forked from OSchip/llvm-project
2332 lines
90 KiB
C++
2332 lines
90 KiB
C++
//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMTargetTransformInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "armtti"
|
|
|
|
static cl::opt<bool> EnableMaskedLoadStores(
|
|
"enable-arm-maskedldst", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable the generation of masked loads and stores"));
|
|
|
|
static cl::opt<bool> DisableLowOverheadLoops(
|
|
"disable-arm-loloops", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable the generation of low-overhead loops"));
|
|
|
|
static cl::opt<bool>
|
|
AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable the generation of WLS loops"));
|
|
|
|
extern cl::opt<TailPredication::Mode> EnableTailPredication;
|
|
|
|
extern cl::opt<bool> EnableMaskedGatherScatters;
|
|
|
|
extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
|
|
|
|
/// Convert a vector load intrinsic into a simple llvm load instruction.
|
|
/// This is beneficial when the underlying object being addressed comes
|
|
/// from a constant, since we get constant-folding for free.
|
|
static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
|
|
|
|
if (!IntrAlign)
|
|
return nullptr;
|
|
|
|
unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
|
|
? MemAlign
|
|
: IntrAlign->getLimitedValue();
|
|
|
|
if (!isPowerOf2_32(Alignment))
|
|
return nullptr;
|
|
|
|
auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
|
|
PointerType::get(II.getType(), 0));
|
|
return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
|
|
}
|
|
|
|
bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
const FeatureBitset &CallerBits =
|
|
TM.getSubtargetImpl(*Caller)->getFeatureBits();
|
|
const FeatureBitset &CalleeBits =
|
|
TM.getSubtargetImpl(*Callee)->getFeatureBits();
|
|
|
|
// To inline a callee, all features not in the allowed list must match exactly.
|
|
bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
|
|
(CalleeBits & ~InlineFeaturesAllowed);
|
|
// For features in the allowed list, the callee's features must be a subset of
|
|
// the callers'.
|
|
bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
|
|
(CalleeBits & InlineFeaturesAllowed);
|
|
return MatchExact && MatchSubset;
|
|
}
|
|
|
|
TTI::AddressingModeKind
|
|
ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
|
|
ScalarEvolution *SE) const {
|
|
if (ST->hasMVEIntegerOps())
|
|
return TTI::AMK_PostIndexed;
|
|
|
|
if (L->getHeader()->getParent()->hasOptSize())
|
|
return TTI::AMK_None;
|
|
|
|
if (ST->isMClass() && ST->isThumb2() &&
|
|
L->getNumBlocks() == 1)
|
|
return TTI::AMK_PreIndexed;
|
|
|
|
return TTI::AMK_None;
|
|
}
|
|
|
|
Optional<Instruction *>
|
|
ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
|
|
using namespace PatternMatch;
|
|
Intrinsic::ID IID = II.getIntrinsicID();
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::arm_neon_vld1: {
|
|
Align MemAlign =
|
|
getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
|
|
&IC.getAssumptionCache(), &IC.getDominatorTree());
|
|
if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
|
|
return IC.replaceInstUsesWith(II, V);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
Align MemAlign =
|
|
getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
|
|
&IC.getAssumptionCache(), &IC.getDominatorTree());
|
|
unsigned AlignArg = II.getNumArgOperands() - 1;
|
|
Value *AlignArgOp = II.getArgOperand(AlignArg);
|
|
MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
|
|
if (Align && *Align < MemAlign) {
|
|
return IC.replaceOperand(
|
|
II, AlignArg,
|
|
ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
|
|
false));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::arm_mve_pred_i2v: {
|
|
Value *Arg = II.getArgOperand(0);
|
|
Value *ArgArg;
|
|
if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
|
|
PatternMatch::m_Value(ArgArg))) &&
|
|
II.getType() == ArgArg->getType()) {
|
|
return IC.replaceInstUsesWith(II, ArgArg);
|
|
}
|
|
Constant *XorMask;
|
|
if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
|
|
PatternMatch::m_Value(ArgArg)),
|
|
PatternMatch::m_Constant(XorMask))) &&
|
|
II.getType() == ArgArg->getType()) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
|
|
if (CI->getValue().trunc(16).isAllOnesValue()) {
|
|
auto TrueVector = IC.Builder.CreateVectorSplat(
|
|
cast<FixedVectorType>(II.getType())->getNumElements(),
|
|
IC.Builder.getTrue());
|
|
return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
|
|
}
|
|
}
|
|
}
|
|
KnownBits ScalarKnown(32);
|
|
if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
|
|
ScalarKnown, 0)) {
|
|
return &II;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::arm_mve_pred_v2i: {
|
|
Value *Arg = II.getArgOperand(0);
|
|
Value *ArgArg;
|
|
if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
|
|
PatternMatch::m_Value(ArgArg)))) {
|
|
return IC.replaceInstUsesWith(II, ArgArg);
|
|
}
|
|
if (!II.getMetadata(LLVMContext::MD_range)) {
|
|
Type *IntTy32 = Type::getInt32Ty(II.getContext());
|
|
Metadata *M[] = {
|
|
ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
|
|
ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
|
|
II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
|
|
return &II;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::arm_mve_vadc:
|
|
case Intrinsic::arm_mve_vadc_predicated: {
|
|
unsigned CarryOp =
|
|
(II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
|
|
assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
|
|
"Bad type for intrinsic!");
|
|
|
|
KnownBits CarryKnown(32);
|
|
if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
|
|
CarryKnown)) {
|
|
return &II;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::arm_mve_vmldava: {
|
|
Instruction *I = cast<Instruction>(&II);
|
|
if (I->hasOneUse()) {
|
|
auto *User = cast<Instruction>(*I->user_begin());
|
|
Value *OpZ;
|
|
if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
|
|
match(I->getOperand(3), m_Zero())) {
|
|
Value *OpX = I->getOperand(4);
|
|
Value *OpY = I->getOperand(5);
|
|
Type *OpTy = OpX->getType();
|
|
|
|
IC.Builder.SetInsertPoint(User);
|
|
Value *V =
|
|
IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
|
|
{I->getOperand(0), I->getOperand(1),
|
|
I->getOperand(2), OpZ, OpX, OpY});
|
|
|
|
IC.replaceInstUsesWith(*User, V);
|
|
return IC.eraseInstFromFunction(*User);
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
|
|
Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
|
|
APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) const {
|
|
|
|
// Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
|
|
// opcode specifying a Top/Bottom instruction, which can change between
|
|
// instructions.
|
|
auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
|
|
unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
|
|
unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
|
|
|
|
// The only odd/even lanes of operand 0 will only be demanded depending
|
|
// on whether this is a top/bottom instruction.
|
|
APInt DemandedElts =
|
|
APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
|
|
: APInt::getHighBitsSet(2, 1));
|
|
SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
|
|
// The other lanes will be defined from the inserted elements.
|
|
UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
|
|
: APInt::getHighBitsSet(2, 1));
|
|
return None;
|
|
};
|
|
|
|
switch (II.getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::arm_mve_vcvt_narrow:
|
|
SimplifyNarrowInstrTopBottom(2);
|
|
break;
|
|
case Intrinsic::arm_mve_vqmovn:
|
|
SimplifyNarrowInstrTopBottom(4);
|
|
break;
|
|
case Intrinsic::arm_mve_vshrn:
|
|
SimplifyNarrowInstrTopBottom(7);
|
|
break;
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Imm.getActiveBits() >= 64)
|
|
return 4;
|
|
|
|
int64_t SImmVal = Imm.getSExtValue();
|
|
uint64_t ZImmVal = Imm.getZExtValue();
|
|
if (!ST->isThumb()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
if (ST->isThumb2()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
// Thumb1, any i8 imm cost 1.
