forked from OSchip/llvm-project
408 lines
16 KiB
C++
408 lines
16 KiB
C++
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file defines the pass that looks through the machine instructions
|
|
/// late in the compilation, and finds byte or word instructions that
|
|
/// can be profitably replaced with 32 bit instructions that give equivalent
|
|
/// results for the bits of the results that are used. There are two possible
|
|
/// reasons to do this.
|
|
///
|
|
/// One reason is to avoid false-dependences on the upper portions
|
|
/// of the registers. Only instructions that have a destination register
|
|
/// which is not in any of the source registers can be affected by this.
|
|
/// Any instruction where one of the source registers is also the destination
|
|
/// register is unaffected, because it has a true dependence on the source
|
|
/// register already. So, this consideration primarily affects load
|
|
/// instructions and register-to-register moves. It would
|
|
/// seem like cmov(s) would also be affected, but because of the way cmov is
|
|
/// really implemented by most machines as reading both the destination and
|
|
/// and source registers, and then "merging" the two based on a condition,
|
|
/// it really already should be considered as having a true dependence on the
|
|
/// destination register as well.
|
|
///
|
|
/// The other reason to do this is for potential code size savings. Word
|
|
/// operations need an extra override byte compared to their 32 bit
|
|
/// versions. So this can convert many word operations to their larger
|
|
/// size, saving a byte in encoding. This could introduce partial register
|
|
/// dependences where none existed however. As an example take:
|
|
/// orw ax, $0x1000
|
|
/// addw ax, $3
|
|
/// now if this were to get transformed into
|
|
/// orw ax, $1000
|
|
/// addl eax, $3
|
|
/// because the addl encodes shorter than the addw, this would introduce
|
|
/// a use of a register that was only partially written earlier. On older
|
|
/// Intel processors this can be quite a performance penalty, so this should
|
|
/// probably only be done when it can be proven that a new partial dependence
|
|
/// wouldn't be created, or when your know a newer processor is being
|
|
/// targeted, or when optimizing for minimum code size.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
|
|
#define FIXUPBW_NAME "x86-fixup-bw-insts"
|
|
|
|
#define DEBUG_TYPE FIXUPBW_NAME
|
|
|
|
// Option to allow this optimization pass to have fine-grained control.
|
|
static cl::opt<bool>
|
|
FixupBWInsts("fixup-byte-word-insts",
|
|
cl::desc("Change byte and word instructions to larger sizes"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
class FixupBWInstPass : public MachineFunctionPass {
|
|
/// Loop over all of the instructions in the basic block replacing applicable
|
|
/// byte or word instructions with better alternatives.
|
|
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
|
|
/// This sets the \p SuperDestReg to the 32 bit super reg of the original
|
|
/// destination register of the MachineInstr passed in. It returns true if
|
|
/// that super register is dead just prior to \p OrigMI, and false if not.
|
|
bool getSuperRegDestIfDead(MachineInstr *OrigMI,
|
|
unsigned &SuperDestReg) const;
|
|
|
|
/// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
|
|
/// register if it is safe to do so. Return the replacement instruction if
|
|
/// OK, otherwise return nullptr.
|
|
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
|
|
|
|
/// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
|
|
/// safe to do so. Return the replacement instruction if OK, otherwise return
|
|
/// nullptr.
|
|
MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
|
|
|
|
// Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
|
|
// possible. Return the replacement instruction if OK, return nullptr
|
|
// otherwise.
|
|
MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
StringRef getPassName() const override { return FIXUPBW_DESC; }
|
|
|
|
FixupBWInstPass() : MachineFunctionPass(ID) {
|
|
initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
|
|
// guide some heuristics.
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Loop over all of the basic blocks, replacing byte and word instructions by
|
|
/// equivalent 32 bit instructions where performance or code size can be
|
|
/// improved.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
private:
|
|
MachineFunction *MF;
|
|
|
|
/// Machine instruction info used throughout the class.
|
|
const X86InstrInfo *TII;
|
|
|
|
/// Local member for function's OptForSize attribute.
|
|
bool OptForSize;
|
|
|
|
/// Machine loop info used for guiding some heruistics.
|
|
MachineLoopInfo *MLI;
|
|
|
|
/// Register Liveness information after the current instruction.
|
|
LivePhysRegs LiveRegs;
|
|
};
|
|
char FixupBWInstPass::ID = 0;
|
|
}
|
|
|
|
INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
|
|
|
|
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
|
|
|
|
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
|
|
if (!FixupBWInsts || skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
this->MF = &MF;
|
|
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
|
|
OptForSize = MF.getFunction().optForSize();
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
LiveRegs.init(TII->getRegisterInfo());
|
|
|
|
DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
|
|
|
|
// Process all basic blocks.
