llvm-project/clang/lib/AST/Decl.cpp

4002 lines
144 KiB
C++

//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
using namespace clang;
Decl *clang::getPrimaryMergedDecl(Decl *D) {
return D->getASTContext().getPrimaryMergedDecl(D);
}
// Defined here so that it can be inlined into its direct callers.
bool Decl::isOutOfLine() const {
return !getLexicalDeclContext()->Equals(getDeclContext());
}
//===----------------------------------------------------------------------===//
// NamedDecl Implementation
//===----------------------------------------------------------------------===//
// Visibility rules aren't rigorously externally specified, but here
// are the basic principles behind what we implement:
//
// 1. An explicit visibility attribute is generally a direct expression
// of the user's intent and should be honored. Only the innermost
// visibility attribute applies. If no visibility attribute applies,
// global visibility settings are considered.
//
// 2. There is one caveat to the above: on or in a template pattern,
// an explicit visibility attribute is just a default rule, and
// visibility can be decreased by the visibility of template
// arguments. But this, too, has an exception: an attribute on an
// explicit specialization or instantiation causes all the visibility
// restrictions of the template arguments to be ignored.
//
// 3. A variable that does not otherwise have explicit visibility can
// be restricted by the visibility of its type.
//
// 4. A visibility restriction is explicit if it comes from an
// attribute (or something like it), not a global visibility setting.
// When emitting a reference to an external symbol, visibility
// restrictions are ignored unless they are explicit.
//
// 5. When computing the visibility of a non-type, including a
// non-type member of a class, only non-type visibility restrictions
// are considered: the 'visibility' attribute, global value-visibility
// settings, and a few special cases like __private_extern.
//
// 6. When computing the visibility of a type, including a type member
// of a class, only type visibility restrictions are considered:
// the 'type_visibility' attribute and global type-visibility settings.
// However, a 'visibility' attribute counts as a 'type_visibility'
// attribute on any declaration that only has the former.
//
// The visibility of a "secondary" entity, like a template argument,
// is computed using the kind of that entity, not the kind of the
// primary entity for which we are computing visibility. For example,
// the visibility of a specialization of either of these templates:
// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
// template <class T, bool (&compare)(T, X)> class matcher;
// is restricted according to the type visibility of the argument 'T',
// the type visibility of 'bool(&)(T,X)', and the value visibility of
// the argument function 'compare'. That 'has_match' is a value
// and 'matcher' is a type only matters when looking for attributes
// and settings from the immediate context.
const unsigned IgnoreExplicitVisibilityBit = 2;
const unsigned IgnoreAllVisibilityBit = 4;
/// Kinds of LV computation. The linkage side of the computation is
/// always the same, but different things can change how visibility is
/// computed.
enum LVComputationKind {
/// Do an LV computation for, ultimately, a type.
/// Visibility may be restricted by type visibility settings and
/// the visibility of template arguments.
LVForType = NamedDecl::VisibilityForType,
/// Do an LV computation for, ultimately, a non-type declaration.
/// Visibility may be restricted by value visibility settings and
/// the visibility of template arguments.
LVForValue = NamedDecl::VisibilityForValue,
/// Do an LV computation for, ultimately, a type that already has
/// some sort of explicit visibility. Visibility may only be
/// restricted by the visibility of template arguments.
LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
/// Do an LV computation for, ultimately, a non-type declaration
/// that already has some sort of explicit visibility. Visibility
/// may only be restricted by the visibility of template arguments.
LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
/// Do an LV computation when we only care about the linkage.
LVForLinkageOnly =
LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
};
/// Does this computation kind permit us to consider additional
/// visibility settings from attributes and the like?
static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
}
/// Given an LVComputationKind, return one of the same type/value sort
/// that records that it already has explicit visibility.
static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind) {
LVComputationKind newKind =
static_cast<LVComputationKind>(unsigned(oldKind) |
IgnoreExplicitVisibilityBit);
assert(oldKind != LVForType || newKind == LVForExplicitType);
assert(oldKind != LVForValue || newKind == LVForExplicitValue);
assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
return newKind;
}
static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
LVComputationKind kind) {
assert(!hasExplicitVisibilityAlready(kind) &&
"asking for explicit visibility when we shouldn't be");
return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
}
/// Is the given declaration a "type" or a "value" for the purposes of
/// visibility computation?
static bool usesTypeVisibility(const NamedDecl *D) {
return isa<TypeDecl>(D) ||
isa<ClassTemplateDecl>(D) ||
isa<ObjCInterfaceDecl>(D);
}
/// Does the given declaration have member specialization information,
/// and if so, is it an explicit specialization?
template <class T> static typename
std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T *D) {
if (const MemberSpecializationInfo *member =
D->getMemberSpecializationInfo()) {
return member->isExplicitSpecialization();
}
return false;
}
/// For templates, this question is easier: a member template can't be
/// explicitly instantiated, so there's a single bit indicating whether
/// or not this is an explicit member specialization.
static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
return D->isMemberSpecialization();
}
/// Given a visibility attribute, return the explicit visibility
/// associated with it.
template <class T>
static Visibility getVisibilityFromAttr(const T *attr) {
switch (attr->getVisibility()) {
case T::Default:
return DefaultVisibility;
case T::Hidden:
return HiddenVisibility;
case T::Protected:
return ProtectedVisibility;
}
llvm_unreachable("bad visibility kind");
}
/// Return the explicit visibility of the given declaration.
static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
NamedDecl::ExplicitVisibilityKind kind) {
// If we're ultimately computing the visibility of a type, look for
// a 'type_visibility' attribute before looking for 'visibility'.
if (kind == NamedDecl::VisibilityForType) {
if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
return getVisibilityFromAttr(A);
}
}
// If this declaration has an explicit visibility attribute, use it.
if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
return getVisibilityFromAttr(A);
}
// If we're on Mac OS X, an 'availability' for Mac OS X attribute
// implies visibility(default).
if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
for (const auto *A : D->specific_attrs<AvailabilityAttr>())
if (A->getPlatform()->getName().equals("macosx"))
return DefaultVisibility;
}
return None;
}
static LinkageInfo
getLVForType(const Type &T, LVComputationKind computation) {
if (computation == LVForLinkageOnly)
return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
return T.getLinkageAndVisibility();
}
/// \brief Get the most restrictive linkage for the types in the given
/// template parameter list. For visibility purposes, template
/// parameters are part of the signature of a template.
static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList *Params,
LVComputationKind computation) {
LinkageInfo LV;
for (const NamedDecl *P : *Params) {
// Template type parameters are the most common and never
// contribute to visibility, pack or not.
if (isa<TemplateTypeParmDecl>(P))
continue;
// Non-type template parameters can be restricted by the value type, e.g.
// template <enum X> class A { ... };
// We have to be careful here, though, because we can be dealing with
// dependent types.
if (const NonTypeTemplateParmDecl *NTTP =
dyn_cast<NonTypeTemplateParmDecl>(P)) {
// Handle the non-pack case first.
if (!NTTP->isExpandedParameterPack()) {
if (!NTTP->getType()->isDependentType()) {
LV.merge(getLVForType(*NTTP->getType(), computation));
}
continue;
}
// Look at all the types in an expanded pack.
for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
QualType type = NTTP->getExpansionType(i);
if (!type->isDependentType())
LV.merge(type->getLinkageAndVisibility());
}
continue;
}
// Template template parameters can be restricted by their
// template parameters, recursively.
const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
// Handle the non-pack case first.
if (!TTP->isExpandedParameterPack()) {
LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
computation));
continue;
}
// Look at all expansions in an expanded pack.
for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
i != n; ++i) {
LV.merge(getLVForTemplateParameterList(
TTP->getExpansionTemplateParameters(i), computation));
}
}
return LV;
}
/// getLVForDecl - Get the linkage and visibility for the given declaration.
static LinkageInfo getLVForDecl(const NamedDecl *D,
LVComputationKind computation);
static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
const Decl *Ret = nullptr;
const DeclContext *DC = D->getDeclContext();
while (DC->getDeclKind() != Decl::TranslationUnit) {
if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
Ret = cast<Decl>(DC);
DC = DC->getParent();
}
return Ret;
}
/// \brief Get the most restrictive linkage for the types and
/// declarations in the given template argument list.
///
/// Note that we don't take an LVComputationKind because we always
/// want to honor the visibility of template arguments in the same way.
static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
LVComputationKind computation) {
LinkageInfo LV;
for (const TemplateArgument &Arg : Args) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Expression:
continue;
case TemplateArgument::Type:
LV.merge(getLVForType(*Arg.getAsType(), computation));
continue;
case TemplateArgument::Declaration:
if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
assert(!usesTypeVisibility(ND));
LV.merge(getLVForDecl(ND, computation));
}
continue;
case TemplateArgument::NullPtr:
LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
continue;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (TemplateDecl *Template =
Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
LV.merge(getLVForDecl(Template, computation));
continue;
case TemplateArgument::Pack:
LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
continue;
}
llvm_unreachable("bad template argument kind");
}
return LV;
}
static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
LVComputationKind computation) {
return getLVForTemplateArgumentList(TArgs.asArray(), computation);
}
static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
const FunctionTemplateSpecializationInfo *specInfo) {
// Include visibility from the template parameters and arguments
// only if this is not an explicit instantiation or specialization
// with direct explicit visibility. (Implicit instantiations won't
// have a direct attribute.)
if (!specInfo->isExplicitInstantiationOrSpecialization())
return true;
return !fn->hasAttr<VisibilityAttr>();
}
/// Merge in template-related linkage and visibility for the given
/// function template specialization.
///
/// We don't need a computation kind here because we can assume
/// LVForValue.
///
/// \param[out] LV the computation to use for the parent
static void
mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
const FunctionTemplateSpecializationInfo *specInfo,
LVComputationKind computation) {
bool considerVisibility =
shouldConsiderTemplateVisibility(fn, specInfo);
// Merge information from the template parameters.
FunctionTemplateDecl *temp = specInfo->getTemplate();
LinkageInfo tempLV =
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
// Merge information from the template arguments.
const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
}
/// Does the given declaration have a direct visibility attribute
/// that would match the given rules?
static bool hasDirectVisibilityAttribute(const NamedDecl *D,
LVComputationKind computation) {
switch (computation) {
case LVForType:
case LVForExplicitType:
if (D->hasAttr<TypeVisibilityAttr>())
return true;
// fallthrough
case LVForValue:
case LVForExplicitValue:
if (D->hasAttr<VisibilityAttr>())
return true;
return false;
case LVForLinkageOnly:
return false;
}
llvm_unreachable("bad visibility computation kind");
}
/// Should we consider visibility associated with the template
/// arguments and parameters of the given class template specialization?
static bool shouldConsiderTemplateVisibility(
const ClassTemplateSpecializationDecl *spec,
LVComputationKind computation) {
// Include visibility from the template parameters and arguments
// only if this is not an explicit instantiation or specialization
// with direct explicit visibility (and note that implicit
// instantiations won't have a direct attribute).
//
// Furthermore, we want to ignore template parameters and arguments
// for an explicit specialization when computing the visibility of a
// member thereof with explicit visibility.
//
// This is a bit complex; let's unpack it.
//
// An explicit class specialization is an independent, top-level
// declaration. As such, if it or any of its members has an
// explicit visibility attribute, that must directly express the
// user's intent, and we should honor it. The same logic applies to
// an explicit instantiation of a member of such a thing.
// Fast path: if this is not an explicit instantiation or
// specialization, we always want to consider template-related
// visibility restrictions.
if (!spec->isExplicitInstantiationOrSpecialization())
return true;
// This is the 'member thereof' check.
if (spec->isExplicitSpecialization() &&
hasExplicitVisibilityAlready(computation))
return false;
return !hasDirectVisibilityAttribute(spec, computation);
}
/// Merge in template-related linkage and visibility for the given
/// class template specialization.
static void mergeTemplateLV(LinkageInfo &LV,
const ClassTemplateSpecializationDecl *spec,
LVComputationKind computation) {
bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
// Merge information from the template parameters, but ignore
// visibility if we're only considering template arguments.