|
|
if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
|
|
return 1;
|
|
if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
|
|
return 2;
|
|
// Load from constantpool.
|
|
return 3;
|
|
}
|
|
|
|
// Constants smaller than 256 fit in the immediate field of
|
|
// Thumb1 instructions so we return a zero cost and 1 otherwise.
|
|
InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty) {
|
|
if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Checks whether Inst is part of a min(max()) or max(min()) pattern
|
|
// that will match to an SSAT instruction
|
|
static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
|
|
Value *LHS, *RHS;
|
|
ConstantInt *C;
|
|
SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
|
|
|
|
if (InstSPF == SPF_SMAX &&
|
|
PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
|
|
C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) {
|
|
|
|
auto isSSatMin = [&](Value *MinInst) {
|
|
if (isa<SelectInst>(MinInst)) {
|
|
Value *MinLHS, *MinRHS;
|
|
ConstantInt *MinC;
|
|
SelectPatternFlavor MinSPF =
|
|
matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
|
|
if (MinSPF == SPF_SMIN &&
|
|
PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
|
|
MinC->getValue() == ((-Imm) - 1))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (isSSatMin(Inst->getOperand(1)) ||
|
|
(Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) ||
|
|
isSSatMin(*(++Inst->user_begin())))))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) {
|
|
// Division by a constant can be turned into multiplication, but only if we
|
|
// know it's constant. So it's not so much that the immediate is cheap (it's
|
|
// not), but that the alternative is worse.
|
|
// FIXME: this is probably unneeded with GlobalISel.
|
|
if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
|
|
Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
|
|
Idx == 1)
|
|
return 0;
|
|
|
|
// Leave any gep offsets for the CodeGenPrepare, which will do a better job at
|
|
// splitting any large offsets.
|
|
if (Opcode == Instruction::GetElementPtr && Idx != 0)
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::And) {
|
|
// UXTB/UXTH
|
|
if (Imm == 255 || Imm == 65535)
|
|
return 0;
|
|
// Conversion to BIC is free, and means we can use ~Imm instead.
|
|
return std::min(getIntImmCost(Imm, Ty, CostKind),
|
|
getIntImmCost(~Imm, Ty, CostKind));
|
|
}
|
|
|
|
if (Opcode == Instruction::Add)
|
|
// Conversion to SUB is free, and means we can use -Imm instead.
|
|
return std::min(getIntImmCost(Imm, Ty, CostKind),
|
|
getIntImmCost(-Imm, Ty, CostKind));
|
|
|
|
if (Opcode == Instruction::ICmp && Imm.isNegative() &&
|
|
Ty->getIntegerBitWidth() == 32) {
|
|
int64_t NegImm = -Imm.getSExtValue();
|
|
if (ST->isThumb2() && NegImm < 1<<12)
|
|
// icmp X, #-C -> cmn X, #C
|
|
return 0;
|
|
if (ST->isThumb() && NegImm < 1<<8)
|
|
// icmp X, #-C -> adds X, #C
|
|
return 0;
|
|
}
|
|
|
|
// xor a, -1 can always be folded to MVN
|
|
if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
|
|
return 0;
|
|
|
|
// Ensures negative constant of min(max()) or max(min()) patterns that
|
|
// match to SSAT instructions don't get hoisted
|
|
if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
|
|
Ty->getIntegerBitWidth() <= 32) {
|
|
if (isSSATMinMaxPattern(Inst, Imm) ||
|
|
(isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
|
|
isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
|
|
return 0;
|
|
}
|
|
|
|
return getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (CostKind == TTI::TCK_RecipThroughput &&
|
|
(ST->hasNEON() || ST->hasMVEIntegerOps())) {
|
|
// FIXME: The vectorizer is highly sensistive to the cost of these
|
|
// instructions, which suggests that it may be using the costs incorrectly.
|
|
// But, for now, just make them free to avoid performance regressions for
|
|
// vector targets.
|
|
return 0;
|
|
}
|
|
return BaseT::getCFInstrCost(Opcode, CostKind, I);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// TODO: Allow non-throughput costs that aren't binary.
|
|
auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost == 0 ? 0 : 1;
|
|
return Cost;
|
|
};
|
|
auto IsLegalFPType = [this](EVT VT) {
|
|
EVT EltVT = VT.getScalarType();
|
|
return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
|
|
(EltVT == MVT::f64 && ST->hasFP64()) ||
|
|
(EltVT == MVT::f16 && ST->hasFullFP16());
|
|
};
|
|
|
|
EVT SrcTy = TLI->getValueType(DL, Src);
|
|
EVT DstTy = TLI->getValueType(DL, Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return AdjustCost(
|
|
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
|
|
|
|
// Extending masked load/Truncating masked stores is expensive because we
|
|
// currently don't split them. This means that we'll likely end up
|
|
// loading/storing each element individually (hence the high cost).
|
|
if ((ST->hasMVEIntegerOps() &&
|
|
(Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
|
|
Opcode == Instruction::SExt)) ||
|
|
(ST->hasMVEFloatOps() &&
|
|
(Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
|
|
IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
|
|
if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
|
|
return 2 * DstTy.getVectorNumElements() *
|
|
ST->getMVEVectorCostFactor(CostKind);
|
|
|
|
// The extend of other kinds of load is free
|
|
if (CCH == TTI::CastContextHint::Normal ||
|
|
CCH == TTI::CastContextHint::Masked) {
|
|
static const TypeConversionCostTblEntry LoadConversionTbl[] = {
|
|
{ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
|
|
{ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
|
|
{ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
|
|
};
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
|
|
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
|
|
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
|
|
{ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
|
|
{ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
|
|
// The following extend from a legal type to an illegal type, so need to
|
|
// split the load. This introduced an extra load operation, but the
|
|
// extend is still "free".
|
|
{ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
|
|
{ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
|
|
{ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
|
|
{ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
|
|
{ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
|
|
{ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
|
|
};
|
|
if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
|
|
if (const auto *Entry =
|
|
ConvertCostTableLookup(MVELoadConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
|
|
static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
|
|
// FPExtends are similar but also require the VCVT instructions.
|
|
{ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
|
|
{ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
|
|
};
|
|
if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
|
|
if (const auto *Entry =
|
|
ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
|
|
// The truncate of a store is free. This is the mirror of extends above.
|
|
static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
|
|
{ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
|
|
{ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
|
|
{ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
|
|
{ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
|
|
{ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
|
|
{ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
|
|
{ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
|
|
};
|
|
if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
|
|
if (const auto *Entry =
|
|
ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
|
|
SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
|
|
static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
|
|
{ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
|
|
{ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
|
|
};
|
|
if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
|
|
if (const auto *Entry =
|
|
ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
|
|
SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
}
|
|
|
|
// NEON vector operations that can extend their inputs.
