llvm-project/clang/lib/AST/MicrosoftMangle.cpp

1631 lines
62 KiB
C++

//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/ABI.h"
using namespace clang;
namespace {
/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
/// Microsoft Visual C++ ABI.
class MicrosoftCXXNameMangler {
MangleContext &Context;
raw_ostream &Out;
typedef llvm::DenseMap<void*, unsigned> BackRefMap;
BackRefMap NameBackReferences, TypeBackReferences;
ASTContext &getASTContext() const { return Context.getASTContext(); }
public:
MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
: Context(C), Out(Out_) { }
raw_ostream &getStream() const { return Out; }
void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
void mangleName(const NamedDecl *ND);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleVariableEncoding(const VarDecl *VD);
void mangleNumber(int64_t Number);
void mangleNumber(const llvm::APSInt &Value);
void mangleType(QualType T, SourceRange Range);
private:
void mangleUnqualifiedName(const NamedDecl *ND) {
mangleUnqualifiedName(ND, ND->getDeclName());
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
void mangleSourceName(const IdentifierInfo *II);
void manglePostfix(const DeclContext *DC, bool NoFunction=false);
void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
void mangleQualifiers(Qualifiers Quals, bool IsMember);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void mangleTemplateInstantiationName(const TemplateDecl *TD,
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
void mangleLocalName(const FunctionDecl *FD);
void mangleTypeRepeated(QualType T, SourceRange Range);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
SourceRange Range);
#include "clang/AST/TypeNodes.def"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE
void mangleType(const TagType*);
void mangleType(const FunctionType *T, const FunctionDecl *D,
bool IsStructor, bool IsInstMethod);
void mangleType(const ArrayType *T, bool IsGlobal);
void mangleExtraDimensions(QualType T);
void mangleFunctionClass(const FunctionDecl *FD);
void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Number);
void mangleThrowSpecification(const FunctionProtoType *T);
void mangleTemplateArgs(
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
};
/// MicrosoftMangleContext - Overrides the default MangleContext for the
/// Microsoft Visual C++ ABI.
class MicrosoftMangleContext : public MangleContext {
public:
MicrosoftMangleContext(ASTContext &Context,
DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { }
virtual bool shouldMangleDeclName(const NamedDecl *D);
virtual void mangleName(const NamedDecl *D, raw_ostream &Out);
virtual void mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &);
virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &);
virtual void mangleCXXVTable(const CXXRecordDecl *RD,
raw_ostream &);
virtual void mangleCXXVTT(const CXXRecordDecl *RD,
raw_ostream &);
virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type,
raw_ostream &);
virtual void mangleCXXRTTI(QualType T, raw_ostream &);
virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &);
virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &);
virtual void mangleReferenceTemporary(const clang::VarDecl *,
raw_ostream &);
};
}
static bool isInCLinkageSpecification(const Decl *D) {
D = D->getCanonicalDecl();
for (const DeclContext *DC = D->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
}
return false;
}
bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
// In C, functions with no attributes never need to be mangled. Fastpath them.
if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
return false;
// Any decl can be declared with __asm("foo") on it, and this takes precedence
// over all other naming in the .o file.
if (D->hasAttr<AsmLabelAttr>())
return true;
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
// (always) as does passing a C++ member function and a function
// whose name is not a simple identifier.
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
!FD->getDeclName().isIdentifier()))
return true;
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOpts().CPlusPlus)
return false;
// Variables at global scope with internal linkage are not mangled.
if (!FD) {
const DeclContext *DC = D->getDeclContext();
if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
return false;
}
// C functions and "main" are not mangled.
if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
return false;
return true;
}
void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
StringRef Prefix) {
// MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
// Therefore it's really important that we don't decorate the
// name with leading underscores or leading/trailing at signs. So, by
// default, we emit an asm marker at the start so we get the name right.
// Callers can override this with a custom prefix.
// Any decl can be declared with __asm("foo") on it, and this takes precedence
// over all other naming in the .o file.
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
// If we have an asm name, then we use it as the mangling.
Out << '\01' << ALA->getLabel();
return;
}
// <mangled-name> ::= ? <name> <type-encoding>
Out << Prefix;
mangleName(D);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
mangleVariableEncoding(VD);
else {
// TODO: Fields? Can MSVC even mangle them?
// Issue a diagnostic for now.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this declaration yet");
Diags.Report(D->getLocation(), DiagID)
<< D->getSourceRange();
}
}
void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <type-encoding> ::= <function-class> <function-type>
// Don't mangle in the type if this isn't a decl we should typically mangle.
if (!Context.shouldMangleDeclName(FD))
return;
// We should never ever see a FunctionNoProtoType at this point.