ClassTemplateDecl *temp = spec->getSpecializedTemplate();
LinkageInfo tempLV =
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
LV.mergeMaybeWithVisibility(tempLV,
considerVisibility && !hasExplicitVisibilityAlready(computation));
// Merge information from the template arguments. We ignore
// template-argument visibility if we've got an explicit
// instantiation with a visibility attribute.
const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
if (considerVisibility)
LV.mergeVisibility(argsLV);
LV.mergeExternalVisibility(argsLV);
}
/// Should we consider visibility associated with the template
/// arguments and parameters of the given variable template
/// specialization? As usual, follow class template specialization
/// logic up to initialization.
static bool shouldConsiderTemplateVisibility(
const VarTemplateSpecializationDecl *spec,
LVComputationKind computation) {
// Include visibility from the template parameters and arguments
// only if this is not an explicit instantiation or specialization
// with direct explicit visibility (and note that implicit
// instantiations won't have a direct attribute).
if (!spec->isExplicitInstantiationOrSpecialization())
return true;
// An explicit variable specialization is an independent, top-level
// declaration. As such, if it has an explicit visibility attribute,
// that must directly express the user's intent, and we should honor
// it.
if (spec->isExplicitSpecialization() &&
hasExplicitVisibilityAlready(computation))
return false;
return !hasDirectVisibilityAttribute(spec, computation);
}
/// Merge in template-related linkage and visibility for the given
/// variable template specialization. As usual, follow class template
/// specialization logic up to initialization.
static void mergeTemplateLV(LinkageInfo &LV,
const VarTemplateSpecializationDecl *spec,
LVComputationKind computation) {
bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
// Merge information from the template parameters, but ignore
// visibility if we're only considering template arguments.
VarTemplateDecl *temp = spec->getSpecializedTemplate();
LinkageInfo tempLV =
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
LV.mergeMaybeWithVisibility(tempLV,
considerVisibility && !hasExplicitVisibilityAlready(computation));
// Merge information from the template arguments. We ignore
// template-argument visibility if we've got an explicit
// instantiation with a visibility attribute.
const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
if (considerVisibility)
LV.mergeVisibility(argsLV);
LV.mergeExternalVisibility(argsLV);
}
static bool useInlineVisibilityHidden(const NamedDecl *D) {
// FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
const LangOptions &Opts = D->getASTContext().getLangOpts();
if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
return false;
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD)
return false;
TemplateSpecializationKind TSK = TSK_Undeclared;
if (FunctionTemplateSpecializationInfo *spec
= FD->getTemplateSpecializationInfo()) {
TSK = spec->getTemplateSpecializationKind();
} else if (MemberSpecializationInfo *MSI =
FD->getMemberSpecializationInfo()) {
TSK = MSI->getTemplateSpecializationKind();
}
const FunctionDecl *Def = nullptr;
// InlineVisibilityHidden only applies to definitions, and
// isInlined() only gives meaningful answers on definitions
// anyway.
return TSK != TSK_ExplicitInstantiationDeclaration &&
TSK != TSK_ExplicitInstantiationDefinition &&
FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
}
template <typename T> static bool isFirstInExternCContext(T *D) {
const T *First = D->getFirstDecl();
return First->isInExternCContext();
}
static bool isSingleLineLanguageLinkage(const Decl &D) {
if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
if (!SD->hasBraces())
return true;
return false;
}
static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
LVComputationKind computation) {
assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
"Not a name having namespace scope");
ASTContext &Context = D->getASTContext();
// C++ [basic.link]p3:
// A name having namespace scope (3.3.6) has internal linkage if it
// is the name of
// - an object, reference, function or function template that is
// explicitly declared static; or,
// (This bullet corresponds to C99 6.2.2p3.)
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Explicitly declared static.
if (Var->getStorageClass() == SC_Static)
return LinkageInfo::internal();
// - a non-volatile object or reference that is explicitly declared const
// or constexpr and neither explicitly declared extern nor previously
// declared to have external linkage; or (there is no equivalent in C99)
if (Context.getLangOpts().CPlusPlus &&
Var->getType().isConstQualified() &&
!Var->getType().isVolatileQualified()) {
const VarDecl *PrevVar = Var->getPreviousDecl();
if (PrevVar)
return getLVForDecl(PrevVar, computation);
if (Var->getStorageClass() != SC_Extern &&
Var->getStorageClass() != SC_PrivateExtern &&
!isSingleLineLanguageLinkage(*Var))
return LinkageInfo::internal();
}
for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
PrevVar = PrevVar->getPreviousDecl()) {
if (PrevVar->getStorageClass() == SC_PrivateExtern &&
Var->getStorageClass() == SC_None)
return PrevVar->getLinkageAndVisibility();
// Explicitly declared static.
if (PrevVar->getStorageClass() == SC_Static)
return LinkageInfo::internal();
}
} else if (const FunctionDecl *Function = D->getAsFunction()) {
// C++ [temp]p4:
// A non-member function template can have internal linkage; any
// other template name shall have external linkage.
// Explicitly declared static.
if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
return LinkageInfo(InternalLinkage, DefaultVisibility, false);
}
// - a data member of an anonymous union.
assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
if (D->isInAnonymousNamespace()) {
const VarDecl *Var = dyn_cast<VarDecl>(D);
const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
if ((!Var || !isFirstInExternCContext(Var)) &&
(!Func || !isFirstInExternCContext(Func)))
return LinkageInfo::uniqueExternal();
}
// Set up the defaults.
// C99 6.2.2p5:
// If the declaration of an identifier for an object has file
// scope and no storage-class specifier, its linkage is
// external.
LinkageInfo LV;
if (!hasExplicitVisibilityAlready(computation)) {
if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
LV.mergeVisibility(*Vis, true);
} else {
// If we're declared in a namespace with a visibility attribute,
// use that namespace's visibility, and it still counts as explicit.
for (const DeclContext *DC = D->getDeclContext();
!isa<TranslationUnitDecl>(DC);
DC = DC->getParent()) {
const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
if (!ND) continue;
if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
LV.mergeVisibility(*Vis, true);
break;
}
}
}
// Add in global settings if the above didn't give us direct visibility.
if (!LV.isVisibilityExplicit()) {
// Use global type/value visibility as appropriate.
Visibility globalVisibility;
if (computation == LVForValue) {
globalVisibility = Context.getLangOpts().getValueVisibilityMode();
} else {
assert(computation == LVForType);
globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
}
LV.mergeVisibility(globalVisibility, /*explicit*/ false);
// If we're paying attention to global visibility, apply
// -finline-visibility-hidden if this is an inline method.
if (useInlineVisibilityHidden(D))
LV.mergeVisibility(HiddenVisibility, true);
}
}
// C++ [basic.link]p4:
// A name having namespace scope has external linkage if it is the
// name of
//
// - an object or reference, unless it has internal linkage; or
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
// GCC applies the following optimization to variables and static
// data members, but not to functions:
//
// Modify the variable's LV by the LV of its type unless this is
// C or extern "C". This follows from [basic.link]p9:
// A type without linkage shall not be used as the type of a
// variable or function with external linkage unless
// - the entity has C language linkage, or
// - the entity is declared within an unnamed namespace, or
// - the entity is not used or is defined in the same
// translation unit.
// and [basic.link]p10:
// ...the types specified by all declarations referring to a
// given variable or function shall be identical...
// C does not have an equivalent rule.
//
// Ignore this if we've got an explicit attribute; the user
// probably knows what they're doing.
//
// Note that we don't want to make the variable non-external
// because of this, but unique-external linkage suits us.
if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
if (TypeLV.getLinkage() != ExternalLinkage)
return LinkageInfo::uniqueExternal();
if (!LV.isVisibilityExplicit())
LV.mergeVisibility(TypeLV);
}
if (Var->getStorageClass() == SC_PrivateExtern)
LV.mergeVisibility(HiddenVisibility, true);
// Note that Sema::MergeVarDecl already takes care of implementing
// C99 6.2.2p4 and propagating the visibility attribute, so we don't have
// to do it here.
// As per function and class template specializations (below),
// consider LV for the template and template arguments. We're at file
// scope, so we do not need to worry about nested specializations.
if (const VarTemplateSpecializationDecl *spec
= dyn_cast<VarTemplateSpecializationDecl>(Var)) {
mergeTemplateLV(LV, spec, computation);
}
// - a function, unless it has internal linkage; or
} else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// In theory, we can modify the function's LV by the LV of its
// type unless it has C linkage (see comment above about variables
// for justification). In practice, GCC doesn't do this, so it's
// just too painful to make work.
if (Function->getStorageClass() == SC_PrivateExtern)
LV.mergeVisibility(HiddenVisibility, true);
// Note that Sema::MergeCompatibleFunctionDecls already takes care of
// merging storage classes and visibility attributes, so we don't have to
// look at previous decls in here.
// In C++, then if the type of the function uses a type with
// unique-external linkage, it's not legally usable from outside
// this translation unit. However, we should use the C linkage
// rules instead for extern "C" declarations.
if (Context.getLangOpts().CPlusPlus &&
!Function->isInExternCContext()) {
// Only look at the type-as-written. If this function has an auto-deduced
// return type, we can't compute the linkage of that type because it could
// require looking at the linkage of this function, and we don't need this
// for correctness because the type is not part of the function's
// signature.
// FIXME: This is a hack. We should be able to solve this circularity and
// the one in getLVForClassMember for Functions some other way.
QualType TypeAsWritten = Function->getType();
if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
TypeAsWritten = TSI->getType();
if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
}
// Consider LV from the template and the template arguments.
// We're at file scope, so we do not need to worry about nested
// specializations.
if (FunctionTemplateSpecializationInfo *specInfo
= Function->getTemplateSpecializationInfo()) {
mergeTemplateLV(LV, Function, specInfo, computation);
}
// - a named class (Clause 9), or an unnamed class defined in a
// typedef declaration in which the class has the typedef name
// for linkage purposes (7.1.3); or
// - a named enumeration (7.2), or an unnamed enumeration
// defined in a typedef declaration in which the enumeration
// has the typedef name for linkage purposes (7.1.3); or
} else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
// Unnamed tags have no linkage.
if (!Tag->hasNameForLinkage())
return LinkageInfo::none();
// If this is a class template specialization, consider the
// linkage of the template and template arguments. We're at file
// scope, so we do not need to worry about nested specializations.
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
mergeTemplateLV(LV, spec, computation);
}
// - an enumerator belonging to an enumeration with external linkage;
} else if (isa<EnumConstantDecl>(D)) {
LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
computation);
if (!isExternalFormalLinkage(EnumLV.getLinkage()))
return LinkageInfo::none();
LV.merge(EnumLV);
// - a template, unless it is a function template that has
// internal linkage (Clause 14);
} else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
bool considerVisibility = !hasExplicitVisibilityAlready(computation);
LinkageInfo tempLV =
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
// - a namespace (7.3), unless it is declared within an unnamed
// namespace.
} else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
return LV;
// By extension, we assign external linkage to Objective-C
// interfaces.
} else if (isa<ObjCInterfaceDecl>(D)) {
// fallout
// Everything not covered here has no linkage.
} else {
// FIXME: A typedef declaration has linkage if it gives a type a name for
// linkage purposes.
return LinkageInfo::none();
}
// If we ended up with non-external linkage, visibility should
// always be default.
if (LV.getLinkage() != ExternalLinkage)
return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
return LV;
}
static LinkageInfo getLVForClassMember(const NamedDecl *D,
LVComputationKind computation) {
// Only certain class members have linkage. Note that fields don't
// really have linkage, but it's convenient to say they do for the
// purposes of calculating linkage of pointer-to-data-member
// template arguments.
