[4] << 32) |
|
|
((uint64_t)Ptr->Untyped[5] << 40) |
|
|
((uint64_t)Ptr->Untyped[6] << 48) |
|
|
((uint64_t)Ptr->Untyped[7] << 56);
|
|
break;
|
|
default:
|
|
std::cout << "Cannot load value of type " << *Ty << "!\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::UByteTyID:
|
|
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
|
|
case Type::UShortTyID:
|
|
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
|
|
((unsigned)Ptr->Untyped[0] << 8);
|
|
break;
|
|
Load4BytesBigEndian:
|
|
case Type::FloatTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
|
|
((unsigned)Ptr->Untyped[2] << 8) |
|
|
((unsigned)Ptr->Untyped[1] << 16) |
|
|
((unsigned)Ptr->Untyped[0] << 24);
|
|
break;
|
|
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
|
|
goto Load4BytesBigEndian;
|
|
case Type::DoubleTyID:
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
|
|
((uint64_t)Ptr->Untyped[6] << 8) |
|
|
((uint64_t)Ptr->Untyped[5] << 16) |
|
|
((uint64_t)Ptr->Untyped[4] << 24) |
|
|
((uint64_t)Ptr->Untyped[3] << 32) |
|
|
((uint64_t)Ptr->Untyped[2] << 40) |
|
|
((uint64_t)Ptr->Untyped[1] << 48) |
|
|
((uint64_t)Ptr->Untyped[0] << 56);
|
|
break;
|
|
default:
|
|
std::cout << "Cannot load value of type " << *Ty << "!\n";
|
|
abort();
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// InitializeMemory - Recursive function to apply a Constant value into the
|
|
// specified memory location...
|
|
//
|
|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
|
if (Init->getType()->isFirstClassType()) {
|
|
GenericValue Val = getConstantValue(Init);
|
|
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
|
return;
|
|
}
|
|
|
|
switch (Init->getType()->getPrimitiveID()) {
|
|
case Type::ArrayTyID: {
|
|
const ConstantArray *CPA = cast<ConstantArray>(Init);
|
|
const std::vector<Use> &Val = CPA->getValues();
|
|
unsigned ElementSize =
|
|
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
|
|
for (unsigned i = 0; i < Val.size(); ++i)
|
|
InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
|
|
return;
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
|
const StructLayout *SL =
|
|
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
|
|
const std::vector<Use> &Val = CPS->getValues();
|
|
for (unsigned i = 0; i < Val.size(); ++i)
|
|
InitializeMemory(cast<Constant>(Val[i].get()),
|
|
(char*)Addr+SL->MemberOffsets[i]);
|
|
return;
|
|
}
|
|
|
|
default:
|
|
std::cerr << "Bad Type: " << Init->getType() << "\n";
|
|
assert(0 && "Unknown constant type to initialize memory with!");
|
|
}
|
|
}
|
|
|
|
/// EmitGlobals - Emit all of the global variables to memory, storing their
|
|
/// addresses into GlobalAddress. This must make sure to copy the contents of
|
|
/// their initializers into the memory.
|
|
///
|
|
void ExecutionEngine::emitGlobals() {
|
|
const TargetData &TD = getTargetData();
|
|
|
|
// Loop over all of the global variables in the program, allocating the memory
|
|
// to hold them.
|
|
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
|
|
I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
// Get the type of the global...
|
|
const Type *Ty = I->getType()->getElementType();
|
|
|
|
// Allocate some memory for it!
|
|
unsigned Size = TD.getTypeSize(Ty);
|
|
addGlobalMapping(I, new char[Size]);
|
|
} else {
|
|
// External variable reference. Try to use the dynamic loader to
|
|
// get a pointer to it.
|
|
if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str()))
|
|
addGlobalMapping(I, SymAddr);
|
|
else {
|
|
std::cerr << "Could not resolve external global address: "
|
|
<< I->getName() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Now that all of the globals are set up in memory, loop through them all and
|
|
// initialize their contents.
|
|
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
|
|
I != E; ++I)
|
|
if (!I->isExternal())
|
|
EmitGlobalVariable(I);
|
|
}
|
|
|
|
// EmitGlobalVariable - This method emits the specified global variable to the
|
|
// address specified in GlobalAddresses, or allocates new memory if it's not
|
|
// already in the map.
|
|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
void *GA = getPointerToGlobalIfAvailable(GV);
|
|
DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
|
|
|
|
const Type *ElTy = GV->getType()->getElementType();
|
|
if (GA == 0) {
|
|
// If it's not already specified, allocate memory for the global.
|
|
GA = new char[getTargetData().getTypeSize(ElTy)];
|
|
addGlobalMapping(GV, GA);
|
|
}
|
|
|
|
InitializeMemory(GV->getInitializer(), GA);
|
|
NumInitBytes += getTargetData().getTypeSize(ElTy);
|
|
++NumGlobals;
|
|
}
|