// We don't even know how to mangle their types anyway :).
const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
bool InStructor = false, InInstMethod = false;
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
if (MD) {
if (MD->isInstance())
InInstMethod = true;
if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
InStructor = true;
}
// First, the function class.
mangleFunctionClass(FD);
mangleType(FT, FD, InStructor, InInstMethod);
}
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
// <type-encoding> ::= <storage-class> <variable-type>
// <storage-class> ::= 0 # private static member
// ::= 1 # protected static member
// ::= 2 # public static member
// ::= 3 # global
// ::= 4 # static local
// The first character in the encoding (after the name) is the storage class.
if (VD->isStaticDataMember()) {
// If it's a static member, it also encodes the access level.
switch (VD->getAccess()) {
default:
case AS_private: Out << '0'; break;
case AS_protected: Out << '1'; break;
case AS_public: Out << '2'; break;
}
}
else if (!VD->isStaticLocal())
Out << '3';
else
Out << '4';
// Now mangle the type.
// <variable-type> ::= <type> <cvr-qualifiers>
// ::= <type> A # pointers, references, arrays
// Pointers and references are odd. The type of 'int * const foo;' gets
// mangled as 'QAHA' instead of 'PAHB', for example.
TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
QualType Ty = TL.getType();
if (Ty->isPointerType() || Ty->isReferenceType()) {
mangleType(Ty, TL.getSourceRange());
Out << 'A';
} else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
// Global arrays are funny, too.
mangleType(AT, true);
Out << 'A';
} else {
mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange());
mangleQualifiers(Ty.getLocalQualifiers(), false);
}
}
void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
const DeclContext *DC = ND->getDeclContext();
// Always start with the unqualified name.
mangleUnqualifiedName(ND);
// If this is an extern variable declared locally, the relevant DeclContext
// is that of the containing namespace, or the translation unit.
if (isa<FunctionDecl>(DC) && ND->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = DC->getParent();
manglePostfix(DC);
// Terminate the whole name with an '@'.
Out << '@';
}
void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
// <number> ::= [?] <decimal digit> # 1 <= Number <= 10
// ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc...
// ::= [?] @ # 0 (alternate mangling, not emitted by VC)
if (Number < 0) {
Out << '?';
Number = -Number;
}
// There's a special shorter mangling for 0, but Microsoft
// chose not to use it. Instead, 0 gets mangled as "A@". Oh well...
if (Number >= 1 && Number <= 10)
Out << Number-1;
else {
// We have to build up the encoding in reverse order, so it will come
// out right when we write it out.
char Encoding[16];
char *EndPtr = Encoding+sizeof(Encoding);
char *CurPtr = EndPtr;
do {
*--CurPtr = 'A' + (Number % 16);
Number /= 16;
} while (Number);
Out.write(CurPtr, EndPtr-CurPtr);
Out << '@';
}
}
void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
if (Value.isSigned() && Value.isNegative()) {
Out << '?';
mangleNumber(llvm::APSInt(Value.abs()));
return;
}
llvm::APSInt Temp(Value);
if (Value.uge(1) && Value.ule(10)) {
--Temp;
Temp.print(Out, false);
} else {
// We have to build up the encoding in reverse order, so it will come
// out right when we write it out.
char Encoding[64];
char *EndPtr = Encoding+sizeof(Encoding);
char *CurPtr = EndPtr;
llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned());
NibbleMask = 0xf;
for (int i = 0, e = Value.getActiveBits() / 4; i != e; ++i) {
*--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf);
Temp = Temp.lshr(4);
}
Out.write(CurPtr, EndPtr-CurPtr);
Out << '@';
}
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND,
SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
if (FD->getTemplateSpecializationArgsAsWritten()) {
const ASTTemplateArgumentListInfo *ArgList =
FD->getTemplateSpecializationArgsAsWritten();
TemplateArgs.append(ArgList->getTemplateArgs(),
ArgList->getTemplateArgs() +
ArgList->NumTemplateArgs);
} else {
const TemplateArgumentList *ArgList =
FD->getTemplateSpecializationArgs();
TemplateArgumentListInfo LI;
for (unsigned i = 0, e = ArgList->size(); i != e; ++i)
TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i),
FD->getTypeSourceInfo()));
}
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TypeSourceInfo *TSI = Spec->getTypeAsWritten();
if (TSI) {
TemplateSpecializationTypeLoc &TSTL =
cast<TemplateSpecializationTypeLoc>(TSI->getTypeLoc());
TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc());
for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i)
TemplateArgs.push_back(TSTL.getArgLoc(i));
} else {
TemplateArgumentListInfo LI;
const TemplateArgumentList &ArgList =
Spec->getTemplateArgs();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i],
TemplateArgumentLocInfo()));
}
return Spec->getSpecializedTemplate();
}
return 0;
}
void
MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <template-name>
SmallVector<TemplateArgumentLoc, 2> TemplateArgs;
// Check if we have a template.
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplateInstantiationName(TD, TemplateArgs);
return;
}
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
mangleSourceName(II);
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
Out << "?A";
break;
}
}
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
break;
}
// When VC encounters an anonymous type with no tag and no typedef,
// it literally emits '<unnamed-tag>'.