//
// Templates also don't officially have linkage, but since we ignore
// the C++ standard and look at template arguments when determining
// linkage and visibility of a template specialization, we might hit
// a template template argument that way. If we do, we need to
// consider its linkage.
if (!(isa<CXXMethodDecl>(D) ||
isa<VarDecl>(D) ||
isa<FieldDecl>(D) ||
isa<IndirectFieldDecl>(D) ||
isa<TagDecl>(D) ||
isa<TemplateDecl>(D)))
return LinkageInfo::none();
LinkageInfo LV;
// If we have an explicit visibility attribute, merge that in.
if (!hasExplicitVisibilityAlready(computation)) {
if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
LV.mergeVisibility(*Vis, true);
// If we're paying attention to global visibility, apply
// -finline-visibility-hidden if this is an inline method.
//
// Note that we do this before merging information about
// the class visibility.
if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
LV.mergeVisibility(HiddenVisibility, true);
}
// If this class member has an explicit visibility attribute, the only
// thing that can change its visibility is the template arguments, so
// only look for them when processing the class.
LVComputationKind classComputation = computation;
if (LV.isVisibilityExplicit())
classComputation = withExplicitVisibilityAlready(computation);
LinkageInfo classLV =
getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
// If the class already has unique-external linkage, we can't improve.
if (classLV.getLinkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
if (!isExternallyVisible(classLV.getLinkage()))
return LinkageInfo::none();
// Otherwise, don't merge in classLV yet, because in certain cases
// we need to completely ignore the visibility from it.
// Specifically, if this decl exists and has an explicit attribute.
const NamedDecl *explicitSpecSuppressor = nullptr;
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
// If the type of the function uses a type with unique-external
// linkage, it's not legally usable from outside this translation unit.
// But only look at the type-as-written. If this function has an auto-deduced
// return type, we can't compute the linkage of that type because it could
// require looking at the linkage of this function, and we don't need this
// for correctness because the type is not part of the function's
// signature.
// FIXME: This is a hack. We should be able to solve this circularity and the
// one in getLVForNamespaceScopeDecl for Functions some other way.
{
QualType TypeAsWritten = MD->getType();
if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
TypeAsWritten = TSI->getType();
if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
return LinkageInfo::uniqueExternal();
}
// If this is a method template specialization, use the linkage for
// the template parameters and arguments.
if (FunctionTemplateSpecializationInfo *spec
= MD->getTemplateSpecializationInfo()) {
mergeTemplateLV(LV, MD, spec, computation);
if (spec->isExplicitSpecialization()) {
explicitSpecSuppressor = MD;
} else if (isExplicitMemberSpecialization(spec->getTemplate())) {
explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
}
} else if (isExplicitMemberSpecialization(MD)) {
explicitSpecSuppressor = MD;
}
} else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
mergeTemplateLV(LV, spec, computation);
if (spec->isExplicitSpecialization()) {
explicitSpecSuppressor = spec;
} else {
const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
if (isExplicitMemberSpecialization(temp)) {
explicitSpecSuppressor = temp->getTemplatedDecl();
}
}
} else if (isExplicitMemberSpecialization(RD)) {
explicitSpecSuppressor = RD;
}
// Static data members.
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (const VarTemplateSpecializationDecl *spec
= dyn_cast<VarTemplateSpecializationDecl>(VD))
mergeTemplateLV(LV, spec, computation);
// Modify the variable's linkage by its type, but ignore the
// type's visibility unless it's a definition.
LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
LV.mergeVisibility(typeLV);
LV.mergeExternalVisibility(typeLV);
if (isExplicitMemberSpecialization(VD)) {
explicitSpecSuppressor = VD;
}
// Template members.
} else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
bool considerVisibility =
(!LV.isVisibilityExplicit() &&
!classLV.isVisibilityExplicit() &&
!hasExplicitVisibilityAlready(computation));
LinkageInfo tempLV =
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
if (const RedeclarableTemplateDecl *redeclTemp =
dyn_cast<RedeclarableTemplateDecl>(temp)) {
if (isExplicitMemberSpecialization(redeclTemp)) {
explicitSpecSuppressor = temp->getTemplatedDecl();
}
}
}
// We should never be looking for an attribute directly on a template.
assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
// If this member is an explicit member specialization, and it has
// an explicit attribute, ignore visibility from the parent.
bool considerClassVisibility = true;
if (explicitSpecSuppressor &&
// optimization: hasDVA() is true only with explicit visibility.
LV.isVisibilityExplicit() &&
classLV.getVisibility() != DefaultVisibility &&
hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
considerClassVisibility = false;
}
// Finally, merge in information from the class.
LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
return LV;
}
void NamedDecl::anchor() { }
static LinkageInfo computeLVForDecl(const NamedDecl *D,
LVComputationKind computation);
bool NamedDecl::isLinkageValid() const {
if (!hasCachedLinkage())
return true;
return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
getCachedLinkage();
}
ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
StringRef name = getName();
if (name.empty()) return SFF_None;
if (name.front() == 'C')
if (name == "CFStringCreateWithFormat" ||
name == "CFStringCreateWithFormatAndArguments" ||
name == "CFStringAppendFormat" ||
name == "CFStringAppendFormatAndArguments")
return SFF_CFString;
return SFF_None;
}
Linkage NamedDecl::getLinkageInternal() const {
// We don't care about visibility here, so ask for the cheapest
// possible visibility analysis.
return getLVForDecl(this, LVForLinkageOnly).getLinkage();
}
LinkageInfo NamedDecl::getLinkageAndVisibility() const {
LVComputationKind computation =
(usesTypeVisibility(this) ? LVForType : LVForValue);
return getLVForDecl(this, computation);
}
static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl *ND,
NamedDecl::ExplicitVisibilityKind kind,
bool IsMostRecent) {
assert(!IsMostRecent || ND == ND->getMostRecentDecl());
// Check the declaration itself first.
if (Optional<Visibility> V = getVisibilityOf(ND, kind))
return V;
// If this is a member class of a specialization of a class template
// and the corresponding decl has explicit visibility, use that.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
if (InstantiatedFrom)
return getVisibilityOf(InstantiatedFrom, kind);
}
// If there wasn't explicit visibility there, and this is a
// specialization of a class template, check for visibility
// on the pattern.
if (const ClassTemplateSpecializationDecl *spec
= dyn_cast<ClassTemplateSpecializationDecl>(ND))
return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
kind);
// Use the most recent declaration.
if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
const NamedDecl *MostRecent = ND->getMostRecentDecl();
if (MostRecent != ND)
return getExplicitVisibilityAux(MostRecent, kind, true);
}
if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
if (Var->isStaticDataMember()) {
VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
if (InstantiatedFrom)
return getVisibilityOf(InstantiatedFrom, kind);
}
if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
kind);
return None;
}
// Also handle function template specializations.
if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
// If the function is a specialization of a template with an
// explicit visibility attribute, use that.
if (FunctionTemplateSpecializationInfo *templateInfo
= fn->getTemplateSpecializationInfo())
return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
kind);
// If the function is a member of a specialization of a class template
// and the corresponding decl has explicit visibility, use that.
FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
if (InstantiatedFrom)
return getVisibilityOf(InstantiatedFrom, kind);
return None;
}
// The visibility of a template is stored in the templated decl.
if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
return getVisibilityOf(TD->getTemplatedDecl(), kind);
return None;
}
Optional<Visibility>
NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
return getExplicitVisibilityAux(this, kind, false);
}
static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
LVComputationKind computation) {
// This lambda has its linkage/visibility determined by its owner.
if (ContextDecl) {
if (isa<ParmVarDecl>(ContextDecl))
DC = ContextDecl->getDeclContext()->getRedeclContext();
else
return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
}
if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
return getLVForDecl(ND, computation);
return LinkageInfo::external();
}
static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
LVComputationKind computation) {
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
if (Function->isInAnonymousNamespace() &&
!Function->isInExternCContext())
return LinkageInfo::uniqueExternal();
// This is a "void f();" which got merged with a file static.
if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
return LinkageInfo::internal();
LinkageInfo LV;
if (!hasExplicitVisibilityAlready(computation)) {
if (Optional<Visibility> Vis =
getExplicitVisibility(Function, computation))
LV.mergeVisibility(*Vis, true);
}
// Note that Sema::MergeCompatibleFunctionDecls already takes care of
// merging storage classes and visibility attributes, so we don't have to
// look at previous decls in here.
return LV;
}
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
if (Var->hasExternalStorage()) {
if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
return LinkageInfo::uniqueExternal();
LinkageInfo LV;
if (Var->getStorageClass() == SC_PrivateExtern)
LV.mergeVisibility(HiddenVisibility, true);
else if (!hasExplicitVisibilityAlready(computation)) {
if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
LV.mergeVisibility(*Vis, true);
}
if (const VarDecl *Prev = Var->getPreviousDecl()) {
LinkageInfo PrevLV = getLVForDecl(Prev, computation);
if (PrevLV.getLinkage())
LV.setLinkage(PrevLV.getLinkage());
LV.mergeVisibility(PrevLV);
}
return LV;
}
if (!Var->isStaticLocal())
return LinkageInfo::none();
}
ASTContext &Context = D->getASTContext();
if (!Context.getLangOpts().CPlusPlus)
return LinkageInfo::none();
const Decl *OuterD = getOutermostFuncOrBlockContext(D);
if (!OuterD)
return LinkageInfo::none();
LinkageInfo LV;
if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
if (!BD->getBlockManglingNumber())
return LinkageInfo::none();
LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
BD->getBlockManglingContextDecl(), computation);
} else {
const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
if (!FD->isInlined() &&
FD->getTemplateSpecializationKind() == TSK_Undeclared)
return LinkageInfo::none();
LV = getLVForDecl(FD, computation);
}
if (!isExternallyVisible(LV.getLinkage()))
return LinkageInfo::none();
return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
LV.isVisibilityExplicit());
}
static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
const CXXRecordDecl *Ret = Record;
while (Record && Record->isLambda()) {
Ret = Record;
if (!Record->getParent()) break;
// Get the Containing Class of this Lambda Class
Record = dyn_cast_or_null<CXXRecordDecl>(
Record->getParent()->getParent());
}
return Ret;
}
static LinkageInfo computeLVForDecl(const NamedDecl *D,
LVComputationKind computation) {
// Objective-C: treat all Objective-C declarations as having external
// linkage.
switch (D->getKind()) {
default:
break;
case Decl::ParmVar:
return LinkageInfo::none();
case Decl::TemplateTemplateParm: // count these as external
case Decl::NonTypeTemplateParm:
case Decl::ObjCAtDefsField:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCCompatibleAlias:
case Decl::ObjCImplementation:
case Decl::ObjCMethod:
case Decl::ObjCProperty:
case Decl::ObjCPropertyImpl:
case Decl::ObjCProtocol:
return LinkageInfo::external();
case Decl::CXXRecord: {
const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
if (Record->isLambda()) {
if (!Record->getLambdaManglingNumber()) {
// This lambda has no mangling number, so it's internal.
return LinkageInfo::internal();
}
// This lambda has its linkage/visibility determined:
// - either by the outermost lambda if that lambda has no mangling
// number.
// - or by the parent of the outer most lambda
// This prevents infinite recursion in settings such as nested lambdas
// used in NSDMI's, for e.g.