|
|
if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
|
|
I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
|
|
static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
|
|
// vaddl
|
|
{ ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::ADD, MVT::v8i16, MVT::v8i8, 0 },
|
|
// vsubl
|
|
{ ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SUB, MVT::v8i16, MVT::v8i8, 0 },
|
|
// vmull
|
|
{ ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::MUL, MVT::v8i16, MVT::v8i8, 0 },
|
|
// vshll
|
|
{ ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SHL, MVT::v8i16, MVT::v8i8, 0 },
|
|
};
|
|
|
|
auto *User = cast<Instruction>(*I->user_begin());
|
|
int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
|
|
if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT())) {
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
}
|
|
|
|
// Single to/from double precision conversions.
|
|
if (Src->isVectorTy() && ST->hasNEON() &&
|
|
((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
|
|
DstTy.getScalarType() == MVT::f32) ||
|
|
(ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
|
|
DstTy.getScalarType() == MVT::f64))) {
|
|
static const CostTblEntry NEONFltDblTbl[] = {
|
|
// Vector fptrunc/fpext conversions.
|
|
{ISD::FP_ROUND, MVT::v2f64, 2},
|
|
{ISD::FP_EXTEND, MVT::v2f32, 2},
|
|
{ISD::FP_EXTEND, MVT::v4f32, 4}};
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
|
|
return AdjustCost(LT.first * Entry->Cost);
|
|
}
|
|
|
|
// Some arithmetic, load and store operations have specific instructions
|
|
// to cast up/down their types automatically at no extra cost.
|
|
// TODO: Get these tables to know at least what the related operations are.
|
|
static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
|
|
|
|
// The number of vmovl instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// Operations that we legalize using splitting.
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
|
|
|
|
// Vector float <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
|
|
// Vector double <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
// Scalar float to integer conversions.
|
|
static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
|
|
};
|
|
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
// Scalar integer to float conversions.
|
|
static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
|
|
};
|
|
|
|
if (SrcTy.isInteger() && ST->hasNEON()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
// MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
|
|
// instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
|
|
// are linearised so take more.
|
|
static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
|
|
if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
|
|
// As general rule, fp converts that were not matched above are scalarized
|
|
// and cost 1 vcvt for each lane, so long as the instruction is available.
|
|
// If not it will become a series of function calls.
|
|
const InstructionCost CallCost =
|
|
getCallInstrCost(nullptr, Dst, {Src}, CostKind);
|
|
int Lanes = 1;
|
|
if (SrcTy.isFixedLengthVector())
|
|
Lanes = SrcTy.getVectorNumElements();
|
|
|
|
if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
|
|
return Lanes;
|
|
else
|
|
return Lanes * CallCost;
|
|
}
|
|
|
|
if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
|
|
SrcTy.isFixedLengthVector()) {
|
|
// Treat a truncate with larger than legal source (128bits for MVE) as
|
|
// expensive, 2 instructions per lane.
|
|
if ((SrcTy.getScalarType() == MVT::i8 ||
|
|
SrcTy.getScalarType() == MVT::i16 ||
|
|
SrcTy.getScalarType() == MVT::i32) &&
|
|
SrcTy.getSizeInBits() > 128 &&
|
|
SrcTy.getSizeInBits() > DstTy.getSizeInBits())
|
|
return SrcTy.getVectorNumElements() * 2;
|
|
}
|
|
|
|
// Scalar integer conversion costs.
|
|
static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
|
|
// i16 -> i64 requires two dependent operations.
|
|
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
|
|
|
|
// Truncates on i64 are assumed to be free.
|
|
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
|
|
};
|
|
|
|
if (SrcTy.isInteger()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
|
|
? ST->getMVEVectorCostFactor(CostKind)
|
|
: 1;
|
|
return AdjustCost(
|
|
BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
// Penalize inserting into an D-subregister. We end up with a three times
|
|
// lower estimated throughput on swift.
|
|
if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
|
|
ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
|
|
return 3;
|
|
|
|
if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
|
|
Opcode == Instruction::ExtractElement)) {
|
|
// Cross-class copies are expensive on many microarchitectures,
|
|
// so assume they are expensive by default.
|
|
if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
|
|
return 3;
|
|
|
|
// Even if it's not a cross class copy, this likely leads to mixing
|
|
// of NEON and VFP code and should be therefore penalized.
|
|
if (ValTy->isVectorTy() &&
|
|
ValTy->getScalarSizeInBits() <= 32)
|
|
return std::max<InstructionCost>(
|
|
BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
|
|
}
|
|
|
|
if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
|
|
Opcode == Instruction::ExtractElement)) {
|
|
// Integer cross-lane moves are more expensive than float, which can
|
|
// sometimes just be vmovs. Integer involve being passes to GPR registers,
|
|
// causing more of a delay.
|
|
std::pair<InstructionCost, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType());
|
|
return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
|
|
}
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
// Thumb scalar code size cost for select.
|
|
if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
|
|
ST->isThumb() && !ValTy->isVectorTy()) {
|
|
// Assume expensive structs.
|
|
if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
|
|
return TTI::TCC_Expensive;
|
|
|
|
// Select costs can vary because they:
|
|
// - may require one or more conditional mov (including an IT),
|
|
// - can't operate directly on immediates,
|
|
// - require live flags, which we can't copy around easily.
|
|
InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
|
|
|
|
// Possible IT instruction for Thumb2, or more for Thumb1.
|
|
++Cost;
|
|
|
|
// i1 values may need rematerialising by using mov immediates and/or
|
|
// flag setting instructions.
|
|
if (ValTy->isIntegerTy(1))
|
|
++Cost;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// If this is a vector min/max/abs, use the cost of that intrinsic directly
|
|
// instead. Hopefully when min/max intrinsics are more prevalent this code
|
|
// will not be needed.
|
|
const Instruction *Sel = I;
|
|
if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
|
|
Sel->hasOneUse())
|
|
Sel = cast<Instruction>(Sel->user_back());
|
|
if (Sel && ValTy->isVectorTy() &&
|
|
(ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
|
|
const Value *LHS, *RHS;
|
|
SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
|
|
unsigned IID = 0;
|
|
switch (SPF) {
|
|
case SPF_ABS:
|
|
IID = Intrinsic::abs;
|
|
break;
|
|
case SPF_SMIN:
|
|
IID = Intrinsic::smin;
|
|
break;
|
|
case SPF_SMAX:
|
|
IID = Intrinsic::smax;
|
|
break;
|
|
case SPF_UMIN:
|
|
IID = Intrinsic::umin;
|
|
break;
|
|
case SPF_UMAX:
|
|
IID = Intrinsic::umax;
|
|
break;
|
|
case SPF_FMINNUM:
|
|
IID = Intrinsic::minnum;
|
|
break;
|
|
case SPF_FMAXNUM:
|
|
IID = Intrinsic::maxnum;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (IID) {
|
|
// The ICmp is free, the select gets the cost of the min/max/etc
|
|
if (Sel != I)
|
|
return 0;
|
|
IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
|
|
return getIntrinsicInstrCost(CostAttrs, CostKind);
|
|
}
|
|
}
|
|
|
|
// On NEON a vector select gets lowered to vbsl.
|
|
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
|
|
// Lowering of some vector selects is currently far from perfect.
|
|
static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(DL, CondTy);
|
|
EVT SelValTy = TLI->getValueType(DL, ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
|
|
SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI->getTypeLegalizationCost(DL, ValTy);
|
|
return LT.first;
|
|
}
|
|
|
|
if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
|
|
(Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
|
|
FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
|
|
FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
|
|
if (!VecCondTy)
|
|
VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
|
|
|
|
// If we don't have mve.fp any fp operations will need to be scalarized.