|
|
for (auto &MBB : MF)
|
|
processBasicBlock(MF, MBB);
|
|
|
|
DEBUG(dbgs() << "End X86FixupBWInsts\n";);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if after \p OrigMI the only portion of super register
|
|
/// of the destination register of \p OrigMI that is alive is that
|
|
/// destination register.
|
|
///
|
|
/// If so, return that super register in \p SuperDestReg.
|
|
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
|
|
unsigned &SuperDestReg) const {
|
|
auto *TRI = &TII->getRegisterInfo();
|
|
|
|
unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
|
|
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
|
|
|
|
const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
|
|
|
|
// Make sure that the sub-register that this instruction has as its
|
|
// destination is the lowest order sub-register of the super-register.
|
|
// If it isn't, then the register isn't really dead even if the
|
|
// super-register is considered dead.
|
|
if (SubRegIdx == X86::sub_8bit_hi)
|
|
return false;
|
|
|
|
// If neither the destination-super register nor any applicable subregisters
|
|
// are live after this instruction, then the super register is safe to use.
|
|
if (!LiveRegs.contains(SuperDestReg)) {
|
|
// If the original destination register was not the low 8-bit subregister
|
|
// then the super register check is sufficient.
|
|
if (SubRegIdx != X86::sub_8bit)
|
|
return true;
|
|
// If the original destination register was the low 8-bit subregister and
|
|
// we also need to check the 16-bit subregister and the high 8-bit
|
|
// subregister.
|
|
if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
|
|
!LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
|
|
/*High=*/true)))
|
|
return true;
|
|
// Otherwise, we have a little more checking to do.
|
|
}
|
|
|
|
// If we get here, the super-register destination (or some part of it) is
|
|
// marked as live after the original instruction.
|
|
//
|
|
// The X86 backend does not have subregister liveness tracking enabled,
|
|
// so liveness information might be overly conservative. Specifically, the
|
|
// super register might be marked as live because it is implicitly defined
|
|
// by the instruction we are examining.
|
|
//
|
|
// However, for some specific instructions (this pass only cares about MOVs)
|
|
// we can produce more precise results by analysing that MOV's operands.
|
|
//
|
|
// Indeed, if super-register is not live before the mov it means that it
|
|
// was originally <read-undef> and so we are free to modify these
|
|
// undef upper bits. That may happen in case where the use is in another MBB
|
|
// and the vreg/physreg corresponding to the move has higher width than
|
|
// necessary (e.g. due to register coalescing with a "truncate" copy).
|
|
// So, we would like to handle patterns like this:
|
|
//
|
|
// %bb.2: derived from LLVM BB %if.then
|
|
// Live Ins: %rdi
|
|
// Predecessors according to CFG: %bb.0
|
|
// %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
|
|
// ; No implicit %eax
|
|
// Successors according to CFG: %bb.3(?%)
|
|
//
|
|
// %bb.3: derived from LLVM BB %if.end
|
|
// Live Ins: %eax Only %ax is actually live
|
|
// Predecessors according to CFG: %bb.2 %bb.1
|
|
// %ax = KILL %ax, implicit killed %eax
|
|
// RET 0, %ax
|
|
unsigned Opc = OrigMI->getOpcode(); (void)Opc;
|
|
// These are the opcodes currently handled by the pass, if something
|
|
// else will be added we need to ensure that new opcode has the same
|
|
// properties.
|
|
assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr ||
|
|
Opc == X86::MOV16rr) &&
|
|
"Unexpected opcode.");
|
|
|
|
bool IsDefined = false;
|
|
for (auto &MO: OrigMI->implicit_operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
|
|
|
|
if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
|
|
IsDefined = true;
|
|
|
|
// If MO is a use of any part of the destination register but is not equal
|
|
// to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
|
|
// For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
|
|
// %eax, or %rax will prevent us from using the %eax register.
|
|
if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
|
|
TRI->regsOverlap(SuperDestReg, MO.getReg()))
|
|
return false;
|
|
}
|
|
// Reg is not Imp-def'ed -> it's live both before/after the instruction.
|
|
if (!IsDefined)
|
|
return false;
|
|
|
|
// Otherwise, the Reg is not live before the MI and the MOV can't
|
|
// make it really live, so it's in fact dead even after the MI.