// struct L {
// int t{};
// int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
// };
const CXXRecordDecl *OuterMostLambda =
getOutermostEnclosingLambda(Record);
if (!OuterMostLambda->getLambdaManglingNumber())
return LinkageInfo::internal();
return getLVForClosure(
OuterMostLambda->getDeclContext()->getRedeclContext(),
OuterMostLambda->getLambdaContextDecl(), computation);
}
break;
}
}
// Handle linkage for namespace-scope names.
if (D->getDeclContext()->getRedeclContext()->isFileContext())
return getLVForNamespaceScopeDecl(D, computation);
// C++ [basic.link]p5:
// In addition, a member function, static data member, a named
// class or enumeration of class scope, or an unnamed class or
// enumeration defined in a class-scope typedef declaration such
// that the class or enumeration has the typedef name for linkage
// purposes (7.1.3), has external linkage if the name of the class
// has external linkage.
if (D->getDeclContext()->isRecord())
return getLVForClassMember(D, computation);
// C++ [basic.link]p6:
// The name of a function declared in block scope and the name of
// an object declared by a block scope extern declaration have
// linkage. If there is a visible declaration of an entity with
// linkage having the same name and type, ignoring entities
// declared outside the innermost enclosing namespace scope, the
// block scope declaration declares that same entity and receives
// the linkage of the previous declaration. If there is more than
// one such matching entity, the program is ill-formed. Otherwise,
// if no matching entity is found, the block scope entity receives
// external linkage.
if (D->getDeclContext()->isFunctionOrMethod())
return getLVForLocalDecl(D, computation);
// C++ [basic.link]p6:
// Names not covered by these rules have no linkage.
return LinkageInfo::none();
}
namespace clang {
class LinkageComputer {
public:
static LinkageInfo getLVForDecl(const NamedDecl *D,
LVComputationKind computation) {
if (computation == LVForLinkageOnly && D->hasCachedLinkage())
return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
LinkageInfo LV = computeLVForDecl(D, computation);
if (D->hasCachedLinkage())
assert(D->getCachedLinkage() == LV.getLinkage());
D->setCachedLinkage(LV.getLinkage());
#ifndef NDEBUG
// In C (because of gnu inline) and in c++ with microsoft extensions an
// static can follow an extern, so we can have two decls with different
// linkages.
const LangOptions &Opts = D->getASTContext().getLangOpts();
if (!Opts.CPlusPlus || Opts.MicrosoftExt)
return LV;
// We have just computed the linkage for this decl. By induction we know
// that all other computed linkages match, check that the one we just
// computed also does.
NamedDecl *Old = nullptr;
for (auto I : D->redecls()) {
NamedDecl *T = cast<NamedDecl>(I);
if (T == D)
continue;
if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
Old = T;
break;
}
}
assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
#endif
return LV;
}
};
}
static LinkageInfo getLVForDecl(const NamedDecl *D,
LVComputationKind computation) {
return clang::LinkageComputer::getLVForDecl(D, computation);
}
std::string NamedDecl::getQualifiedNameAsString() const {
std::string QualName;
llvm::raw_string_ostream OS(QualName);
printQualifiedName(OS, getASTContext().getPrintingPolicy());
return OS.str();
}
void NamedDecl::printQualifiedName(raw_ostream &OS) const {
printQualifiedName(OS, getASTContext().getPrintingPolicy());
}
void NamedDecl::printQualifiedName(raw_ostream &OS,
const PrintingPolicy &P) const {
const DeclContext *Ctx = getDeclContext();
if (Ctx->isFunctionOrMethod()) {
printName(OS);
return;
}
typedef SmallVector<const DeclContext *, 8> ContextsTy;
ContextsTy Contexts;
// Collect contexts.
while (Ctx && isa<NamedDecl>(Ctx)) {
Contexts.push_back(Ctx);
Ctx = Ctx->getParent();
}
for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
I != E; ++I) {
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
OS << Spec->getName();
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
TemplateSpecializationType::PrintTemplateArgumentList(OS,
TemplateArgs.data(),
TemplateArgs.size(),
P);
} else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
if (P.SuppressUnwrittenScope &&
(ND->isAnonymousNamespace() || ND->isInline()))
continue;
if (ND->isAnonymousNamespace())
OS << "(anonymous namespace)";
else
OS << *ND;
} else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
if (!RD->getIdentifier())
OS << "(anonymous " << RD->getKindName() << ')';
else
OS << *RD;
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
const FunctionProtoType *FT = nullptr;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
OS << *FD << '(';
if (FT) {
unsigned NumParams = FD->getNumParams();
for (unsigned i = 0; i < NumParams; ++i) {
if (i)
OS << ", ";
OS << FD->getParamDecl(i)->getType().stream(P);
}
if (FT->isVariadic()) {
if (NumParams > 0)
OS << ", ";
OS << "...";
}
}
OS << ')';
} else {
OS << *cast<NamedDecl>(*I);
}
OS << "::";
}
if (getDeclName())
OS << *this;
else
OS << "(anonymous)";
}
void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
const PrintingPolicy &Policy,
bool Qualified) const {
if (Qualified)
printQualifiedName(OS, Policy);
else
printName(OS);
}
bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
// We want to keep it, unless it nominates same namespace.
if (getKind() == Decl::UsingDirective) {
return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
->getOriginalNamespace() ==
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
->getOriginalNamespace();
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
// For function declarations, we keep track of redeclarations.
return FD->getPreviousDecl() == OldD;
// For function templates, the underlying function declarations are linked.
if (const FunctionTemplateDecl *FunctionTemplate
= dyn_cast<FunctionTemplateDecl>(this))
if (const FunctionTemplateDecl *OldFunctionTemplate
= dyn_cast<FunctionTemplateDecl>(OldD))
return FunctionTemplate->getTemplatedDecl()
->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
// For method declarations, we keep track of redeclarations.
if (isa<ObjCMethodDecl>(this))
return false;
// FIXME: Is this correct if one of the decls comes from an inline namespace?
if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
return true;
if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
return cast<UsingShadowDecl>(this)->getTargetDecl() ==
cast<UsingShadowDecl>(OldD)->getTargetDecl();
if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
ASTContext &Context = getASTContext();
return Context.getCanonicalNestedNameSpecifier(
cast<UsingDecl>(this)->getQualifier()) ==
Context.getCanonicalNestedNameSpecifier(
cast<UsingDecl>(OldD)->getQualifier());
}
if (isa<UnresolvedUsingValueDecl>(this) &&
isa<UnresolvedUsingValueDecl>(OldD)) {
ASTContext &Context = getASTContext();
return Context.getCanonicalNestedNameSpecifier(
cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
Context.getCanonicalNestedNameSpecifier(
cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
}
// A typedef of an Objective-C class type can replace an Objective-C class
// declaration or definition, and vice versa.
// FIXME: Is this correct if one of the decls comes from an inline namespace?
if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
(isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
return true;
// For non-function declarations, if the declarations are of the
// same kind and have the same parent then this must be a redeclaration,
// or semantic analysis would not have given us the new declaration.
// Note that inline namespaces can give us two declarations with the same
// name and kind in the same scope but different contexts.
return this->getKind() == OldD->getKind() &&
this->getDeclContext()->getRedeclContext()->Equals(
OldD->getDeclContext()->getRedeclContext());
}
bool NamedDecl::hasLinkage() const {
return getFormalLinkage() != NoLinkage;
}
NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
NamedDecl *ND = this;
while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
ND = UD->getTargetDecl();
if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
return AD->getClassInterface();
return ND;
}
bool NamedDecl::isCXXInstanceMember() const {
if (!isCXXClassMember())
return false;
const NamedDecl *D = this;
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
return true;
if (const CXXMethodDecl *MD =
dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
return MD->isInstance();
return false;
}
//===----------------------------------------------------------------------===//
// DeclaratorDecl Implementation
//===----------------------------------------------------------------------===//
template <typename DeclT>
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
if (decl->getNumTemplateParameterLists() > 0)
return decl->getTemplateParameterList(0)->getTemplateLoc();
else
return decl->getInnerLocStart();
}
SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
TypeSourceInfo *TSI = getTypeSourceInfo();
if (TSI) return TSI->getTypeLoc().getBeginLoc();
return SourceLocation();
}
void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
if (QualifierLoc) {
// Make sure the extended decl info is allocated.
if (!hasExtInfo()) {
// Save (non-extended) type source info pointer.
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
// Allocate external info struct.
DeclInfo = new (getASTContext()) ExtInfo;
// Restore savedTInfo into (extended) decl info.
getExtInfo()->TInfo = savedTInfo;
}
// Set qualifier info.
getExtInfo()->QualifierLoc = QualifierLoc;
} else {
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
if (hasExtInfo()) {
if (getExtInfo()->NumTemplParamLists == 0) {
// Save type source info pointer.
TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
// Deallocate the extended decl info.
getASTContext().Deallocate(getExtInfo());
// Restore savedTInfo into (non-extended) decl info.
DeclInfo = savedTInfo;
}
else
getExtInfo()->QualifierLoc = QualifierLoc;
}
}
}
void
DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert(NumTPLists > 0);
// Make sure the extended decl info is allocated.
if (!hasExtInfo()) {
// Save (non-extended) type source info pointer.
TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
// Allocate external info struct.
DeclInfo = new (getASTContext()) ExtInfo;
// Restore savedTInfo into (extended) decl info.
getExtInfo()->TInfo = savedTInfo;
}
// Set the template parameter lists info.
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
}
SourceLocation DeclaratorDecl::getOuterLocStart() const {
return getTemplateOrInnerLocStart(this);
}
namespace {
// Helper function: returns true if QT is or contains a type
// having a postfix component.
bool typeIsPostfix(clang::QualType QT) {
while (true) {
const Type* T = QT.getTypePtr();
switch (T->getTypeClass()) {
default:
return false;
case Type::Pointer:
QT = cast<PointerType>(T)->getPointeeType();
break;
case Type::BlockPointer:
QT = cast<BlockPointerType>(T)->getPointeeType();
break;
case Type::MemberPointer:
QT = cast<MemberPointerType>(T)->getPointeeType();
break;
case Type::LValueReference:
case Type::RValueReference:
QT = cast<ReferenceType>(T)->getPointeeType();
break;
case Type::PackExpansion:
QT = cast<PackExpansionType>(T)->getPattern();
break;
case Type::Paren:
case Type::ConstantArray:
case Type::DependentSizedArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::FunctionProto:
case Type::FunctionNoProto:
return true;
}
}
}
} // namespace
SourceRange DeclaratorDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocation();
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
// If the declaration has no name or the type extends past the name take the
// end location of the type.
if (!getDeclName() || typeIsPostfix(TInfo->getType()))
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
}
return SourceRange(getOuterLocStart(), RangeEnd);
}
void
QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert((NumTPLists == 0 || TPLists != nullptr) &&
"Empty array of template parameters with positive size!");
// Free previous template parameters (if any).
if (NumTemplParamLists > 0) {
Context.Deallocate(TemplParamLists);
TemplParamLists = nullptr;
NumTemplParamLists = 0;
}
// Set info on matched template parameter lists (if any).
if (NumTPLists > 0) {
TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
NumTemplParamLists = NumTPLists;
for (unsigned i = NumTPLists; i-- > 0; )
TemplParamLists[i] = TPLists[i];
}
}
//===----------------------------------------------------------------------===//
// VarDecl Implementation
//===----------------------------------------------------------------------===//
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
switch (SC) {
case SC_None: break;
case SC_Auto: return "auto";
case SC_Extern: return "extern";
case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
case SC_PrivateExtern: return "__private_extern__";
case SC_Register: return "register";
case SC_Static: return "static";
}
llvm_unreachable("Invalid storage class");
}
VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass SC)
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
redeclarable_base(C), Init() {
static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
"VarDeclBitfields too large!");
static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
"ParmVarDeclBitfields too large!");
AllBits = 0;
VarDeclBits.SClass = SC;
// Everything else is implicitly initialized to false.