|
|
if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
|
|
// One scalaization insert, one scalarization extract and the cost of the
|
|
// fcmps.
|
|
return BaseT::getScalarizationOverhead(VecValTy, false, true) +
|
|
BaseT::getScalarizationOverhead(VecCondTy, true, false) +
|
|
VecValTy->getNumElements() *
|
|
getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
|
|
VecCondTy->getScalarType(), VecPred, CostKind,
|
|
I);
|
|
}
|
|
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI->getTypeLegalizationCost(DL, ValTy);
|
|
int BaseCost = ST->getMVEVectorCostFactor(CostKind);
|
|
// There are two types - the input that specifies the type of the compare
|
|
// and the output vXi1 type. Because we don't know how the output will be
|
|
// split, we may need an expensive shuffle to get two in sync. This has the
|
|
// effect of making larger than legal compares (v8i32 for example)
|
|
// expensive.
|
|
if (LT.second.getVectorNumElements() > 2) {
|
|
if (LT.first > 1)
|
|
return LT.first * BaseCost +
|
|
BaseT::getScalarizationOverhead(VecCondTy, true, false);
|
|
return BaseCost;
|
|
}
|
|
}
|
|
|
|
// Default to cheap (throughput/size of 1 instruction) but adjust throughput
|
|
// for "multiple beats" potentially needed by MVE instructions.
|
|
int BaseCost = 1;
|
|
if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
|
|
BaseCost = ST->getMVEVectorCostFactor(CostKind);
|
|
|
|
return BaseCost *
|
|
BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
|
|
ScalarEvolution *SE,
|
|
const SCEV *Ptr) {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
int MaxMergeDistance = 64;
|
|
|
|
if (ST->hasNEON()) {
|
|
if (Ty->isVectorTy() && SE &&
|
|
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
return BaseT::getAddressComputationCost(Ty, SE, Ptr);
|
|
}
|
|
|
|
bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
// If a VCTP is part of a chain, it's already profitable and shouldn't be
|
|
// optimized, else LSR may block tail-predication.
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::arm_mve_vctp8:
|
|
case Intrinsic::arm_mve_vctp16:
|
|
case Intrinsic::arm_mve_vctp32:
|
|
case Intrinsic::arm_mve_vctp64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
|
|
if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
|
|
// Don't support v2i1 yet.
|
|
if (VecTy->getNumElements() == 2)
|
|
return false;
|
|
|
|
// We don't support extending fp types.
|
|
unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
|
|
if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
|
|
return false;
|
|
}
|
|
|
|
unsigned EltWidth = DataTy->getScalarSizeInBits();
|
|
return (EltWidth == 32 && Alignment >= 4) ||
|
|
(EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
|
|
}
|
|
|
|
bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
|
|
if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
// This method is called in 2 places:
|
|
// - from the vectorizer with a scalar type, in which case we need to get
|
|
// this as good as we can with the limited info we have (and rely on the cost
|
|
// model for the rest).
|
|
// - from the masked intrinsic lowering pass with the actual vector type.
|
|
// For MVE, we have a custom lowering pass that will already have custom
|
|
// legalised any gathers that we can to MVE intrinsics, and want to expand all
|
|
// the rest. The pass runs before the masked intrinsic lowering pass, so if we
|
|
// are here, we know we want to expand.
|
|
if (isa<VectorType>(Ty))
|
|
return false;
|
|
|
|
unsigned EltWidth = Ty->getScalarSizeInBits();
|
|
return ((EltWidth == 32 && Alignment >= 4) ||
|
|
(EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
|
|
}
|
|
|
|
/// Given a memcpy/memset/memmove instruction, return the number of memory
|
|
/// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
|
|
/// call is used.
|
|
int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
|
|
MemOp MOp;
|
|
unsigned DstAddrSpace = ~0u;
|
|
unsigned SrcAddrSpace = ~0u;
|
|
const Function *F = I->getParent()->getParent();
|
|
|
|
if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
|
|
ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
|
|
// If 'size' is not a constant, a library call will be generated.
|
|
if (!C)
|
|
return -1;
|
|
|
|
const unsigned Size = C->getValue().getZExtValue();
|
|
const Align DstAlign = *MC->getDestAlign();
|
|
const Align SrcAlign = *MC->getSourceAlign();
|
|
|
|
MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
|
|
/*IsVolatile*/ false);
|
|
DstAddrSpace = MC->getDestAddressSpace();
|
|
SrcAddrSpace = MC->getSourceAddressSpace();
|
|
}
|
|
else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
|
|
ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
|
|
// If 'size' is not a constant, a library call will be generated.
|
|
if (!C)
|
|
return -1;
|
|
|
|
const unsigned Size = C->getValue().getZExtValue();
|
|
const Align DstAlign = *MS->getDestAlign();
|
|
|
|
MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
|
|
/*IsZeroMemset*/ false, /*IsVolatile*/ false);
|
|
DstAddrSpace = MS->getDestAddressSpace();
|
|
}
|
|
else
|
|
llvm_unreachable("Expected a memcpy/move or memset!");
|
|
|
|
unsigned Limit, Factor = 2;
|
|
switch(I->getIntrinsicID()) {
|
|
case Intrinsic::memcpy:
|
|
Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
|
|
break;
|
|
case Intrinsic::memmove:
|
|
Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
|
|
break;
|
|
case Intrinsic::memset:
|
|
Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
|
|
Factor = 1;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Expected a memcpy/move or memset!");
|
|
}
|
|
|
|
// MemOps will be poplulated with a list of data types that needs to be
|
|
// loaded and stored. That's why we multiply the number of elements by 2 to
|
|
// get the cost for this memcpy.
|
|
std::vector<EVT> MemOps;
|
|
if (getTLI()->findOptimalMemOpLowering(
|
|
MemOps, Limit, MOp, DstAddrSpace,
|
|
SrcAddrSpace, F->getAttributes()))
|
|
return MemOps.size() * Factor;
|
|
|
|
// If we can't find an optimal memop lowering, return the default cost
|
|
return -1;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
|
|
int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
|
|
|
|
// To model the cost of a library call, we assume 1 for the call, and
|
|
// 3 for the argument setup.
|
|
if (NumOps == -1)
|
|
return 4;
|
|
return NumOps;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
|
|
VectorType *Tp, ArrayRef<int> Mask,
|
|
int Index, VectorType *SubTp) {
|
|
Kind = improveShuffleKindFromMask(Kind, Mask);
|
|
if (ST->hasNEON()) {
|
|
if (Kind == TTI::SK_Broadcast) {
|
|
static const CostTblEntry NEONDupTbl[] = {
|
|
// VDUP handles these cases.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (const auto *Entry =
|
|
CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
if (Kind == TTI::SK_Reverse) {
|
|
static const CostTblEntry NEONShuffleTbl[] = {
|
|
// Reverse shuffle cost one instruction if we are shuffling within a
|
|
// double word (vrev) or two if we shuffle a quad word (vrev, vext).
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (const auto *Entry =
|
|
CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
if (Kind == TTI::SK_Select) {
|
|
static const CostTblEntry NEONSelShuffleTbl[] = {
|
|
// Select shuffle cost table for ARM. Cost is the number of
|
|
// instructions
|
|
// required to create the shuffled vector.