Out << "<unnamed-tag>";
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
case DeclarationName::CXXConstructorName:
Out << "?0";
break;
case DeclarationName::CXXDestructorName:
Out << "?1";
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= ?B # (cast)
// The target type is encoded as the return type.
Out << "?B";
break;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
break;
case DeclarationName::CXXLiteralOperatorName: {
// FIXME: Was this added in VS2010? Does MS even know how to mangle this?
DiagnosticsEngine Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this literal operator yet");
Diags.Report(ND->getLocation(), DiagID);
break;
}
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
}
}
void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
bool NoFunction) {
// <postfix> ::= <unqualified-name> [<postfix>]
// ::= <substitution> [<postfix>]
if (!DC) return;
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
if (DC->isTranslationUnit())
return;
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
Context.mangleBlock(BD, Out);
Out << '@';
return manglePostfix(DC->getParent(), NoFunction);
}
if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
return;
else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
mangleObjCMethodName(Method);
else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
mangleLocalName(Func);
else {
mangleUnqualifiedName(cast<NamedDecl>(DC));
manglePostfix(DC->getParent(), NoFunction);
}
}
void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
SourceLocation Loc) {
switch (OO) {
// ?0 # constructor
// ?1 # destructor
// <operator-name> ::= ?2 # new
case OO_New: Out << "?2"; break;
// <operator-name> ::= ?3 # delete
case OO_Delete: Out << "?3"; break;
// <operator-name> ::= ?4 # =
case OO_Equal: Out << "?4"; break;
// <operator-name> ::= ?5 # >>
case OO_GreaterGreater: Out << "?5"; break;
// <operator-name> ::= ?6 # <<
case OO_LessLess: Out << "?6"; break;
// <operator-name> ::= ?7 # !
case OO_Exclaim: Out << "?7"; break;
// <operator-name> ::= ?8 # ==
case OO_EqualEqual: Out << "?8"; break;
// <operator-name> ::= ?9 # !=
case OO_ExclaimEqual: Out << "?9"; break;
// <operator-name> ::= ?A # []
case OO_Subscript: Out << "?A"; break;
// ?B # conversion
// <operator-name> ::= ?C # ->
case OO_Arrow: Out << "?C"; break;
// <operator-name> ::= ?D # *
case OO_Star: Out << "?D"; break;
// <operator-name> ::= ?E # ++
case OO_PlusPlus: Out << "?E"; break;
// <operator-name> ::= ?F # --
case OO_MinusMinus: Out << "?F"; break;
// <operator-name> ::= ?G # -
case OO_Minus: Out << "?G"; break;
// <operator-name> ::= ?H # +
case OO_Plus: Out << "?H"; break;
// <operator-name> ::= ?I # &
case OO_Amp: Out << "?I"; break;
// <operator-name> ::= ?J # ->*
case OO_ArrowStar: Out << "?J"; break;
// <operator-name> ::= ?K # /
case OO_Slash: Out << "?K"; break;
// <operator-name> ::= ?L # %
case OO_Percent: Out << "?L"; break;
// <operator-name> ::= ?M # <
case OO_Less: Out << "?M"; break;
// <operator-name> ::= ?N # <=
case OO_LessEqual: Out << "?N"; break;
// <operator-name> ::= ?O # >
case OO_Greater: Out << "?O"; break;
// <operator-name> ::= ?P # >=
case OO_GreaterEqual: Out << "?P"; break;
// <operator-name> ::= ?Q # ,
case OO_Comma: Out << "?Q"; break;
// <operator-name> ::= ?R # ()
case OO_Call: Out << "?R"; break;
// <operator-name> ::= ?S # ~
case OO_Tilde: Out << "?S"; break;
// <operator-name> ::= ?T # ^
case OO_Caret: Out << "?T"; break;
// <operator-name> ::= ?U # |
case OO_Pipe: Out << "?U"; break;
// <operator-name> ::= ?V # &&
case OO_AmpAmp: Out << "?V"; break;
// <operator-name> ::= ?W # ||
case OO_PipePipe: Out << "?W"; break;
// <operator-name> ::= ?X # *=
case OO_StarEqual: Out << "?X"; break;
// <operator-name> ::= ?Y # +=
case OO_PlusEqual: Out << "?Y"; break;
// <operator-name> ::= ?Z # -=
case OO_MinusEqual: Out << "?Z"; break;
// <operator-name> ::= ?_0 # /=
case OO_SlashEqual: Out << "?_0"; break;
// <operator-name> ::= ?_1 # %=
case OO_PercentEqual: Out << "?_1"; break;
// <operator-name> ::= ?_2 # >>=
case OO_GreaterGreaterEqual: Out << "?_2"; break;
// <operator-name> ::= ?_3 # <<=
case OO_LessLessEqual: Out << "?_3"; break;
// <operator-name> ::= ?_4 # &=
case OO_AmpEqual: Out << "?_4"; break;
// <operator-name> ::= ?_5 # |=
case OO_PipeEqual: Out << "?_5"; break;
// <operator-name> ::= ?_6 # ^=
case OO_CaretEqual: Out << "?_6"; break;
// ?_7 # vftable
// ?_8 # vbtable
// ?_9 # vcall
// ?_A # typeof
// ?_B # local static guard
// ?_C # string
// ?_D # vbase destructor
// ?_E # vector deleting destructor
// ?_F # default constructor closure
// ?_G # scalar deleting destructor
// ?_H # vector constructor iterator
// ?_I # vector destructor iterator
// ?_J # vector vbase constructor iterator
// ?_K # virtual displacement map
// ?_L # eh vector constructor iterator
// ?_M # eh vector destructor iterator
// ?_N # eh vector vbase constructor iterator