}
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartL, SourceLocation IdL,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S) {
return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
}
VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID)
VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
QualType(), nullptr, SC_None);
}
void VarDecl::setStorageClass(StorageClass SC) {
assert(isLegalForVariable(SC));
VarDeclBits.SClass = SC;
}
VarDecl::TLSKind VarDecl::getTLSKind() const {
switch (VarDeclBits.TSCSpec) {
case TSCS_unspecified:
if (hasAttr<ThreadAttr>())
return TLS_Static;
return TLS_None;
case TSCS___thread: // Fall through.
case TSCS__Thread_local:
return TLS_Static;
case TSCS_thread_local:
return TLS_Dynamic;
}
llvm_unreachable("Unknown thread storage class specifier!");
}
SourceRange VarDecl::getSourceRange() const {
if (const Expr *Init = getInit()) {
SourceLocation InitEnd = Init->getLocEnd();
// If Init is implicit, ignore its source range and fallback on
// DeclaratorDecl::getSourceRange() to handle postfix elements.
if (InitEnd.isValid() && InitEnd != getLocation())
return SourceRange(getOuterLocStart(), InitEnd);
}
return DeclaratorDecl::getSourceRange();
}
template<typename T>
static LanguageLinkage getDeclLanguageLinkage(const T &D) {
// C++ [dcl.link]p1: All function types, function names with external linkage,
// and variable names with external linkage have a language linkage.
if (!D.hasExternalFormalLinkage())
return NoLanguageLinkage;
// Language linkage is a C++ concept, but saying that everything else in C has
// C language linkage fits the implementation nicely.
ASTContext &Context = D.getASTContext();
if (!Context.getLangOpts().CPlusPlus)
return CLanguageLinkage;
// C++ [dcl.link]p4: A C language linkage is ignored in determining the
// language linkage of the names of class members and the function type of
// class member functions.
const DeclContext *DC = D.getDeclContext();
if (DC->isRecord())
return CXXLanguageLinkage;
// If the first decl is in an extern "C" context, any other redeclaration
// will have C language linkage. If the first one is not in an extern "C"
// context, we would have reported an error for any other decl being in one.
if (isFirstInExternCContext(&D))
return CLanguageLinkage;
return CXXLanguageLinkage;
}
template<typename T>
static bool isDeclExternC(const T &D) {
// Since the context is ignored for class members, they can only have C++
// language linkage or no language linkage.
const DeclContext *DC = D.getDeclContext();
if (DC->isRecord()) {
assert(D.getASTContext().getLangOpts().CPlusPlus);
return false;
}
return D.getLanguageLinkage() == CLanguageLinkage;
}
LanguageLinkage VarDecl::getLanguageLinkage() const {
return getDeclLanguageLinkage(*this);
}
bool VarDecl::isExternC() const {
return isDeclExternC(*this);
}
bool VarDecl::isInExternCContext() const {
return getLexicalDeclContext()->isExternCContext();
}
bool VarDecl::isInExternCXXContext() const {
return getLexicalDeclContext()->isExternCXXContext();
}
VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
ASTContext &C) const
{
// C++ [basic.def]p2:
// A declaration is a definition unless [...] it contains the 'extern'
// specifier or a linkage-specification and neither an initializer [...],
// it declares a static data member in a class declaration [...].
// C++1y [temp.expl.spec]p15:
// An explicit specialization of a static data member or an explicit
// specialization of a static data member template is a definition if the
// declaration includes an initializer; otherwise, it is a declaration.
//
// FIXME: How do you declare (but not define) a partial specialization of
// a static data member template outside the containing class?
if (isStaticDataMember()) {
if (isOutOfLine() &&
(hasInit() ||
// If the first declaration is out-of-line, this may be an
// instantiation of an out-of-line partial specialization of a variable
// template for which we have not yet instantiated the initializer.
(getFirstDecl()->isOutOfLine()
? getTemplateSpecializationKind() == TSK_Undeclared
: getTemplateSpecializationKind() !=
TSK_ExplicitSpecialization) ||
isa<VarTemplatePartialSpecializationDecl>(this)))
return Definition;
else
return DeclarationOnly;
}
// C99 6.7p5:
// A definition of an identifier is a declaration for that identifier that
// [...] causes storage to be reserved for that object.
// Note: that applies for all non-file-scope objects.
// C99 6.9.2p1:
// If the declaration of an identifier for an object has file scope and an
// initializer, the declaration is an external definition for the identifier
if (hasInit())
return Definition;
if (hasAttr<AliasAttr>())
return Definition;
// A variable template specialization (other than a static data member
// template or an explicit specialization) is a declaration until we
// instantiate its initializer.
if (isa<VarTemplateSpecializationDecl>(this) &&
getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
return DeclarationOnly;
if (hasExternalStorage())
return DeclarationOnly;
// [dcl.link] p7:
// A declaration directly contained in a linkage-specification is treated
// as if it contains the extern specifier for the purpose of determining
// the linkage of the declared name and whether it is a definition.
if (isSingleLineLanguageLinkage(*this))
return DeclarationOnly;
// C99 6.9.2p2:
// A declaration of an object that has file scope without an initializer,
// and without a storage class specifier or the scs 'static', constitutes
// a tentative definition.
// No such thing in C++.
if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
return TentativeDefinition;
// What's left is (in C, block-scope) declarations without initializers or
// external storage. These are definitions.
return Definition;
}
VarDecl *VarDecl::getActingDefinition() {
DefinitionKind Kind = isThisDeclarationADefinition();
if (Kind != TentativeDefinition)
return nullptr;
VarDecl *LastTentative = nullptr;
VarDecl *First = getFirstDecl();
for (auto I : First->redecls()) {
Kind = I->isThisDeclarationADefinition();
if (Kind == Definition)
return nullptr;
else if (Kind == TentativeDefinition)
LastTentative = I;
}
return LastTentative;
}
VarDecl *VarDecl::getDefinition(ASTContext &C) {
VarDecl *First = getFirstDecl();
for (auto I : First->redecls()) {
if (I->isThisDeclarationADefinition(C) == Definition)
return I;
}
return nullptr;
}
VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
DefinitionKind Kind = DeclarationOnly;
const VarDecl *First = getFirstDecl();
for (auto I : First->redecls()) {
Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
if (Kind == Definition)
break;
}
return Kind;
}
const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
for (auto I : redecls()) {
if (auto Expr = I->getInit()) {
D = I;
return Expr;
}
}
return nullptr;
}
bool VarDecl::isOutOfLine() const {
if (Decl::isOutOfLine())
return true;
if (!isStaticDataMember())
return false;
// If this static data member was instantiated from a static data member of
// a class template, check whether that static data member was defined
// out-of-line.
if (VarDecl *VD = getInstantiatedFromStaticDataMember())
return VD->isOutOfLine();
return false;
}
VarDecl *VarDecl::getOutOfLineDefinition() {
if (!isStaticDataMember())
return nullptr;
for (auto RD : redecls()) {
if (RD->getLexicalDeclContext()->isFileContext())
return RD;
}
return nullptr;
}
void VarDecl::setInit(Expr *I) {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
getASTContext().Deallocate(Eval);
}
Init = I;
}
bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
const LangOptions &Lang = C.getLangOpts();
if (!Lang.CPlusPlus)
return false;
// In C++11, any variable of reference type can be used in a constant
// expression if it is initialized by a constant expression.
if (Lang.CPlusPlus11 && getType()->isReferenceType())
return true;
// Only const objects can be used in constant expressions in C++. C++98 does
// not require the variable to be non-volatile, but we consider this to be a
// defect.
if (!getType().isConstQualified() || getType().isVolatileQualified())
return false;
// In C++, const, non-volatile variables of integral or enumeration types
// can be used in constant expressions.
if (getType()->isIntegralOrEnumerationType())
return true;
// Additionally, in C++11, non-volatile constexpr variables can be used in
// constant expressions.
return Lang.CPlusPlus11 && isConstexpr();
}
/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
/// form, which contains extra information on the evaluated value of the
/// initializer.
EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
if (!Eval) {
Stmt *S = Init.get<Stmt *>();
// Note: EvaluatedStmt contains an APValue, which usually holds
// resources not allocated from the ASTContext. We need to do some
// work to avoid leaking those, but we do so in VarDecl::evaluateValue
// where we can detect whether there's anything to clean up or not.
Eval = new (getASTContext()) EvaluatedStmt;
Eval->Value = S;
Init = Eval;
}
return Eval;
}
APValue *VarDecl::evaluateValue() const {
SmallVector<PartialDiagnosticAt, 8> Notes;
return evaluateValue(Notes);
}
namespace {
// Destroy an APValue that was allocated in an ASTContext.
void DestroyAPValue(void* UntypedValue) {
static_cast<APValue*>(UntypedValue)->~APValue();
}
} // namespace
APValue *VarDecl::evaluateValue(
SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
EvaluatedStmt *Eval = ensureEvaluatedStmt();
// We only produce notes indicating why an initializer is non-constant the
// first time it is evaluated. FIXME: The notes won't always be emitted the
// first time we try evaluation, so might not be produced at all.
if (Eval->WasEvaluated)
return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
const Expr *Init = cast<Expr>(Eval->Value);
assert(!Init->isValueDependent());
if (Eval->IsEvaluating) {
// FIXME: Produce a diagnostic for self-initialization.
Eval->CheckedICE = true;
Eval->IsICE = false;
return nullptr;
}
Eval->IsEvaluating = true;
bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
this, Notes);
// Ensure the computed APValue is cleaned up later if evaluation succeeded,
// or that it's empty (so that there's nothing to clean up) if evaluation
// failed.
if (!Result)
Eval->Evaluated = APValue();
else if (Eval->Evaluated.needsCleanup())
getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
Eval->IsEvaluating = false;
Eval->WasEvaluated = true;
// In C++11, we have determined whether the initializer was a constant
// expression as a side-effect.
if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
Eval->CheckedICE = true;
Eval->IsICE = Result && Notes.empty();
}
return Result ? &Eval->Evaluated : nullptr;
}
bool VarDecl::checkInitIsICE() const {
// Initializers of weak variables are never ICEs.
if (isWeak())
return false;
EvaluatedStmt *Eval = ensureEvaluatedStmt();
if (Eval->CheckedICE)
// We have already checked whether this subexpression is an
// integral constant expression.
return Eval->IsICE;
const Expr *Init = cast<Expr>(Eval->Value);
assert(!Init->isValueDependent());
// In C++11, evaluate the initializer to check whether it's a constant
// expression.
if (getASTContext().getLangOpts().CPlusPlus11) {
SmallVector<PartialDiagnosticAt, 8> Notes;
evaluateValue(Notes);
return Eval->IsICE;
}
// It's an ICE whether or not the definition we found is
// out-of-line. See DR 721 and the discussion in Clang PR
// 6206 for details.
if (Eval->CheckingICE)
return false;
Eval->CheckingICE = true;
Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
Eval->CheckingICE = false;
Eval->CheckedICE = true;
return Eval->IsICE;
}
VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return cast<VarDecl>(MSI->getInstantiatedFrom());
return nullptr;
}
TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return MSI->getTemplateSpecializationKind();
return TSK_Undeclared;
}
SourceLocation VarDecl::getPointOfInstantiation() const {
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(this))
return Spec->getPointOfInstantiation();
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return MSI->getPointOfInstantiation();
return SourceLocation();
}
VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
return getASTContext().getTemplateOrSpecializationInfo(this)
.dyn_cast<VarTemplateDecl *>();
}
void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
getASTContext().setTemplateOrSpecializationInfo(this, Template);
}
MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
if (isStaticDataMember())
// FIXME: Remove ?
