llvm-project/lld/ELF/CallGraphSort.cpp

260 lines
8.5 KiB
C++

//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
/// for Large-Scale Data-Center Applications
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
///
/// The goal of this algorithm is to improve runtime performance of the final
/// executable by arranging code sections such that page table and i-cache
/// misses are minimized.
///
/// Definitions:
/// * Cluster
/// * An ordered list of input sections which are layed out as a unit. At the
/// beginning of the algorithm each input section has its own cluster and
/// the weight of the cluster is the sum of the weight of all incomming
/// edges.
/// * Call-Chain Clustering (C³) Heuristic
/// * Defines when and how clusters are combined. Pick the highest weighted
/// input section then add it to its most likely predecessor if it wouldn't
/// penalize it too much.
/// * Density
/// * The weight of the cluster divided by the size of the cluster. This is a
/// proxy for the ammount of execution time spent per byte of the cluster.
///
/// It does so given a call graph profile by the following:
/// * Build a weighted call graph from the call graph profile
/// * Sort input sections by weight
/// * For each input section starting with the highest weight
/// * Find its most likely predecessor cluster
/// * Check if the combined cluster would be too large, or would have too low
/// a density.
/// * If not, then combine the clusters.
/// * Sort non-empty clusters by density
///
//===----------------------------------------------------------------------===//
#include "CallGraphSort.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
using namespace llvm;
using namespace lld;
using namespace lld::elf;
namespace {
struct Edge {
int from;
uint64_t weight;
};
struct Cluster {
Cluster(int sec, size_t s) : sections{sec}, size(s) {}
double getDensity() const {
if (size == 0)
return 0;
return double(weight) / double(size);
}
std::vector<int> sections;
size_t size = 0;
uint64_t weight = 0;
uint64_t initialWeight = 0;
Edge bestPred = {-1, 0};
};
class CallGraphSort {
public:
CallGraphSort();
DenseMap<const InputSectionBase *, int> run();
private:
std::vector<Cluster> clusters;
std::vector<const InputSectionBase *> sections;
void groupClusters();
};
// Maximum ammount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;
// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace
using SectionPair =
std::pair<const InputSectionBase *, const InputSectionBase *>;
// Take the edge list in Config->CallGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort() {
MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
DenseMap<const InputSectionBase *, int> secToCluster;
auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
auto res = secToCluster.insert(std::make_pair(isec, clusters.size()));
if (res.second) {
sections.push_back(isec);
clusters.emplace_back(clusters.size(), isec->getSize());
}
return res.first->second;
};
// Create the graph.
for (std::pair<SectionPair, uint64_t> &c : profile) {
const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
uint64_t weight = c.second;
// Ignore edges between input sections belonging to different output
// sections. This is done because otherwise we would end up with clusters
// containing input sections that can't actually be placed adjacently in the
// output. This messes with the cluster size and density calculations. We
// would also end up moving input sections in other output sections without
// moving them closer to what calls them.
if (fromSB->getOutputSection() != toSB->getOutputSection())
continue;
int from = getOrCreateNode(fromSB);
int to = getOrCreateNode(toSB);
clusters[to].weight += weight;
if (from == to)
continue;
// Remember the best edge.
Cluster &toC = clusters[to];
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
toC.bestPred.from = from;
toC.bestPred.weight = weight;
}
}
for (Cluster &c : clusters)
c.initialWeight = c.weight;
}
// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}
static void mergeClusters(Cluster &into, Cluster &from) {
into.sections.insert(into.sections.end(), from.sections.begin(),
from.sections.end());
into.size += from.size;
into.weight += from.weight;
from.sections.clear();
from.size = 0;
from.weight = 0;
}
// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
void CallGraphSort::groupClusters() {
std::vector<int> sortedSecs(clusters.size());
std::vector<Cluster *> secToCluster(clusters.size());
for (size_t i = 0; i < clusters.size(); ++i) {
sortedSecs[i] = i;
secToCluster[i] = &clusters[i];
}
llvm::stable_sort(sortedSecs, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
for (int si : sortedSecs) {
// clusters[si] is the same as secToClusters[si] here because it has not
// been merged into another cluster yet.
Cluster &c = clusters[si];
// Don't consider merging if the edge is unlikely.
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
continue;
Cluster *predC = secToCluster[c.bestPred.from];
if (predC == &c)
continue;
if (c.size + predC->size > MAX_CLUSTER_SIZE)
continue;
if (isNewDensityBad(*predC, c))
continue;
// NOTE: Consider using a disjoint-set to track section -> cluster mapping
// if this is ever slow.
for (int si : c.sections)
secToCluster[si] = predC;
mergeClusters(*predC, c);
}
// Remove empty or dead nodes. Invalidates all cluster indices.
llvm::erase_if(clusters, [](const Cluster &c) {
return c.size == 0 || c.sections.empty();
});
// Sort by density.
llvm::stable_sort(clusters, [](const Cluster &a, const Cluster &b) {
return a.getDensity() > b.getDensity();
});
}
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
groupClusters();
// Generate order.
DenseMap<const InputSectionBase *, int> orderMap;
ssize_t curOrder = 1;
for (const Cluster &c : clusters)
for (int secIndex : c.sections)
orderMap[sections[secIndex]] = curOrder++;
if (!config->printSymbolOrder.empty()) {
std::error_code ec;
raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::F_None);
if (ec) {
error("cannot open " + config->printSymbolOrder + ": " + ec.message());
return orderMap;
}
// Print the symbols ordered by C3, in the order of increasing curOrder
// Instead of sorting all the orderMap, just repeat the loops above.
for (const Cluster &c : clusters)
for (int secIndex : c.sections)
// Search all the symbols in the file of the section
// and find out a Defined symbol with name that is within the section.
for (Symbol *sym: sections[secIndex]->file->getSymbols())
if (!sym->isSection()) // Filter out section-type symbols here.
if (auto *d = dyn_cast<Defined>(sym))
if (sections[secIndex] == d->section)
os << sym->getName() << "\n";
}
return orderMap;
}
// Sort sections by the profile data provided by -callgraph-profile-file
//
// This first builds a call graph based on the profile data then merges sections
// according to the C³ huristic. All clusters are then sorted by a density
// metric to further improve locality.
DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
return CallGraphSort().run();
}