// ?_O # copy constructor closure
// ?_P<name> # udt returning <name>
// ?_Q # <unknown>
// ?_R0 # RTTI Type Descriptor
// ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
// ?_R2 # RTTI Base Class Array
// ?_R3 # RTTI Class Hierarchy Descriptor
// ?_R4 # RTTI Complete Object Locator
// ?_S # local vftable
// ?_T # local vftable constructor closure
// <operator-name> ::= ?_U # new[]
case OO_Array_New: Out << "?_U"; break;
// <operator-name> ::= ?_V # delete[]
case OO_Array_Delete: Out << "?_V"; break;
case OO_Conditional: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this conditional operator yet");
Diags.Report(Loc, DiagID);
break;
}
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Not an overloaded operator");
}
}
void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source name> ::= <identifier> @
BackRefMap::iterator Found = NameBackReferences.find((void*)II);
if (Found == NameBackReferences.end()) {
Out << II->getName() << '@';
if (NameBackReferences.size() < 10) {
size_t Size = NameBackReferences.size();
NameBackReferences[(void*)II] = Size;
}
} else {
Out << Found->second;
}
}
void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
Context.mangleObjCMethodName(MD, Out);
}
// Find out how many function decls live above this one and return an integer
// suitable for use as the number in a numbered anonymous scope.
// TODO: Memoize.
static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
const DeclContext *DC = FD->getParent();
int level = 1;
while (DC && !DC->isTranslationUnit()) {
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
DC = DC->getParent();
}
return 2*level;
}
void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
// <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
// <numbered-anonymous-scope> ::= ? <number>
// Even though the name is rendered in reverse order (e.g.
// A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
// innermost. So a method bar in class C local to function foo gets mangled
// as something like:
// ?bar@C@?1??foo@@YAXXZ@QAEXXZ
// This is more apparent when you have a type nested inside a method of a
// type nested inside a function. A method baz in class D local to method
// bar of class C local to function foo gets mangled as:
// ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
// This scheme is general enough to support GCC-style nested
// functions. You could have a method baz of class C inside a function bar
// inside a function foo, like so:
// ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
int NestLevel = getLocalNestingLevel(FD);
Out << '?';
mangleNumber(NestLevel);
Out << '?';
mangle(FD, "?");
}
void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
const TemplateDecl *TD,
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
// <template-name> ::= <unscoped-template-name> <template-args>
// ::= <substitution>
// Always start with the unqualified name.
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TemplateArgs);
}
void
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
// <unscoped-template-name> ::= ?$ <unqualified-name>
Out << "?$";
mangleUnqualifiedName(TD);
}
void
MicrosoftCXXNameMangler::mangleIntegerLiteral(QualType T,
const llvm::APSInt &Value) {
// <integer-literal> ::= $0 <number>
Out << "$0";
// Make sure booleans are encoded as 0/1.
if (T->isBooleanType())
Out << (Value.getBoolValue() ? "0" : "A@");
else
mangleNumber(Value);
}
void
MicrosoftCXXNameMangler::mangleTemplateArgs(
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
// <template-args> ::= {<type> | <integer-literal>}+ @
unsigned NumTemplateArgs = TemplateArgs.size();
for (unsigned i = 0; i < NumTemplateArgs; ++i) {
const TemplateArgumentLoc &TAL = TemplateArgs[i];
const TemplateArgument &TA = TAL.getArgument();
switch (TA.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Can't mangle null template arguments!");
case TemplateArgument::Type:
mangleType(TA.getAsType(), TAL.getSourceRange());
break;
case TemplateArgument::Integral:
mangleIntegerLiteral(TA.getIntegralType(), TA.getAsIntegral());
break;
case TemplateArgument::Expression: {
// See if this is a constant expression.
Expr *TAE = TA.getAsExpr();
llvm::APSInt Value;
if (TAE->isIntegerConstantExpr(Value, Context.getASTContext())) {
mangleIntegerLiteral(TAE->getType(), Value);
break;
}
/* fallthrough */
} default: {
// Issue a diagnostic.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this %select{ERROR|ERROR|pointer/reference|ERROR|"
"template|template pack expansion|expression|parameter pack}0 "
"template argument yet");
Diags.Report(TAL.getLocation(), DiagID)
<< TA.getKind()
<< TAL.getSourceRange();
}
}
}
Out << '@';
}
void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
bool IsMember) {
// <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
// 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
// 'I' means __restrict (32/64-bit).