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
|
|
MachineInstr *MI) const {
|
|
unsigned NewDestReg;
|
|
|
|
// We are going to try to rewrite this load to a larger zero-extending
|
|
// load. This is safe if all portions of the 32 bit super-register
|
|
// of the original destination register, except for the original destination
|
|
// register are dead. getSuperRegDestIfDead checks that.
|
|
if (!getSuperRegDestIfDead(MI, NewDestReg))
|
|
return nullptr;
|
|
|
|
// Safe to change the instruction.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
|
|
|
|
unsigned NumArgs = MI->getNumOperands();
|
|
for (unsigned i = 1; i < NumArgs; ++i)
|
|
MIB.add(MI->getOperand(i));
|
|
|
|
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
return MIB;
|
|
}
|
|
|
|
MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
|
|
assert(MI->getNumExplicitOperands() == 2);
|
|
auto &OldDest = MI->getOperand(0);
|
|
auto &OldSrc = MI->getOperand(1);
|
|
|
|
unsigned NewDestReg;
|
|
if (!getSuperRegDestIfDead(MI, NewDestReg))
|
|
return nullptr;
|
|
|
|
unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
|
|
|
|
// This is only correct if we access the same subregister index: otherwise,
|
|
// we could try to replace "movb %ah, %al" with "movl %eax, %eax".
|
|
auto *TRI = &TII->getRegisterInfo();
|
|
if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
|
|
TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
|
|
return nullptr;
|
|
|
|
// Safe to change the instruction.
|
|
// Don't set src flags, as we don't know if we're also killing the superreg.
|
|
// However, the superregister might not be defined; make it explicit that
|
|
// we don't care about the higher bits by reading it as Undef, and adding
|
|
// an imp-use on the original subregister.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
|
|
.addReg(NewSrcReg, RegState::Undef)
|
|
.addReg(OldSrc.getReg(), RegState::Implicit);
|
|
|
|
// Drop imp-defs/uses that would be redundant with the new def/use.
|
|
for (auto &Op : MI->implicit_operands())
|
|
if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
|
|
MIB.add(Op);
|
|
|
|
return MIB;
|
|
}
|
|
|
|
MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
|
|
MachineBasicBlock &MBB) const {
|
|
// See if this is an instruction of the type we are currently looking for.
|
|
switch (MI->getOpcode()) {
|
|
|
|
case X86::MOV8rm:
|
|
// Only replace 8 bit loads with the zero extending versions if
|
|
// in an inner most loop and not optimizing for size. This takes
|
|
// an extra byte to encode, and provides limited performance upside.
|
|
if (MachineLoop *ML = MLI->getLoopFor(&MBB))
|
|
if (ML->begin() == ML->end() && !OptForSize)
|
|
return tryReplaceLoad(X86::MOVZX32rm8, MI);
|
|
break;
|
|
|
|
case X86::MOV16rm:
|
|
// Always try to replace 16 bit load with 32 bit zero extending.
|
|
// Code size is the same, and there is sometimes a perf advantage
|
|
// from eliminating a false dependence on the upper portion of
|
|
// the register.
|
|
return tryReplaceLoad(X86::MOVZX32rm16, MI);
|
|
|
|
case X86::MOV8rr:
|
|
case X86::MOV16rr:
|
|
// Always try to replace 8/16 bit copies with a 32 bit copy.
|
|
// Code size is either less (16) or equal (8), and there is sometimes a
|
|
// perf advantage from eliminating a false dependence on the upper portion
|
|
// of the register.
|
|
return tryReplaceCopy(MI);
|
|
|
|
default:
|
|
// nothing to do here.
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
|
|
// This algorithm doesn't delete the instructions it is replacing
|
|
// right away. By leaving the existing instructions in place, the
|
|
// register liveness information doesn't change, and this makes the
|
|
// analysis that goes on be better than if the replaced instructions
|
|
// were immediately removed.
|
|
//
|
|
// This algorithm always creates a replacement instruction
|
|
// and notes that and the original in a data structure, until the
|
|
// whole BB has been analyzed. This keeps the replacement instructions
|
|
// from making it seem as if the larger register might be live.
|
|
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
|
|
|
|
// Start computing liveness for this block. We iterate from the end to be able
|
|
// to update this for each instruction.
|
|
LiveRegs.clear();
|
|
// We run after PEI, so we need to AddPristinesAndCSRs.
|
|
LiveRegs.addLiveOuts(MBB);
|
|
|
|
for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
|
|
MachineInstr *MI = &*I;
|
|
|
|
if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
|
|
MIReplacements.push_back(std::make_pair(MI, NewMI));
|
|
|
|
// We're done with this instruction, update liveness for the next one.
|
|
LiveRegs.stepBackward(*MI);
|
|
}
|
|
|
|
while (!MIReplacements.empty()) {
|
|
MachineInstr *MI = MIReplacements.back().first;
|
|
MachineInstr *NewMI = MIReplacements.back().second;
|
|
MIReplacements.pop_back();
|
|
MBB.insert(MI, NewMI);
|
|
MBB.erase(MI);
|
|
}
|
|
}
|