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
|
|
ISD::VECTOR_SHUFFLE, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
}
|
|
if (ST->hasMVEIntegerOps()) {
|
|
if (Kind == TTI::SK_Broadcast) {
|
|
static const CostTblEntry MVEDupTbl[] = {
|
|
// VDUP handles these cases.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
|
|
LT.second))
|
|
return LT.first * Entry->Cost *
|
|
ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
|
|
}
|
|
|
|
if (!Mask.empty()) {
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
if (Mask.size() <= LT.second.getVectorNumElements() &&
|
|
(isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
|
|
isVREVMask(Mask, LT.second, 64)))
|
|
return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
|
|
}
|
|
}
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
|
|
? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
|
|
: 1;
|
|
return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
|
|
if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
|
|
// Make operations on i1 relatively expensive as this often involves
|
|
// combining predicates. AND and XOR should be easier to handle with IT
|
|
// blocks.
|
|
switch (ISDOpcode) {
|
|
default:
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::XOR:
|
|
return 2;
|
|
case ISD::OR:
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
if (ST->hasNEON()) {
|
|
const unsigned FunctionCallDivCost = 20;
|
|
const unsigned ReciprocalDivCost = 10;
|
|
static const CostTblEntry CostTbl[] = {
|
|
// Division.
|
|
// These costs are somewhat random. Choose a cost of 20 to indicate that
|
|
// vectorizing devision (added function call) is going to be very expensive.
|
|
// Double registers types.
|
|
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
// Quad register types.
|
|
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
// Multiplication.
|
|
};
|
|
|
|
if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
InstructionCost Cost = BaseT::getArithmeticInstrCost(
|
|
Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
|
|
|
|
// This is somewhat of a hack. The problem that we are facing is that SROA
|
|
// creates a sequence of shift, and, or instructions to construct values.
|
|
// These sequences are recognized by the ISel and have zero-cost. Not so for
|
|
// the vectorized code. Because we have support for v2i64 but not i64 those
|
|
// sequences look particularly beneficial to vectorize.
|
|
// To work around this we increase the cost of v2i64 operations to make them
|
|
// seem less beneficial.
|
|
if (LT.second == MVT::v2i64 &&
|
|
Op2Info == TargetTransformInfo::OK_UniformConstantValue)
|
|
Cost += 4;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// If this operation is a shift on arm/thumb2, it might well be folded into
|
|
// the following instruction, hence having a cost of 0.
|
|
auto LooksLikeAFreeShift = [&]() {
|
|
if (ST->isThumb1Only() || Ty->isVectorTy())
|
|
return false;
|
|
|
|
if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
|
|
return false;
|
|
if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
|
|
return false;
|
|
|
|
// Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
|
|
switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::And:
|
|
case Instruction::Xor:
|
|
case Instruction::Or:
|
|
case Instruction::ICmp:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
if (LooksLikeAFreeShift())
|
|
return 0;
|
|
|
|
// Default to cheap (throughput/size of 1 instruction) but adjust throughput
|
|
// for "multiple beats" potentially needed by MVE instructions.
|
|
int BaseCost = 1;
|
|
if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
|
|
BaseCost = ST->getMVEVectorCostFactor(CostKind);
|
|
|
|
// The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
|
|
// without treating floats as more expensive that scalars or increasing the
|
|
// costs for custom operations. The results is also multiplied by the
|
|
// MVEVectorCostFactor where appropriate.
|
|
if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
|
|
return LT.first * BaseCost;
|
|
|
|
// Else this is expand, assume that we need to scalarize this op.
|
|
if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
|
|
unsigned Num = VTy->getNumElements();
|
|
InstructionCost Cost =
|
|
getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
SmallVector<Type *> Tys(Args.size(), Ty);
|
|
return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
|
|
}
|
|
|
|
return BaseCost;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return 1;
|
|
|
|
// Type legalization can't handle structs
|
|
if (TLI->getValueType(DL, Src, true) == MVT::Other)
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
|
|
if (ST->hasNEON() && Src->isVectorTy() &&
|
|
(Alignment && *Alignment != Align(16)) &&
|
|
cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
|
|
// Unaligned loads/stores are extremely inefficient.
|
|
// We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
return LT.first * 4;
|
|
}
|
|
|
|
// MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
|
|
// Same for stores.
|
|
if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
|
|
((Opcode == Instruction::Load && I->hasOneUse() &&
|
|
isa<FPExtInst>(*I->user_begin())) ||
|
|
(Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
|
|
FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
|
|
Type *DstTy =
|
|
Opcode == Instruction::Load
|
|
? (*I->user_begin())->getType()
|
|
: cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
|
|
if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
|
|
DstTy->getScalarType()->isFloatTy())
|
|
return ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
|
|
int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
|
|
? ST->getMVEVectorCostFactor(CostKind)
|
|
: 1;
|
|
return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, I);
|
|
}
|
|
|
|
InstructionCost
|
|
ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (ST->hasMVEIntegerOps()) {
|
|
if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
|
|
return ST->getMVEVectorCostFactor(CostKind);
|
|
if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
|
|
return ST->getMVEVectorCostFactor(CostKind);
|
|
}
|
|
if (!isa<FixedVectorType>(Src))
|
|
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
// Scalar cost, which is currently very high due to the efficiency of the
|
|
// generated code.
|
|
return cast<FixedVectorType>(Src)->getNumElements() * 8;
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
assert(Factor >= 2 && "Invalid interleave factor");
|
|
assert(isa<VectorType>(VecTy) && "Expect a vector type");
|
|
|
|
// vldN/vstN doesn't support vector types of i64/f64 element.
|
|
bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
|
|
|
|
if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
|
|
!UseMaskForCond && !UseMaskForGaps) {
|
|
unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
|
|
auto *SubVecTy =
|
|
FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
|
|
|
|
// vldN/vstN only support legal vector types of size 64 or 128 in bits.
|
|
// Accesses having vector types that are a multiple of 128 bits can be
|
|
// matched to more than one vldN/vstN instruction.
|
|
int BaseCost =
|
|
ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
|
|
if (NumElts % Factor == 0 &&
|
|
TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
|
|
return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
|
|
|
|
// Some smaller than legal interleaved patterns are cheap as we can make
|
|
// use of the vmovn or vrev patterns to interleave a standard load. This is
|
|
// true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
|
|
// promoted differently). The cost of 2 here is then a load and vrev or
|
|
// vmovn.
|
|
if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
|
|
VecTy->isIntOrIntVectorTy() &&
|
|
DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
|
|
return 2 * BaseCost;
|
|
}
|
|
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
}
|
|
|
|
InstructionCost ARMTTIImpl::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
using namespace PatternMatch;
|
|
if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
|
|
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
|
|
assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
|
|
auto *VTy = cast<FixedVectorType>(DataTy);
|
|
|
|
// TODO: Splitting, once we do that.
|
|
|
|
unsigned NumElems = VTy->getNumElements();
|
|
unsigned EltSize = VTy->getScalarSizeInBits();
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
|
|
|
|
// For now, it is assumed that for the MVE gather instructions the loads are
|
|
// all effectively serialised. This means the cost is the scalar cost
|
|
// multiplied by the number of elements being loaded. This is possibly very
|
|
// conservative, but even so we still end up vectorising loops because the
|
|
// cost per iteration for many loops is lower than for scalar loops.
|
|
InstructionCost VectorCost =
|
|
NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
|
|
// The scalarization cost should be a lot higher. We use the number of vector
|
|
// elements plus the scalarization overhead.