// return getASTContext().getInstantiatedFromStaticDataMember(this);
return getASTContext().getTemplateOrSpecializationInfo(this)
.dyn_cast<MemberSpecializationInfo *>();
return nullptr;
}
void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
assert((isa<VarTemplateSpecializationDecl>(this) ||
getMemberSpecializationInfo()) &&
"not a variable or static data member template specialization");
if (VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
Spec->getPointOfInstantiation().isInvalid())
Spec->setPointOfInstantiation(PointOfInstantiation);
}
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
MSI->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
MSI->getPointOfInstantiation().isInvalid())
MSI->setPointOfInstantiation(PointOfInstantiation);
}
}
void
VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
TemplateSpecializationKind TSK) {
assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
"Previous template or instantiation?");
getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
}
//===----------------------------------------------------------------------===//
// ParmVarDecl Implementation
//===----------------------------------------------------------------------===//
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg) {
return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
S, DefArg);
}
QualType ParmVarDecl::getOriginalType() const {
TypeSourceInfo *TSI = getTypeSourceInfo();
QualType T = TSI ? TSI->getType() : getType();
if (const DecayedType *DT = dyn_cast<DecayedType>(T))
return DT->getOriginalType();
return T;
}
ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID)
ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
nullptr, QualType(), nullptr, SC_None, nullptr);
}
SourceRange ParmVarDecl::getSourceRange() const {
if (!hasInheritedDefaultArg()) {
SourceRange ArgRange = getDefaultArgRange();
if (ArgRange.isValid())
return SourceRange(getOuterLocStart(), ArgRange.getEnd());
}
// DeclaratorDecl considers the range of postfix types as overlapping with the
// declaration name, but this is not the case with parameters in ObjC methods.
if (isa<ObjCMethodDecl>(getDeclContext()))
return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
return DeclaratorDecl::getSourceRange();
}
Expr *ParmVarDecl::getDefaultArg() {
assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
assert(!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!");
Expr *Arg = getInit();
if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
return E->getSubExpr();
return Arg;
}
SourceRange ParmVarDecl::getDefaultArgRange() const {
if (const Expr *E = getInit())
return E->getSourceRange();
if (hasUninstantiatedDefaultArg())
return getUninstantiatedDefaultArg()->getSourceRange();
return SourceRange();
}
bool ParmVarDecl::isParameterPack() const {
return isa<PackExpansionType>(getType());
}
void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
getASTContext().setParameterIndex(this, parameterIndex);
ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
}
unsigned ParmVarDecl::getParameterIndexLarge() const {
return getASTContext().getParameterIndex(this);
}
//===----------------------------------------------------------------------===//
// FunctionDecl Implementation
//===----------------------------------------------------------------------===//
void FunctionDecl::getNameForDiagnostic(
raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
if (TemplateArgs)
TemplateSpecializationType::PrintTemplateArgumentList(
OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
}
bool FunctionDecl::isVariadic() const {
if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
return FT->isVariadic();
return false;
}
bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
for (auto I : redecls()) {
if (I->Body || I->IsLateTemplateParsed) {
Definition = I;
return true;
}
}
return false;
}
bool FunctionDecl::hasTrivialBody() const
{
Stmt *S = getBody();
if (!S) {
// Since we don't have a body for this function, we don't know if it's
// trivial or not.
return false;
}
if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
return true;
return false;
}
bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
for (auto I : redecls()) {
if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
I->hasAttr<AliasAttr>()) {
Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
return true;
}
}
return false;
}
Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
if (!hasBody(Definition))
return nullptr;
if (Definition->Body)
return Definition->Body.get(getASTContext().getExternalSource());
return nullptr;
}
void FunctionDecl::setBody(Stmt *B) {
Body = B;
if (B)
EndRangeLoc = B->getLocEnd();
}
void FunctionDecl::setPure(bool P) {
IsPure = P;
if (P)
if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
Parent->markedVirtualFunctionPure();
}
template<std::size_t Len>
static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
IdentifierInfo *II = ND->getIdentifier();
return II && II->isStr(Str);
}
bool FunctionDecl::isMain() const {
const TranslationUnitDecl *tunit =
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
return tunit &&
!tunit->getASTContext().getLangOpts().Freestanding &&
isNamed(this, "main");
}
bool FunctionDecl::isMSVCRTEntryPoint() const {
const TranslationUnitDecl *TUnit =
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
if (!TUnit)
return false;
// Even though we aren't really targeting MSVCRT if we are freestanding,
// semantic analysis for these functions remains the same.
// MSVCRT entry points only exist on MSVCRT targets.
if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
return false;
// Nameless functions like constructors cannot be entry points.
if (!getIdentifier())
return false;
return llvm::StringSwitch<bool>(getName())
.Cases("main", // an ANSI console app
"wmain", // a Unicode console App
"WinMain", // an ANSI GUI app
"wWinMain", // a Unicode GUI app
"DllMain", // a DLL
true)
.Default(false);
}
bool FunctionDecl::isReservedGlobalPlacementOperator() const {
assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
getDeclName().getCXXOverloadedOperator() == OO_Delete ||
getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
return false;
const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
if (proto->getNumParams() != 2 || proto->isVariadic())
return false;
ASTContext &Context =
cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
->getASTContext();
// The result type and first argument type are constant across all
// these operators. The second argument must be exactly void*.
return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
}
bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
return false;
if (getDeclName().getCXXOverloadedOperator() != OO_New &&
getDeclName().getCXXOverloadedOperator() != OO_Delete &&
getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
return false;
if (isa<CXXRecordDecl>(getDeclContext()))
return false;
// This can only fail for an invalid 'operator new' declaration.
if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
return false;
const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
return false;
// If this is a single-parameter function, it must be a replaceable global
// allocation or deallocation function.
if (FPT->getNumParams() == 1)
return true;
// Otherwise, we're looking for a second parameter whose type is
// 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
QualType Ty = FPT->getParamType(1);
ASTContext &Ctx = getASTContext();
if (Ctx.getLangOpts().SizedDeallocation &&
Ctx.hasSameType(Ty, Ctx.getSizeType()))
return true;
if (!Ty->isReferenceType())
return false;
Ty = Ty->getPointeeType();
if (Ty.getCVRQualifiers() != Qualifiers::Const)
return false;
const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
}
FunctionDecl *
FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
ASTContext &Ctx = getASTContext();
if (!Ctx.getLangOpts().SizedDeallocation)
return nullptr;
if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
return nullptr;
if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
return nullptr;
if (isa<CXXRecordDecl>(getDeclContext()))
return nullptr;
if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
return nullptr;
if (getNumParams() != 2 || isVariadic() ||
!Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1),
Ctx.getSizeType()))
return nullptr;
// This is a sized deallocation function. Find the corresponding unsized
// deallocation function.
lookup_const_result R = getDeclContext()->lookup(getDeclName());
for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
++RI)
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
if (FD->getNumParams() == 1 && !FD->isVariadic())
return FD;
return nullptr;
}
LanguageLinkage FunctionDecl::getLanguageLinkage() const {
return getDeclLanguageLinkage(*this);
}
bool FunctionDecl::isExternC() const {
return isDeclExternC(*this);
}
bool FunctionDecl::isInExternCContext() const {
return getLexicalDeclContext()->isExternCContext();
}
bool FunctionDecl::isInExternCXXContext() const {
return getLexicalDeclContext()->isExternCXXContext();
}
bool FunctionDecl::isGlobal() const {
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
return Method->isStatic();
if (getCanonicalDecl()->getStorageClass() == SC_Static)
return false;
for (const DeclContext *DC = getDeclContext();
DC->isNamespace();
DC = DC->getParent()) {
if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
if (!Namespace->getDeclName())
return false;
break;
}
}
return true;
}
bool FunctionDecl::isNoReturn() const {
return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
hasAttr<C11NoReturnAttr>() ||
getType()->getAs<FunctionType>()->getNoReturnAttr();
}
void
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
redeclarable_base::setPreviousDecl(PrevDecl);
if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
FunctionTemplateDecl *PrevFunTmpl
= PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
FunTmpl->setPreviousDecl(PrevFunTmpl);
}
if (PrevDecl && PrevDecl->IsInline)
IsInline = true;
}
const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
return getFirstDecl();
}
FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
/// \brief Returns a value indicating whether this function
/// corresponds to a builtin function.
///
/// The function corresponds to a built-in function if it is
/// declared at translation scope or within an extern "C" block and
/// its name matches with the name of a builtin. The returned value
/// will be 0 for functions that do not correspond to a builtin, a
/// value of type \c Builtin::ID if in the target-independent range
/// \c [1,Builtin::First), or a target-specific builtin value.
unsigned FunctionDecl::getBuiltinID() const {
if (!getIdentifier())
return 0;
unsigned BuiltinID = getIdentifier()->getBuiltinID();
if (!BuiltinID)
return 0;
ASTContext &Context = getASTContext();
if (Context.getLangOpts().CPlusPlus) {
const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
getFirstDecl()->getDeclContext());
// In C++, the first declaration of a builtin is always inside an implicit
// extern "C".
// FIXME: A recognised library function may not be directly in an extern "C"
// declaration, for instance "extern "C" { namespace std { decl } }".
if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
return 0;
}
// If the function is marked "overloadable", it has a different mangled name
// and is not the C library function.
if (hasAttr<OverloadableAttr>())
return 0;
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return BuiltinID;
// This function has the name of a known C library
// function. Determine whether it actually refers to the C library
// function or whether it just has the same name.
// If this is a static function, it's not a builtin.
if (getStorageClass() == SC_Static)
return 0;
return BuiltinID;
}
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the ParamInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
return FPT ? FPT->getNumParams() : 0;
}
void FunctionDecl::setParams(ASTContext &C,
ArrayRef<ParmVarDecl *> NewParamInfo) {
assert(!ParamInfo && "Already has param info!");
assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
// Zero params -> null pointer.
if (!NewParamInfo.empty()) {
ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
}
}
void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
if (!NewDecls.empty()) {
NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
std::copy(NewDecls.begin(), NewDecls.end(), A);
DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
// Move declarations introduced in prototype to the function context.
for (auto I : NewDecls) {
DeclContext *DC = I->getDeclContext();
// Forward-declared reference to an enumeration is not added to
// declaration scope, so skip declaration that is absent from its
// declaration contexts.
if (DC->containsDecl(I)) {
DC->removeDecl(I);
I->setDeclContext(this);
addDecl(I);
}
}
}
}
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++) or are parameter packs (C++11).
unsigned FunctionDecl::getMinRequiredArguments() const {
if (!getASTContext().getLangOpts().CPlusPlus)
return getNumParams();
unsigned NumRequiredArgs = 0;
for (auto *Param : params())
if (!Param->isParameterPack() && !Param->hasDefaultArg())
++NumRequiredArgs;
return NumRequiredArgs;
}
/// \brief The combination of the extern and inline keywords under MSVC forces
/// the function to be required.
///
/// Note: This function assumes that we will only get called when isInlined()
/// would return true for this FunctionDecl.
bool FunctionDecl::isMSExternInline() const {
assert(isInlined() && "expected to get called on an inlined function!");
const ASTContext &Context = getASTContext();
if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
return false;
for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDecl())
if (FD->getStorageClass() == SC_Extern)
return true;
return false;
}
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
if (Redecl->getStorageClass() != SC_Extern)
return false;
for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
FD = FD->getPreviousDecl())
if (FD->getStorageClass() == SC_Extern)
return false;
return true;
}
static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
// Only consider file-scope declarations in this test.
if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
return false;
// Only consider explicit declarations; the presence of a builtin for a
// libcall shouldn't affect whether a definition is externally visible.
if (Redecl->isImplicit())
return false;
if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
return true; // Not an inline definition
return false;
}
/// \brief For a function declaration in C or C++, determine whether this
/// declaration causes the definition to be externally visible.
///
/// For instance, this determines if adding the current declaration to the set
/// of redeclarations of the given functions causes
/// isInlineDefinitionExternallyVisible to change from false to true.
bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
assert(!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.");
ASTContext &Context = getASTContext();
if (Context.getLangOpts().MSVCCompat) {
const FunctionDecl *Definition;
if (hasBody(Definition) && Definition->isInlined() &&
redeclForcesDefMSVC(this))
return true;
}
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
// With GNU inlining, a declaration with 'inline' but not 'extern', forces
// an externally visible definition.