// Note that the MSVC __restrict keyword isn't the same as the C99 restrict
// keyword!
// <base-cvr-qualifiers> ::= A # near
// ::= B # near const
// ::= C # near volatile
// ::= D # near const volatile
// ::= E # far (16-bit)
// ::= F # far const (16-bit)
// ::= G # far volatile (16-bit)
// ::= H # far const volatile (16-bit)
// ::= I # huge (16-bit)
// ::= J # huge const (16-bit)
// ::= K # huge volatile (16-bit)
// ::= L # huge const volatile (16-bit)
// ::= M <basis> # based
// ::= N <basis> # based const
// ::= O <basis> # based volatile
// ::= P <basis> # based const volatile
// ::= Q # near member
// ::= R # near const member
// ::= S # near volatile member
// ::= T # near const volatile member
// ::= U # far member (16-bit)
// ::= V # far const member (16-bit)
// ::= W # far volatile member (16-bit)
// ::= X # far const volatile member (16-bit)
// ::= Y # huge member (16-bit)
// ::= Z # huge const member (16-bit)
// ::= 0 # huge volatile member (16-bit)
// ::= 1 # huge const volatile member (16-bit)
// ::= 2 <basis> # based member
// ::= 3 <basis> # based const member
// ::= 4 <basis> # based volatile member
// ::= 5 <basis> # based const volatile member
// ::= 6 # near function (pointers only)
// ::= 7 # far function (pointers only)
// ::= 8 # near method (pointers only)
// ::= 9 # far method (pointers only)
// ::= _A <basis> # based function (pointers only)
// ::= _B <basis> # based function (far?) (pointers only)
// ::= _C <basis> # based method (pointers only)
// ::= _D <basis> # based method (far?) (pointers only)
// ::= _E # block (Clang)
// <basis> ::= 0 # __based(void)
// ::= 1 # __based(segment)?
// ::= 2 <name> # __based(name)
// ::= 3 # ?
// ::= 4 # ?
// ::= 5 # not really based
if (!IsMember) {
if (!Quals.hasVolatile()) {
if (!Quals.hasConst())
Out << 'A';
else
Out << 'B';
} else {
if (!Quals.hasConst())
Out << 'C';
else
Out << 'D';
}
} else {
if (!Quals.hasVolatile()) {
if (!Quals.hasConst())
Out << 'Q';
else
Out << 'R';
} else {
if (!Quals.hasConst())
Out << 'S';
else
Out << 'T';
}
}
// FIXME: For now, just drop all extension qualifiers on the floor.
}
void MicrosoftCXXNameMangler::mangleTypeRepeated(QualType T, SourceRange Range) {
void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr();
BackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
if (Found == TypeBackReferences.end()) {
size_t OutSizeBefore = Out.GetNumBytesInBuffer();
mangleType(T,Range);
// See if it's worth creating a back reference.
// Only types longer than 1 character are considered
// and only 10 back references slots are available:
bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
if (LongerThanOneChar && TypeBackReferences.size() < 10) {
size_t Size = TypeBackReferences.size();
TypeBackReferences[TypePtr] = Size;
}
} else {
Out << Found->second;
}
}
void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range) {
// Only operate on the canonical type!
T = getASTContext().getCanonicalType(T);
Qualifiers Quals = T.getLocalQualifiers();
if (Quals) {
// We have to mangle these now, while we still have enough information.
// <pointer-cvr-qualifiers> ::= P # pointer
// ::= Q # const pointer
// ::= R # volatile pointer
// ::= S # const volatile pointer
if (T->isAnyPointerType() || T->isMemberPointerType() ||
T->isBlockPointerType()) {
if (!Quals.hasVolatile())
Out << 'Q';
else {
if (!Quals.hasConst())
Out << 'R';
else
Out << 'S';
}
} else
// Just emit qualifiers like normal.
// NB: When we mangle a pointer/reference type, and the pointee
// type has no qualifiers, the lack of qualifier gets mangled
// in there.