|
|
InstructionCost ScalarCost =
|
|
NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) +
|
|
BaseT::getScalarizationOverhead(VTy, false, true);
|
|
|
|
if (EltSize < 8 || Alignment < EltSize / 8)
|
|
return ScalarCost;
|
|
|
|
unsigned ExtSize = EltSize;
|
|
// Check whether there's a single user that asks for an extended type
|
|
if (I != nullptr) {
|
|
// Dependent of the caller of this function, a gather instruction will
|
|
// either have opcode Instruction::Load or be a call to the masked_gather
|
|
// intrinsic
|
|
if ((I->getOpcode() == Instruction::Load ||
|
|
match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
|
|
I->hasOneUse()) {
|
|
const User *Us = *I->users().begin();
|
|
if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
|
|
// only allow valid type combinations
|
|
unsigned TypeSize =
|
|
cast<Instruction>(Us)->getType()->getScalarSizeInBits();
|
|
if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
|
|
(TypeSize == 16 && EltSize == 8)) &&
|
|
TypeSize * NumElems == 128) {
|
|
ExtSize = TypeSize;
|
|
}
|
|
}
|
|
}
|
|
// Check whether the input data needs to be truncated
|
|
TruncInst *T;
|
|
if ((I->getOpcode() == Instruction::Store ||
|
|
match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
|
|
(T = dyn_cast<TruncInst>(I->getOperand(0)))) {
|
|
// Only allow valid type combinations
|
|
unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
|
|
if (((EltSize == 16 && TypeSize == 32) ||
|
|
(EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
|
|
TypeSize * NumElems == 128)
|
|
ExtSize = TypeSize;
|
|
}
|
|
}
|
|
|
|
if (ExtSize * NumElems != 128 || NumElems < 4)
|
|
return ScalarCost;
|
|
|
|
// Any (aligned) i32 gather will not need to be scalarised.
|
|
if (ExtSize == 32)
|
|
return VectorCost;
|
|
// For smaller types, we need to ensure that the gep's inputs are correctly
|
|
// extended from a small enough value. Other sizes (including i64) are
|
|
// scalarized for now.
|
|
if (ExtSize != 8 && ExtSize != 16)
|
|
return ScalarCost;
|
|
|
|
if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
|
|
Ptr = BC->getOperand(0);
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (GEP->getNumOperands() != 2)
|
|
return ScalarCost;
|
|
unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
|
|
// Scale needs to be correct (which is only relevant for i16s).
|
|
if (Scale != 1 && Scale * 8 != ExtSize)
|
|
return ScalarCost;
|
|
// And we need to zext (not sext) the indexes from a small enough type.
|
|
if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
|
|
if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
|
|
return VectorCost;
|
|
}
|
|
return ScalarCost;
|
|
}
|
|
return ScalarCost;
|
|
}
|
|
|
|
InstructionCost
|
|
ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
|
|
Optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (TTI::requiresOrderedReduction(FMF))
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
|
|
EVT ValVT = TLI->getValueType(DL, ValTy);
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
static const CostTblEntry CostTblAdd[]{
|
|
{ISD::ADD, MVT::v16i8, 1},
|
|
{ISD::ADD, MVT::v8i16, 1},
|
|
{ISD::ADD, MVT::v4i32, 1},
|
|
};
|
|
if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
|
|
return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
|
|
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
|
|
Type *ResTy, VectorType *ValTy,
|
|
TTI::TargetCostKind CostKind) {
|
|
EVT ValVT = TLI->getValueType(DL, ValTy);
|
|
EVT ResVT = TLI->getValueType(DL, ResTy);
|
|
|
|
if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
// The legal cases are:
|
|
// VADDV u/s 8/16/32
|
|
// VMLAV u/s 8/16/32
|
|
// VADDLV u/s 32
|
|
// VMLALV u/s 16/32
|
|
// Codegen currently cannot always handle larger than legal vectors very
|
|
// well, especially for predicated reductions where the mask needs to be
|
|
// split, so restrict to 128bit or smaller input types.
|
|
unsigned RevVTSize = ResVT.getSizeInBits();
|
|
if (ValVT.getSizeInBits() <= 128 &&
|
|
((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
|
|
(LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) ||
|
|
(LT.second == MVT::v4i32 && RevVTSize <= 64)))
|
|
return ST->getMVEVectorCostFactor(CostKind) * LT.first;
|
|
}
|
|
|
|
return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
|
|
CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::get_active_lane_mask:
|
|
// Currently we make a somewhat optimistic assumption that
|
|
// active_lane_mask's are always free. In reality it may be freely folded
|
|
// into a tail predicated loop, expanded into a VCPT or expanded into a lot
|
|
// of add/icmp code. We may need to improve this in the future, but being
|
|
// able to detect if it is free or not involves looking at a lot of other
|
|
// code. We currently assume that the vectorizer inserted these, and knew
|
|
// what it was doing in adding one.
|
|
if (ST->hasMVEIntegerOps())
|
|
return 0;
|
|
break;
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat: {
|
|
if (!ST->hasMVEIntegerOps())
|
|
break;
|
|
Type *VT = ICA.getReturnType();
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
|
|
if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
|
|
LT.second == MVT::v16i8) {
|
|
// This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
|
|
// need to extend the type, as it uses shr(qadd(shl, shl)).
|
|
unsigned Instrs =
|
|
LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
|
|
return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::abs:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::smax:
|
|
case Intrinsic::umin:
|
|
case Intrinsic::umax: {
|
|
if (!ST->hasMVEIntegerOps())
|
|
break;
|
|
Type *VT = ICA.getReturnType();
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
|
|
if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
|
|
LT.second == MVT::v16i8)
|
|
return LT.first * ST->getMVEVectorCostFactor(CostKind);
|
|
break;
|
|
}
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum: {
|
|
if (!ST->hasMVEFloatOps())
|
|
break;
|
|
Type *VT = ICA.getReturnType();
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
|
|
if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
|
|
return LT.first * ST->getMVEVectorCostFactor(CostKind);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
bool ARMTTIImpl::isLoweredToCall(const Function *F) {
|
|
if (!F->isIntrinsic())
|
|
BaseT::isLoweredToCall(F);
|
|
|
|
// Assume all Arm-specific intrinsics map to an instruction.
|
|
if (F->getName().startswith("llvm.arm"))
|
|
return false;
|
|
|
|
switch (F->getIntrinsicID()) {
|
|
default: break;
|
|
case Intrinsic::powi:
|
|
case Intrinsic::sin:
|
|
case Intrinsic::cos:
|
|
case Intrinsic::pow:
|
|
case Intrinsic::log:
|
|
case Intrinsic::log10:
|
|
case Intrinsic::log2:
|
|
case Intrinsic::exp:
|
|
case Intrinsic::exp2:
|
|
return true;
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::fabs:
|
|
case Intrinsic::copysign:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::canonicalize:
|
|
case Intrinsic::lround:
|
|
case Intrinsic::llround:
|
|
case Intrinsic::lrint:
|
|
case Intrinsic::llrint:
|
|
if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
|
|
return true;
|
|
if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
|
|
return true;
|
|
// Some operations can be handled by vector instructions and assume
|
|
// unsupported vectors will be expanded into supported scalar ones.
|
|
// TODO Handle scalar operations properly.
|
|
return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
|
|
case Intrinsic::masked_store:
|
|
case Intrinsic::masked_load:
|
|
case Intrinsic::masked_gather:
|
|
case Intrinsic::masked_scatter:
|
|
return !ST->hasMVEIntegerOps();
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::usub_sat:
|
|
return false;
|
|
}
|
|
|
|
return BaseT::isLoweredToCall(F);
|
|
}
|
|
|
|
bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
|
|
unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
|
|
EVT VT = TLI->getValueType(DL, I.getType(), true);
|
|
if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
|
|
return true;
|
|
|
|
// Check if an intrinsic will be lowered to a call and assume that any
|
|
// other CallInst will generate a bl.
|
|
if (auto *Call = dyn_cast<CallInst>(&I)) {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
|
|
switch(II->getIntrinsicID()) {
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
return getNumMemOps(II) == -1;
|
|
default:
|
|
if (const Function *F = Call->getCalledFunction())
|
|
return isLoweredToCall(F);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FPv5 provides conversions between integer, double-precision,
|
|
// single-precision, and half-precision formats.