//
// FIXME: What happens if gnu_inline gets added on after the first
// declaration?
if (!isInlineSpecified() || getStorageClass() == SC_Extern)
return false;
const FunctionDecl *Prev = this;
bool FoundBody = false;
while ((Prev = Prev->getPreviousDecl())) {
FoundBody |= Prev->Body.isValid();
if (Prev->Body) {
// If it's not the case that both 'inline' and 'extern' are
// specified on the definition, then it is always externally visible.
if (!Prev->isInlineSpecified() ||
Prev->getStorageClass() != SC_Extern)
return false;
} else if (Prev->isInlineSpecified() &&
Prev->getStorageClass() != SC_Extern) {
return false;
}
}
return FoundBody;
}
if (Context.getLangOpts().CPlusPlus)
return false;
// C99 6.7.4p6:
// [...] If all of the file scope declarations for a function in a
// translation unit include the inline function specifier without extern,
// then the definition in that translation unit is an inline definition.
if (isInlineSpecified() && getStorageClass() != SC_Extern)
return false;
const FunctionDecl *Prev = this;
bool FoundBody = false;
while ((Prev = Prev->getPreviousDecl())) {
FoundBody |= Prev->Body.isValid();
if (RedeclForcesDefC99(Prev))
return false;
}
return FoundBody;
}
SourceRange FunctionDecl::getReturnTypeSourceRange() const {
const TypeSourceInfo *TSI = getTypeSourceInfo();
if (!TSI)
return SourceRange();
FunctionTypeLoc FTL =
TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
if (!FTL)
return SourceRange();
// Skip self-referential return types.
const SourceManager &SM = getASTContext().getSourceManager();
SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
SourceLocation Boundary = getNameInfo().getLocStart();
if (RTRange.isInvalid() || Boundary.isInvalid() ||
!SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
return SourceRange();
return RTRange;
}
/// \brief For an inline function definition in C, or for a gnu_inline function
/// in C++, determine whether the definition will be externally visible.
///
/// Inline function definitions are always available for inlining optimizations.
/// However, depending on the language dialect, declaration specifiers, and
/// attributes, the definition of an inline function may or may not be
/// "externally" visible to other translation units in the program.
///
/// In C99, inline definitions are not externally visible by default. However,
/// if even one of the global-scope declarations is marked "extern inline", the
/// inline definition becomes externally visible (C99 6.7.4p6).
///
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
/// definition, we use the GNU semantics for inline, which are nearly the
/// opposite of C99 semantics. In particular, "inline" by itself will create
/// an externally visible symbol, but "extern inline" will not create an
/// externally visible symbol.
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
assert(doesThisDeclarationHaveABody() && "Must have the function definition");
assert(isInlined() && "Function must be inline");
ASTContext &Context = getASTContext();
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
// Note: If you change the logic here, please change
// doesDeclarationForceExternallyVisibleDefinition as well.
//
// If it's not the case that both 'inline' and 'extern' are
// specified on the definition, then this inline definition is
// externally visible.
if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
return true;
// If any declaration is 'inline' but not 'extern', then this definition
// is externally visible.
for (auto Redecl : redecls()) {
if (Redecl->isInlineSpecified() &&
Redecl->getStorageClass() != SC_Extern)
return true;
}
return false;
}
// The rest of this function is C-only.
assert(!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++");
// C99 6.7.4p6:
// [...] If all of the file scope declarations for a function in a
// translation unit include the inline function specifier without extern,
// then the definition in that translation unit is an inline definition.
for (auto Redecl : redecls()) {
if (RedeclForcesDefC99(Redecl))
return true;
}
// C99 6.7.4p6:
// An inline definition does not provide an external definition for the
// function, and does not forbid an external definition in another
// translation unit.
return false;
}
/// getOverloadedOperator - Which C++ overloaded operator this
/// function represents, if any.
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
return getDeclName().getCXXOverloadedOperator();
else
return OO_None;
}
/// getLiteralIdentifier - The literal suffix identifier this function
/// represents, if any.
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
return getDeclName().getCXXLiteralIdentifier();
else
return nullptr;
}
FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
if (TemplateOrSpecialization.isNull())
return TK_NonTemplate;
if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
return TK_FunctionTemplate;
if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
return TK_MemberSpecialization;
if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
return TK_FunctionTemplateSpecialization;
if (TemplateOrSpecialization.is
<DependentFunctionTemplateSpecializationInfo*>())
return TK_DependentFunctionTemplateSpecialization;
llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
}
FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
return cast<FunctionDecl>(Info->getInstantiatedFrom());
return nullptr;
}
void
FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
FunctionDecl *FD,
TemplateSpecializationKind TSK) {
assert(TemplateOrSpecialization.isNull() &&
"Member function is already a specialization");
MemberSpecializationInfo *Info
= new (C) MemberSpecializationInfo(FD, TSK);
TemplateOrSpecialization = Info;
}
bool FunctionDecl::isImplicitlyInstantiable() const {
// If the function is invalid, it can't be implicitly instantiated.
if (isInvalidDecl())
return false;
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitInstantiationDefinition:
return false;
case TSK_ImplicitInstantiation:
return true;
// It is possible to instantiate TSK_ExplicitSpecialization kind
// if the FunctionDecl has a class scope specialization pattern.
case TSK_ExplicitSpecialization:
return getClassScopeSpecializationPattern() != nullptr;
case TSK_ExplicitInstantiationDeclaration:
// Handled below.
break;
}
// Find the actual template from which we will instantiate.
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
bool HasPattern = false;
if (PatternDecl)
HasPattern = PatternDecl->hasBody(PatternDecl);
// C++0x [temp.explicit]p9:
// Except for inline functions, other explicit instantiation declarations
// have the effect of suppressing the implicit instantiation of the entity
// to which they refer.
if (!HasPattern || !PatternDecl)
return true;
return PatternDecl->isInlined();
}
bool FunctionDecl::isTemplateInstantiation() const {
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
return false;
case TSK_ImplicitInstantiation:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
}
llvm_unreachable("All TSK values handled.");
}
FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
// Handle class scope explicit specialization special case.
if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
return getClassScopeSpecializationPattern();
// If this is a generic lambda call operator specialization, its
// instantiation pattern is always its primary template's pattern
// even if its primary template was instantiated from another
// member template (which happens with nested generic lambdas).
// Since a lambda's call operator's body is transformed eagerly,
// we don't have to go hunting for a prototype definition template
// (i.e. instantiated-from-member-template) to use as an instantiation
// pattern.
if (isGenericLambdaCallOperatorSpecialization(
dyn_cast<CXXMethodDecl>(this))) {
assert(getPrimaryTemplate() && "A generic lambda specialization must be "
"generated from a primary call operator "
"template");
assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
"A generic lambda call operator template must always have a body - "
"even if instantiated from a prototype (i.e. as written) member "
"template");
return getPrimaryTemplate()->getTemplatedDecl();
}
if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
while (Primary->getInstantiatedFromMemberTemplate()) {
// If we have hit a point where the user provided a specialization of
// this template, we're done looking.
if (Primary->isMemberSpecialization())
break;
Primary = Primary->getInstantiatedFromMemberTemplate();
}
return Primary->getTemplatedDecl();
}
return getInstantiatedFromMemberFunction();
}
FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->Template.getPointer();
}
return nullptr;
}
FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
return getASTContext().getClassScopeSpecializationPattern(this);
}
const TemplateArgumentList *
FunctionDecl::getTemplateSpecializationArgs() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->TemplateArguments;
}
return nullptr;
}
const ASTTemplateArgumentListInfo *
FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->TemplateArgumentsAsWritten;
}
return nullptr;
}
void
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation PointOfInstantiation) {
assert(TSK != TSK_Undeclared &&
"Must specify the type of function template specialization");
FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (!Info)
Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
TemplateArgs,
TemplateArgsAsWritten,
PointOfInstantiation);
TemplateOrSpecialization = Info;
Template->addSpecialization(Info, InsertPos);
}
void
FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs) {
assert(TemplateOrSpecialization.isNull());
size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
Size += Templates.size() * sizeof(FunctionTemplateDecl*);
Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
void *Buffer = Context.Allocate(Size);
DependentFunctionTemplateSpecializationInfo *Info =
new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
TemplateArgs);
TemplateOrSpecialization = Info;
}
DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
const TemplateArgumentListInfo &TArgs)
: AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
d.NumTemplates = Ts.size();
d.NumArgs = TArgs.size();
FunctionTemplateDecl **TsArray =
const_cast<FunctionTemplateDecl**>(getTemplates());
for (unsigned I = 0, E = Ts.size(); I != E; ++I)
TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
TemplateArgumentLoc *ArgsArray =
const_cast<TemplateArgumentLoc*>(getTemplateArgs());
for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
}
TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
// For a function template specialization, query the specialization
// information object.
FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (FTSInfo)
return FTSInfo->getTemplateSpecializationKind();
MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
if (MSInfo)
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>()) {
FTSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
FTSInfo->getPointOfInstantiation().isInvalid())
FTSInfo->setPointOfInstantiation(PointOfInstantiation);
} else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
MSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSInfo->getPointOfInstantiation().isInvalid())
MSInfo->setPointOfInstantiation(PointOfInstantiation);
} else
llvm_unreachable("Function cannot have a template specialization kind");
}
SourceLocation FunctionDecl::getPointOfInstantiation() const {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>())
return FTSInfo->getPointOfInstantiation();
else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
return MSInfo->getPointOfInstantiation();
return SourceLocation();
}
bool FunctionDecl::isOutOfLine() const {
if (Decl::isOutOfLine())
return true;
// If this function was instantiated from a member function of a
// class template, check whether that member function was defined out-of-line.
if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
const FunctionDecl *Definition;
if (FD->hasBody(Definition))
return Definition->isOutOfLine();
}
// If this function was instantiated from a function template,
// check whether that function template was defined out-of-line.
if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
const FunctionDecl *Definition;
if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
return Definition->isOutOfLine();
}
return false;
}
SourceRange FunctionDecl::getSourceRange() const {
return SourceRange(getOuterLocStart(), EndRangeLoc);
}
unsigned FunctionDecl::getMemoryFunctionKind() const {
IdentifierInfo *FnInfo = getIdentifier();
if (!FnInfo)
return 0;
// Builtin handling.