mangleQualifiers(Quals, false);
} else if (T->isAnyPointerType() || T->isMemberPointerType() ||
T->isBlockPointerType()) {
Out << 'P';
}
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(T.getTypePtr()), Range); \
break;
#include "clang/AST/TypeNodes.def"
#undef ABSTRACT_TYPE
#undef NON_CANONICAL_TYPE
#undef TYPE
}
}
void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
SourceRange Range) {
// <type> ::= <builtin-type>
// <builtin-type> ::= X # void
// ::= C # signed char
// ::= D # char
// ::= E # unsigned char
// ::= F # short
// ::= G # unsigned short (or wchar_t if it's not a builtin)
// ::= H # int
// ::= I # unsigned int
// ::= J # long
// ::= K # unsigned long
// L # <none>
// ::= M # float
// ::= N # double
// ::= O # long double (__float80 is mangled differently)
// ::= _J # long long, __int64
// ::= _K # unsigned long long, __int64
// ::= _L # __int128
// ::= _M # unsigned __int128
// ::= _N # bool
// _O # <array in parameter>
// ::= _T # __float80 (Intel)
// ::= _W # wchar_t
// ::= _Z # __float80 (Digital Mars)
switch (T->getKind()) {
case BuiltinType::Void: Out << 'X'; break;
case BuiltinType::SChar: Out << 'C'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
case BuiltinType::UChar: Out << 'E'; break;
case BuiltinType::Short: Out << 'F'; break;
case BuiltinType::UShort: Out << 'G'; break;
case BuiltinType::Int: Out << 'H'; break;
case BuiltinType::UInt: Out << 'I'; break;
case BuiltinType::Long: Out << 'J'; break;
case BuiltinType::ULong: Out << 'K'; break;
case BuiltinType::Float: Out << 'M'; break;
case BuiltinType::Double: Out << 'N'; break;
// TODO: Determine size and mangle accordingly
case BuiltinType::LongDouble: Out << 'O'; break;
case BuiltinType::LongLong: Out << "_J"; break;
case BuiltinType::ULongLong: Out << "_K"; break;
case BuiltinType::Int128: Out << "_L"; break;
case BuiltinType::UInt128: Out << "_M"; break;
case BuiltinType::Bool: Out << "_N"; break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U: Out << "_W"; break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("placeholder types shouldn't get to name mangling");
case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
case BuiltinType::NullPtr: Out << "$$T"; break;
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Half: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this built-in %0 type yet");
Diags.Report(Range.getBegin(), DiagID)
<< T->getName(Context.getASTContext().getPrintingPolicy())
<< Range;
break;
}
}
}
// <type> ::= <function-type>
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
SourceRange) {
// Structors only appear in decls, so at this point we know it's not a
// structor type.
// I'll probably have mangleType(MemberPointerType) call the mangleType()
// method directly.
mangleType(T, NULL, false, false);
}
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
SourceRange) {
llvm_unreachable("Can't mangle K&R function prototypes");
}
void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
const FunctionDecl *D,
bool IsStructor,
bool IsInstMethod) {
// <function-type> ::= <this-cvr-qualifiers> <calling-convention>
// <return-type> <argument-list> <throw-spec>
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
// If this is a C++ instance method, mangle the CVR qualifiers for the
// this pointer.
if (IsInstMethod)
mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
mangleCallingConvention(T, IsInstMethod);
// <return-type> ::= <type>
// ::= @ # structors (they have no declared return type)
if (IsStructor)
Out << '@';
else {
QualType Result = Proto->getResultType();
const Type* RT = Result.getTypePtr();
if(isa<TagType>(RT) && !RT->isAnyPointerType() && !RT->isReferenceType())
Out << "?A";
// FIXME: Get the source range for the result type. Or, better yet,
// implement the unimplemented stuff so we don't need accurate source
// location info anymore :).
mangleType(Result, SourceRange());
}
// <argument-list> ::= X # void
// ::= <type>+ @
// ::= <type>* Z # varargs
if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
Out << 'X';
} else {
if (D) {
// If we got a decl, use the type-as-written to make sure arrays
// get mangled right. Note that we can't rely on the TSI
// existing if (for example) the parameter was synthesized.
for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) {
TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo();
QualType Type = TSI ? TSI->getType() : (*Parm)->getType();
mangleTypeRepeated(Type, (*Parm)->getSourceRange());
}
} else {
// Happens for function pointer type arguments for example.
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
ArgEnd = Proto->arg_type_end();
Arg != ArgEnd; ++Arg)
mangleTypeRepeated(*Arg, SourceRange());
}
// <builtin-type> ::= Z # ellipsis
if (Proto->isVariadic())
Out << 'Z';
else
Out << '@';
}
mangleThrowSpecification(Proto);
}
void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
// <function-class> ::= A # private: near
// ::= B # private: far
// ::= C # private: static near
// ::= D # private: static far
// ::= E # private: virtual near
// ::= F # private: virtual far
// ::= G # private: thunk near
// ::= H # private: thunk far
// ::= I # protected: near
// ::= J # protected: far
// ::= K # protected: static near
// ::= L # protected: static far
// ::= M # protected: virtual near
// ::= N # protected: virtual far
// ::= O # protected: thunk near
// ::= P # protected: thunk far
// ::= Q # public: near
// ::= R # public: far
// ::= S # public: static near
// ::= T # public: static far
// ::= U # public: virtual near
// ::= V # public: virtual far
// ::= W # public: thunk near
// ::= X # public: thunk far
// ::= Y # global near
// ::= Z # global far
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
switch (MD->getAccess()) {
default:
case AS_private:
if (MD->isStatic())
Out << 'C';
else if (MD->isVirtual())
Out << 'E';
else
Out << 'A';
break;
case AS_protected:
if (MD->isStatic())
Out << 'K';
else if (MD->isVirtual())
Out << 'M';
else
Out << 'I';
break;
case AS_public:
if (MD->isStatic())
Out << 'S';
else if (MD->isVirtual())
Out << 'U';
else
Out << 'Q';
}
} else
Out << 'Y';
}
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
bool IsInstMethod) {
// <calling-convention> ::= A # __cdecl
// ::= B # __export __cdecl
// ::= C # __pascal
// ::= D # __export __pascal
// ::= E # __thiscall
// ::= F # __export __thiscall
// ::= G # __stdcall
// ::= H # __export __stdcall
// ::= I # __fastcall
// ::= J # __export __fastcall
// The 'export' calling conventions are from a bygone era
// (*cough*Win16*cough*) when functions were declared for export with
// that keyword. (It didn't actually export them, it just made them so
// that they could be in a DLL and somebody from another module could call
// them.)