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
break;
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPToUI:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
return !ST->hasFPARMv8Base();
|
|
}
|
|
|
|
// FIXME: Unfortunately the approach of checking the Operation Action does
|
|
// not catch all cases of Legalization that use library calls. Our
|
|
// Legalization step categorizes some transformations into library calls as
|
|
// Custom, Expand or even Legal when doing type legalization. So for now
|
|
// we have to special case for instance the SDIV of 64bit integers and the
|
|
// use of floating point emulation.
|
|
if (VT.isInteger() && VT.getSizeInBits() >= 64) {
|
|
switch (ISD) {
|
|
default:
|
|
break;
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Assume all other non-float operations are supported.
|
|
if (!VT.isFloatingPoint())
|
|
return false;
|
|
|
|
// We'll need a library call to handle most floats when using soft.
|
|
if (TLI->useSoftFloat()) {
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
return true;
|
|
case Instruction::Alloca:
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
case Instruction::Select:
|
|
case Instruction::PHI:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We'll need a libcall to perform double precision operations on a single
|
|
// precision only FPU.
|
|
if (I.getType()->isDoubleTy() && !ST->hasFP64())
|
|
return true;
|
|
|
|
// Likewise for half precision arithmetic.
|
|
if (I.getType()->isHalfTy() && !ST->hasFullFP16())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *LibInfo,
|
|
HardwareLoopInfo &HWLoopInfo) {
|
|
// Low-overhead branches are only supported in the 'low-overhead branch'
|
|
// extension of v8.1-m.
|
|
if (!ST->hasLOB() || DisableLowOverheadLoops) {
|
|
LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
|
|
return false;
|
|
}
|
|
|
|
if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
|
|
LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
|
|
LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *TripCountSCEV =
|
|
SE.getAddExpr(BackedgeTakenCount,
|
|
SE.getOne(BackedgeTakenCount->getType()));
|
|
|
|
// We need to store the trip count in LR, a 32-bit register.
|
|
if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
|
|
LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
|
|
return false;
|
|
}
|
|
|
|
// Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
|
|
// point in generating a hardware loop if that's going to happen.
|
|
|
|
auto IsHardwareLoopIntrinsic = [](Instruction &I) {
|
|
if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
|
|
switch (Call->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::start_loop_iterations:
|
|
case Intrinsic::test_start_loop_iterations:
|
|
case Intrinsic::loop_decrement:
|
|
case Intrinsic::loop_decrement_reg:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Scan the instructions to see if there's any that we know will turn into a
|
|
// call or if this loop is already a low-overhead loop or will become a tail
|
|
// predicated loop.
|
|
bool IsTailPredLoop = false;
|
|
auto ScanLoop = [&](Loop *L) {
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
|
|
isa<InlineAsm>(I)) {
|
|
LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
|
|
return false;
|
|
}
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
IsTailPredLoop |=
|
|
II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
|
|
II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
|
|
II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
|
|
II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
|
|
II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Visit inner loops.
|
|
for (auto Inner : *L)
|
|
if (!ScanLoop(Inner))
|
|
return false;
|
|
|
|
if (!ScanLoop(L))
|
|
return false;
|
|
|
|
// TODO: Check whether the trip count calculation is expensive. If L is the
|
|
// inner loop but we know it has a low trip count, calculating that trip
|
|
// count (in the parent loop) may be detrimental.
|
|
|
|
LLVMContext &C = L->getHeader()->getContext();
|
|
HWLoopInfo.CounterInReg = true;
|
|
HWLoopInfo.IsNestingLegal = false;
|
|
HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
|
|
HWLoopInfo.CountType = Type::getInt32Ty(C);
|
|
HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
|
|
return true;
|
|
}
|
|
|
|
static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
|
|
// We don't allow icmp's, and because we only look at single block loops,
|
|
// we simply count the icmps, i.e. there should only be 1 for the backedge.
|
|
if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
|
|
return false;
|
|
// FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
|
|
// not currently canonical, but soon will be. Code without them uses icmp, and
|
|
// so is not tail predicated as per the condition above. In order to get the
|
|
// same performance we treat min and max the same as an icmp for tailpred
|
|
// purposes for the moment (we often rely on non-tailpred and higher VF's to
|
|
// pick more optimial instructions like VQDMULH. They need to be recognized
|
|
// directly by the vectorizer).
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if ((II->getIntrinsicID() == Intrinsic::smin ||
|
|
II->getIntrinsicID() == Intrinsic::smax ||
|
|
II->getIntrinsicID() == Intrinsic::umin ||
|
|
II->getIntrinsicID() == Intrinsic::umax) &&
|
|
++ICmpCount > 1)
|
|
return false;
|
|
|
|
if (isa<FCmpInst>(&I))
|
|
return false;
|
|
|
|
// We could allow extending/narrowing FP loads/stores, but codegen is
|
|
// too inefficient so reject this for now.
|
|
if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
|
|
return false;
|
|
|
|
// Extends have to be extending-loads
|
|
if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
|
|
if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
|
|
return false;
|
|
|
|
// Truncs have to be narrowing-stores
|
|
if (isa<TruncInst>(&I) )
|
|
if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// To set up a tail-predicated loop, we need to know the total number of
|
|
// elements processed by that loop. Thus, we need to determine the element
|
|
// size and:
|
|
// 1) it should be uniform for all operations in the vector loop, so we
|
|
// e.g. don't want any widening/narrowing operations.
|
|
// 2) it should be smaller than i64s because we don't have vector operations
|
|
// that work on i64s.
|
|
// 3) we don't want elements to be reversed or shuffled, to make sure the
|
|
// tail-predication masks/predicates the right lanes.
|
|
//
|
|
static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
|
|
const DataLayout &DL,
|
|
const LoopAccessInfo *LAI) {
|
|
LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
|
|
|
|
// If there are live-out values, it is probably a reduction. We can predicate
|
|
// most reduction operations freely under MVE using a combination of
|
|
// prefer-predicated-reduction-select and inloop reductions. We limit this to
|
|
// floating point and integer reductions, but don't check for operators
|
|
// specifically here. If the value ends up not being a reduction (and so the
|
|
// vectorizer cannot tailfold the loop), we should fall back to standard
|
|
// vectorization automatically.
|
|
SmallVector< Instruction *, 8 > LiveOuts;
|
|
LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
|
|
bool ReductionsDisabled =
|
|
EnableTailPredication == TailPredication::EnabledNoReductions ||
|
|
EnableTailPredication == TailPredication::ForceEnabledNoReductions;
|
|
|
|
for (auto *I : LiveOuts) {
|
|
if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
|
|
!I->getType()->isHalfTy()) {
|
|
LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
|
|
"live-out value\n");
|
|
return false;
|
|
}
|
|
if (ReductionsDisabled) {
|
|
LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Next, check that all instructions can be tail-predicated.