CallingConv CC = T->getCallConv();
if (CC == CC_Default)
CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C;
switch (CC) {
default:
llvm_unreachable("Unsupported CC for mangling");
case CC_Default:
case CC_C: Out << 'A'; break;
case CC_X86Pascal: Out << 'C'; break;
case CC_X86ThisCall: Out << 'E'; break;
case CC_X86StdCall: Out << 'G'; break;
case CC_X86FastCall: Out << 'I'; break;
}
}
void MicrosoftCXXNameMangler::mangleThrowSpecification(
const FunctionProtoType *FT) {
// <throw-spec> ::= Z # throw(...) (default)
// ::= @ # throw() or __declspec/__attribute__((nothrow))
// ::= <type>+
// NOTE: Since the Microsoft compiler ignores throw specifications, they are
// all actually mangled as 'Z'. (They're ignored because their associated
// functionality isn't implemented, and probably never will be.)
Out << 'Z';
}
void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
SourceRange Range) {
// Probably should be mangled as a template instantiation; need to see what
// VC does first.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this unresolved dependent type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
// <union-type> ::= T <name>
// <struct-type> ::= U <name>
// <class-type> ::= V <name>
// <enum-type> ::= W <size> <name>
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
mangleType(static_cast<const TagType*>(T));
}
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
mangleType(static_cast<const TagType*>(T));
}
void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
switch (T->getDecl()->getTagKind()) {
case TTK_Union:
Out << 'T';
break;
case TTK_Struct:
Out << 'U';
break;
case TTK_Class:
Out << 'V';
break;
case TTK_Enum:
Out << 'W';
Out << getASTContext().getTypeSizeInChars(
cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
break;
}
mangleName(T->getDecl());
}
// <type> ::= <array-type>
// <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
// <element-type> # as global
// ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
// <element-type> # as param
// It's supposed to be the other way around, but for some strange reason, it
// isn't. Today this behavior is retained for the sole purpose of backwards
// compatibility.
void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
// This isn't a recursive mangling, so now we have to do it all in this
// one call.
if (IsGlobal)
Out << 'P';
else
Out << 'Q';
mangleExtraDimensions(T->getElementType());
}
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
SourceRange) {
mangleType(static_cast<const ArrayType *>(T), false);
}
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
SourceRange) {
mangleType(static_cast<const ArrayType *>(T), false);
}
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
SourceRange) {
mangleType(static_cast<const ArrayType *>(T), false);
}
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
SourceRange) {
mangleType(static_cast<const ArrayType *>(T), false);
}
void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
SmallVector<llvm::APInt, 3> Dimensions;
for (;;) {
if (const ConstantArrayType *CAT =
getASTContext().getAsConstantArrayType(ElementTy)) {
Dimensions.push_back(CAT->getSize());
ElementTy = CAT->getElementType();
} else if (ElementTy->isVariableArrayType()) {
const VariableArrayType *VAT =
getASTContext().getAsVariableArrayType(ElementTy);
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this variable-length array yet");
Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
<< VAT->getBracketsRange();
return;
} else if (ElementTy->isDependentSizedArrayType()) {
// The dependent expression has to be folded into a constant (TODO).
const DependentSizedArrayType *DSAT =
getASTContext().getAsDependentSizedArrayType(ElementTy);
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent-length array yet");
Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
<< DSAT->getBracketsRange();
return;
} else if (ElementTy->isIncompleteArrayType()) continue;
else break;
}
mangleQualifiers(ElementTy.getQualifiers(), false);
// If there are any additional dimensions, mangle them now.
if (Dimensions.size() > 0) {
Out << 'Y';
// <dimension-count> ::= <number> # number of extra dimensions
mangleNumber(Dimensions.size());
for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
mangleNumber(Dimensions[Dim].getLimitedValue());
}
}
mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange());
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
// <class name> <type>
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
SourceRange Range) {
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
Out << '8';
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
mangleType(FPT, NULL, false, true);
} else {
mangleQualifiers(PointeeType.getQualifiers(), true);
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
mangleType(PointeeType.getLocalUnqualifiedType(), Range);
}
}
void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this template type parameter type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(
const SubstTemplateTypeParmPackType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this substituted parameter pack yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
// <type> ::= <pointer-type>
// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
SourceRange Range) {
QualType PointeeTy = T->getPointeeType();
if (PointeeTy->isArrayType()) {
// Pointers to arrays are mangled like arrays.
mangleExtraDimensions(PointeeTy);
} else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
// Function pointers are special.
Out << '6';
mangleType(FT, NULL, false, false);
} else {
if (!PointeeTy.hasQualifiers())
// Lack of qualifiers is mangled as 'A'.
Out << 'A';
mangleType(PointeeTy, Range);
}
}
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
SourceRange Range) {
// Object pointers never have qualifiers.
Out << 'A';
mangleType(T->getPointeeType(), Range);
}
// <type> ::= <reference-type>
// <reference-type> ::= A <cvr-qualifiers> <type>
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
SourceRange Range) {
Out << 'A';
QualType PointeeTy = T->getPointeeType();
if (!PointeeTy.hasQualifiers())
// Lack of qualifiers is mangled as 'A'.
Out << 'A';
mangleType(PointeeTy, Range);
}
// <type> ::= <r-value-reference-type>
// <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type>
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
SourceRange Range) {
Out << "$$Q";
QualType PointeeTy = T->getPointeeType();
if (!PointeeTy.hasQualifiers())
// Lack of qualifiers is mangled as 'A'.
Out << 'A';
mangleType(PointeeTy, Range);
}
void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this complex number type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this vector type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this extended vector type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent-sized extended vector type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
SourceRange) {
// ObjC interfaces have structs underlying them.
Out << 'U';
mangleName(T->getDecl());
}
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
SourceRange Range) {
// We don't allow overloading by different protocol qualification,
// so mangling them isn't necessary.
mangleType(T->getBaseType(), Range);
}
void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
SourceRange Range) {
Out << "_E";
mangleType(T->getPointeeType(), Range);
}
void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this injected class name type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this template specialization type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent name type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(
const DependentTemplateSpecializationType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this dependent template specialization type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this pack expansion yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this typeof(type) yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this typeof(expression) yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this decltype() yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this unary transform type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this 'auto' type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
SourceRange Range) {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this C11 atomic type yet");
Diags.Report(Range.getBegin(), DiagID)
<< Range;
}
void MicrosoftMangleContext::mangleName(const NamedDecl *D,
raw_ostream &Out) {
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
"Invalid mangleName() call, argument is not a variable or function!");
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
"Invalid mangleName() call on 'structor decl!");
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
getASTContext().getSourceManager(),
"Mangling declaration");
MicrosoftCXXNameMangler Mangler(*this, Out);
return Mangler.mangle(D);
}
void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle thunk for this method yet");
getDiags().Report(MD->getLocation(), DiagID);
}
void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
CXXDtorType Type,
const ThisAdjustment &,
raw_ostream &) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle thunk for this destructor yet");
getDiags().Report(DD->getLocation(), DiagID);
}
void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
raw_ostream &Out) {
// <mangled-name> ::= ? <operator-name> <class-name> <storage-class>
// <cvr-qualifiers> [<name>] @
// <operator-name> ::= _7 # vftable
// ::= _8 # vbtable
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
// is always '6' for vftables and '7' for vbtables. (The difference is
// beyond me.)
// TODO: vbtables.
MicrosoftCXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "\01??_7";
Mangler.mangleName(RD);
Mangler.getStream() << "6B";
// TODO: If the class has more than one vtable, mangle in the class it came
// from.
Mangler.getStream() << '@';
}
void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
raw_ostream &) {
llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
}
void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
int64_t Offset,
const CXXRecordDecl *Type,
raw_ostream &) {
llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
}
void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
raw_ostream &) {
// FIXME: Give a location...
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle RTTI descriptors for type %0 yet");
getDiags().Report(DiagID)
<< T.getBaseTypeIdentifier();
}
void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
raw_ostream &) {
// FIXME: Give a location...
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle the name of type %0 into RTTI descriptors yet");
getDiags().Report(DiagID)
<< T.getBaseTypeIdentifier();
}
void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type,
raw_ostream & Out) {
MicrosoftCXXNameMangler mangler(*this, Out);
mangler.mangle(D);
}
void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type,
raw_ostream & Out) {
MicrosoftCXXNameMangler mangler(*this, Out);
mangler.mangle(D);
}
void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD,
raw_ostream &) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot mangle this reference temporary yet");
getDiags().Report(VD->getLocation(), DiagID);
}
MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
DiagnosticsEngine &Diags) {
return new MicrosoftMangleContext(Context, Diags);
}