|
|
PredicatedScalarEvolution PSE = LAI->getPSE();
|
|
SmallVector<Instruction *, 16> LoadStores;
|
|
int ICmpCount = 0;
|
|
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
for (Instruction &I : BB->instructionsWithoutDebug()) {
|
|
if (isa<PHINode>(&I))
|
|
continue;
|
|
if (!canTailPredicateInstruction(I, ICmpCount)) {
|
|
LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
|
|
return false;
|
|
}
|
|
|
|
Type *T = I.getType();
|
|
if (T->isPointerTy())
|
|
T = T->getPointerElementType();
|
|
|
|
if (T->getScalarSizeInBits() > 32) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
|
|
return false;
|
|
}
|
|
if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
|
|
Value *Ptr = getLoadStorePointerOperand(&I);
|
|
Type *AccessTy = getLoadStoreType(&I);
|
|
int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L);
|
|
if (NextStride == 1) {
|
|
// TODO: for now only allow consecutive strides of 1. We could support
|
|
// other strides as long as it is uniform, but let's keep it simple
|
|
// for now.
|
|
continue;
|
|
} else if (NextStride == -1 ||
|
|
(NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
|
|
(NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Consecutive strides of 2 found, vld2/vstr2 can't "
|
|
"be tail-predicated\n.");
|
|
return false;
|
|
// TODO: don't tail predicate if there is a reversed load?
|
|
} else if (EnableMaskedGatherScatters) {
|
|
// Gather/scatters do allow loading from arbitrary strides, at
|
|
// least if they are loop invariant.
|
|
// TODO: Loop variant strides should in theory work, too, but
|
|
// this requires further testing.
|
|
const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
|
|
if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
|
|
const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
|
|
if (PSE.getSE()->isLoopInvariant(Step, L))
|
|
continue;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Bad stride found, can't "
|
|
"tail-predicate\n.");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
|
|
return true;
|
|
}
|
|
|
|
bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
|
|
ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
const LoopAccessInfo *LAI) {
|
|
if (!EnableTailPredication) {
|
|
LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
|
|
return false;
|
|
}
|
|
|
|
// Creating a predicated vector loop is the first step for generating a
|
|
// tail-predicated hardware loop, for which we need the MVE masked
|
|
// load/stores instructions:
|
|
if (!ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
// For now, restrict this to single block loops.
|
|
if (L->getNumBlocks() > 1) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
|
|
"loop.\n");
|
|
return false;
|
|
}
|
|
|
|
assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
|
|
|
|
HardwareLoopInfo HWLoopInfo(L);
|
|
if (!HWLoopInfo.canAnalyze(*LI)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"analyzable.\n");
|
|
return false;
|
|
}
|
|
|
|
// This checks if we have the low-overhead branch architecture
|
|
// extension, and if we will create a hardware-loop:
|
|
if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"profitable.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
|
|
LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
|
|
"a candidate.\n");
|
|
return false;
|
|
}
|
|
|
|
return canTailPredicateLoop(L, LI, SE, DL, LAI);
|
|
}
|
|
|
|
bool ARMTTIImpl::emitGetActiveLaneMask() const {
|
|
if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
|
|
return false;
|
|
|
|
// Intrinsic @llvm.get.active.lane.mask is supported.
|
|
// It is used in the MVETailPredication pass, which requires the number of
|
|
// elements processed by this vector loop to setup the tail-predicated
|
|
// loop.
|
|
return true;
|
|
}
|
|
void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
// Enable Upper bound unrolling universally, not dependant upon the conditions
|
|
// below.
|
|
UP.UpperBound = true;
|
|
|
|
// Only currently enable these preferences for M-Class cores.
|
|
if (!ST->isMClass())
|
|
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
|
|
|
|
// Disable loop unrolling for Oz and Os.
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
if (L->getHeader()->getParent()->hasOptSize())
|
|
return;
|
|
|
|
SmallVector<BasicBlock*, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
LLVM_DEBUG(dbgs() << "Loop has:\n"
|
|
<< "Blocks: " << L->getNumBlocks() << "\n"
|
|
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
|
|
|
|
// Only allow another exit other than the latch. This acts as an early exit
|
|
// as it mirrors the profitability calculation of the runtime unroller.
|
|
if (ExitingBlocks.size() > 2)
|
|
return;
|
|
|
|
// Limit the CFG of the loop body for targets with a branch predictor.
|
|
// Allowing 4 blocks permits if-then-else diamonds in the body.
|
|
if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
|
|
return;
|
|
|
|
// Don't unroll vectorized loops, including the remainder loop
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls as this could prevent
|
|
// inlining.
|
|
InstructionCost Cost = 0;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
// Don't unroll vectorised loop. MVE does not benefit from it as much as
|
|
// scalar code.
|
|
if (I.getType()->isVectorTy())
|
|
return;
|
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
|
|
if (!isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
return;
|
|
}
|
|
|
|
SmallVector<const Value*, 4> Operands(I.operand_values());
|
|
Cost +=
|
|
getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
|
|
}
|
|
}
|
|
|
|
// On v6m cores, there are very few registers available. We can easily end up
|
|
// spilling and reloading more registers in an unrolled loop. Look at the
|
|
// number of LCSSA phis as a rough measure of how many registers will need to
|
|
// be live out of the loop, reducing the default unroll count if more than 1
|
|
// value is needed. In the long run, all of this should be being learnt by a
|
|
// machine.
|
|
unsigned UnrollCount = 4;
|
|
if (ST->isThumb1Only()) {
|
|
unsigned ExitingValues = 0;
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getExitBlocks(ExitBlocks);
|
|
for (auto *Exit : ExitBlocks) {
|
|
// Count the number of LCSSA phis. Exclude values coming from GEP's as
|
|
// only the last is expected to be needed for address operands.
|
|
unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
|
|
return PH.getNumOperands() != 1 ||
|
|
!isa<GetElementPtrInst>(PH.getOperand(0));
|
|
});
|
|
ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
|
|
}
|
|
if (ExitingValues)
|
|
UnrollCount /= ExitingValues;
|
|
if (UnrollCount <= 1)
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
|
|
LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
|
|
|
|
UP.Partial = true;
|
|
UP.Runtime = true;
|
|
UP.UnrollRemainder = true;
|
|
UP.DefaultUnrollRuntimeCount = UnrollCount;
|
|
UP.UnrollAndJam = true;
|
|
UP.UnrollAndJamInnerLoopThreshold = 60;
|
|
|
|
// Force unrolling small loops can be very useful because of the branch
|
|
// taken cost of the backedge.
|
|
if (Cost < 12)
|
|
UP.Force = true;
|
|
}
|
|
|
|
void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
|
|
TTI::ReductionFlags Flags) const {
|
|
if (!ST->hasMVEIntegerOps())
|
|
return false;
|
|
|
|
unsigned ScalarBits = Ty->getScalarSizeInBits();
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
return ScalarBits <= 64;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ARMTTIImpl::preferPredicatedReductionSelect(
|
|
unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
|
|
if (!ST->hasMVEIntegerOps())
|
|
return false;
|
|
return true;
|
|
}
|