switch (getBuiltinID()) {
case Builtin::BI__builtin_memset:
case Builtin::BI__builtin___memset_chk:
case Builtin::BImemset:
return Builtin::BImemset;
case Builtin::BI__builtin_memcpy:
case Builtin::BI__builtin___memcpy_chk:
case Builtin::BImemcpy:
return Builtin::BImemcpy;
case Builtin::BI__builtin_memmove:
case Builtin::BI__builtin___memmove_chk:
case Builtin::BImemmove:
return Builtin::BImemmove;
case Builtin::BIstrlcpy:
case Builtin::BI__builtin___strlcpy_chk:
return Builtin::BIstrlcpy;
case Builtin::BIstrlcat:
case Builtin::BI__builtin___strlcat_chk:
return Builtin::BIstrlcat;
case Builtin::BI__builtin_memcmp:
case Builtin::BImemcmp:
return Builtin::BImemcmp;
case Builtin::BI__builtin_strncpy:
case Builtin::BI__builtin___strncpy_chk:
case Builtin::BIstrncpy:
return Builtin::BIstrncpy;
case Builtin::BI__builtin_strncmp:
case Builtin::BIstrncmp:
return Builtin::BIstrncmp;
case Builtin::BI__builtin_strncasecmp:
case Builtin::BIstrncasecmp:
return Builtin::BIstrncasecmp;
case Builtin::BI__builtin_strncat:
case Builtin::BI__builtin___strncat_chk:
case Builtin::BIstrncat:
return Builtin::BIstrncat;
case Builtin::BI__builtin_strndup:
case Builtin::BIstrndup:
return Builtin::BIstrndup;
case Builtin::BI__builtin_strlen:
case Builtin::BIstrlen:
return Builtin::BIstrlen;
default:
if (isExternC()) {
if (FnInfo->isStr("memset"))
return Builtin::BImemset;
else if (FnInfo->isStr("memcpy"))
return Builtin::BImemcpy;
else if (FnInfo->isStr("memmove"))
return Builtin::BImemmove;
else if (FnInfo->isStr("memcmp"))
return Builtin::BImemcmp;
else if (FnInfo->isStr("strncpy"))
return Builtin::BIstrncpy;
else if (FnInfo->isStr("strncmp"))
return Builtin::BIstrncmp;
else if (FnInfo->isStr("strncasecmp"))
return Builtin::BIstrncasecmp;
else if (FnInfo->isStr("strncat"))
return Builtin::BIstrncat;
else if (FnInfo->isStr("strndup"))
return Builtin::BIstrndup;
else if (FnInfo->isStr("strlen"))
return Builtin::BIstrlen;
}
break;
}
return 0;
}
//===----------------------------------------------------------------------===//
// FieldDecl Implementation
//===----------------------------------------------------------------------===//
FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle) {
return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
BW, Mutable, InitStyle);
}
FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
SourceLocation(), nullptr, QualType(), nullptr,
nullptr, false, ICIS_NoInit);
}
bool FieldDecl::isAnonymousStructOrUnion() const {
if (!isImplicit() || getDeclName())
return false;
if (const RecordType *Record = getType()->getAs<RecordType>())
return Record->getDecl()->isAnonymousStructOrUnion();
return false;
}
unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
assert(isBitField() && "not a bitfield");
Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
}
unsigned FieldDecl::getFieldIndex() const {
const FieldDecl *Canonical = getCanonicalDecl();
if (Canonical != this)
return Canonical->getFieldIndex();
if (CachedFieldIndex) return CachedFieldIndex - 1;
unsigned Index = 0;
const RecordDecl *RD = getParent();
for (auto *Field : RD->fields()) {
Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
++Index;
}
assert(CachedFieldIndex && "failed to find field in parent");
return CachedFieldIndex - 1;
}
SourceRange FieldDecl::getSourceRange() const {
switch (InitStorage.getInt()) {
// All three of these cases store an optional Expr*.
case ISK_BitWidthOrNothing:
case ISK_InClassCopyInit:
case ISK_InClassListInit:
if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
return SourceRange(getInnerLocStart(), E->getLocEnd());
// FALLTHROUGH
case ISK_CapturedVLAType:
return DeclaratorDecl::getSourceRange();
}
llvm_unreachable("bad init storage kind");
}
void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
"capturing type in non-lambda or captured record.");
assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
InitStorage.getPointer() == nullptr &&
"bit width, initializer or captured type already set");
InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
ISK_CapturedVLAType);
}
//===----------------------------------------------------------------------===//
// TagDecl Implementation
//===----------------------------------------------------------------------===//
SourceLocation TagDecl::getOuterLocStart() const {
return getTemplateOrInnerLocStart(this);
}
SourceRange TagDecl::getSourceRange() const {
SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
return SourceRange(getOuterLocStart(), E);
}
TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
NamedDeclOrQualifier = TDD;
if (const Type *T = getTypeForDecl()) {
(void)T;
assert(T->isLinkageValid());
}
assert(isLinkageValid());
}
void TagDecl::startDefinition() {
IsBeingDefined = true;
if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
struct CXXRecordDecl::DefinitionData *Data =
new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
for (auto I : redecls())
cast<CXXRecordDecl>(I)->DefinitionData = Data;
}
}
void TagDecl::completeDefinition() {
assert((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started");
IsCompleteDefinition = true;
IsBeingDefined = false;
if (ASTMutationListener *L = getASTMutationListener())
L->CompletedTagDefinition(this);
}
TagDecl *TagDecl::getDefinition() const {
if (isCompleteDefinition())
return const_cast<TagDecl *>(this);
// If it's possible for us to have an out-of-date definition, check now.
if (MayHaveOutOfDateDef) {
if (IdentifierInfo *II = getIdentifier()) {
if (II->isOutOfDate()) {
updateOutOfDate(*II);
}
}
}
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
return CXXRD->getDefinition();
for (auto R : redecls())
if (R->isCompleteDefinition())
return R;
return nullptr;
}
void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
if (QualifierLoc) {
// Make sure the extended qualifier info is allocated.
if (!hasExtInfo())
NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
// Set qualifier info.
getExtInfo()->QualifierLoc = QualifierLoc;
} else {
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
if (hasExtInfo()) {
if (getExtInfo()->NumTemplParamLists == 0) {
getASTContext().Deallocate(getExtInfo());
NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
}
else
getExtInfo()->QualifierLoc = QualifierLoc;
}
}
}
void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists) {
assert(NumTPLists > 0);
// Make sure the extended decl info is allocated.
if (!hasExtInfo())
// Allocate external info struct.
NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
// Set the template parameter lists info.
getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
}
//===----------------------------------------------------------------------===//
// EnumDecl Implementation
//===----------------------------------------------------------------------===//
void EnumDecl::anchor() { }
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id,
EnumDecl *PrevDecl, bool IsScoped,
bool IsScopedUsingClassTag, bool IsFixed) {
EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
IsScoped, IsScopedUsingClassTag,
IsFixed);
Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
C.getTypeDeclType(Enum, PrevDecl);
return Enum;
}
EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
EnumDecl *Enum =
new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
nullptr, nullptr, false, false, false);
Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
return Enum;
}
SourceRange EnumDecl::getIntegerTypeRange() const {
if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
return TI->getTypeLoc().getSourceRange();
return SourceRange();
}
void EnumDecl::completeDefinition(QualType NewType,
QualType NewPromotionType,
unsigned NumPositiveBits,
unsigned NumNegativeBits) {
assert(!isCompleteDefinition() && "Cannot redefine enums!");
if (!IntegerType)
IntegerType = NewType.getTypePtr();
PromotionType = NewPromotionType;
setNumPositiveBits(NumPositiveBits);
setNumNegativeBits(NumNegativeBits);
TagDecl::completeDefinition();
}
TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return MSI->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
assert(MSI && "Not an instantiated member enumeration?");
MSI->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSI->getPointOfInstantiation().isInvalid())
MSI->setPointOfInstantiation(PointOfInstantiation);
}
EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
if (SpecializationInfo)
return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
return nullptr;
}
void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
TemplateSpecializationKind TSK) {
assert(!SpecializationInfo && "Member enum is already a specialization");
SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
}
//===----------------------------------------------------------------------===//
// RecordDecl Implementation
//===----------------------------------------------------------------------===//
RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
RecordDecl *PrevDecl)
: TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
HasFlexibleArrayMember = false;
AnonymousStructOrUnion = false;
HasObjectMember = false;
HasVolatileMember = false;
LoadedFieldsFromExternalStorage = false;
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
}
RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl* PrevDecl) {
RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
StartLoc, IdLoc, Id, PrevDecl);
R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
C.getTypeDeclType(R, PrevDecl);
return R;
}
RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
RecordDecl *R =
new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
SourceLocation(), nullptr, nullptr);
R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
return R;
}
bool RecordDecl::isInjectedClassName() const {
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
}
bool RecordDecl::isLambda() const {
if (auto RD = dyn_cast<CXXRecordDecl>(this))
return RD->isLambda();
return false;
}
bool RecordDecl::isCapturedRecord() const {
return hasAttr<CapturedRecordAttr>();
}
void RecordDecl::setCapturedRecord() {
addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
}
RecordDecl::field_iterator RecordDecl::field_begin() const {
if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
LoadFieldsFromExternalStorage();
return field_iterator(decl_iterator(FirstDecl));
}
/// completeDefinition - Notes that the definition of this type is now
/// complete.
void RecordDecl::completeDefinition() {
assert(!isCompleteDefinition() && "Cannot redefine record!");
TagDecl::completeDefinition();
}
/// isMsStruct - Get whether or not this record uses ms_struct layout.
/// This which can be turned on with an attribute, pragma, or the
/// -mms-bitfields command-line option.
bool RecordDecl::isMsStruct(const ASTContext &C) const {
return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
}
static bool isFieldOrIndirectField(Decl::Kind K) {
return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
}
void RecordDecl::LoadFieldsFromExternalStorage() const {
ExternalASTSource *Source = getASTContext().getExternalSource();
assert(hasExternalLexicalStorage() && Source && "No external storage?");
// Notify that we have a RecordDecl doing some initialization.
ExternalASTSource::Deserializing TheFields(Source);
SmallVector<Decl*, 64> Decls;
LoadedFieldsFromExternalStorage = true;
switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
Decls)) {
case ELR_Success:
break;
case ELR_AlreadyLoaded:
case ELR_Failure:
return;
}
#ifndef NDEBUG
// Check that all decls we got were FieldDecls.
for (unsigned i=0, e=Decls.size(); i != e; ++i)
assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
#endif
if (Decls.empty())
return;
std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
/*FieldsAlreadyLoaded=*/false);
}
bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
ASTContext &Context = getASTContext();
if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
!Context.getLangOpts().SanitizeAddressFieldPadding)
return false;
const auto &Blacklist = Context.getSanitizerBlacklist();
const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
// We may be able to relax some of these requirements.
int ReasonToReject = -1;
if (!CXXRD || CXXRD->isExternCContext())
ReasonToReject = 0; // is not C++.
else if (CXXRD->hasAttr<PackedAttr>())
ReasonToReject = 1; // is packed.
else if (CXXRD->isUnion())
ReasonToReject = 2; // is a union.
else if (CXXRD->isTriviallyCopyable())
ReasonToReject = 3; // is trivially copyable.
else if (CXXRD->hasTrivialDestructor())
ReasonToReject = 4; // has trivial destructor.
else if (CXXRD->isStandardLayout())
ReasonToReject = 5; // is standard layout.
else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
ReasonToReject = 6; // is in a blacklisted file.
else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
"field-padding"))
ReasonToReject = 7; // is blacklisted.
if (EmitRemark) {
if (ReasonToReject >= 0)
Context.getDiagnostics().Report(
getLocation(),
diag::remark_sanitize_address_insert_extra_padding_rejected)
<< getQualifiedNameAsString() << ReasonToReject;
else
Context.getDiagnostics().Report(
getLocation(),
diag::remark_sanitize_address_insert_extra_padding_accepted)
<< getQualifiedNameAsString();
}
return ReasonToReject < 0;
}
//===----------------------------------------------------------------------===//
// BlockDecl Implementation
//===----------------------------------------------------------------------===//
void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
assert(!ParamInfo && "Already has param info!");
// Zero params -> null pointer.
if (!NewParamInfo.empty()) {
NumParams = NewParamInfo.size();
ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
}
}
void BlockDecl::setCaptures(ASTContext &Context,
const Capture *begin,
const Capture *end,
bool capturesCXXThis) {
CapturesCXXThis = capturesCXXThis;
if (begin == end) {
NumCaptures = 0;
Captures = nullptr;
return;
}
NumCaptures = end - begin;
// Avoid new Capture[] because we don't want to provide a default
// constructor.
size_t allocationSize = NumCaptures * sizeof(Capture);
void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
memcpy(buffer, begin, allocationSize);
Captures = static_cast<Capture*>(buffer);
}
bool BlockDecl::capturesVariable(const VarDecl *variable) const {
for (const auto &I : captures())
// Only auto vars can be captured, so no redeclaration worries.
if (I.getVariable() == variable)
return true;
return false;
}
SourceRange BlockDecl::getSourceRange() const {
return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
}
//===----------------------------------------------------------------------===//
// Other Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
void TranslationUnitDecl::anchor() { }
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
}
void LabelDecl::anchor() { }
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II) {
return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
}
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II,
SourceLocation GnuLabelL) {
assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
}
LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
SourceLocation());
}
void LabelDecl::setMSAsmLabel(StringRef Name) {
char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
memcpy(Buffer, Name.data(), Name.size());
Buffer[Name.size()] = '\0';
MSAsmName = Buffer;
}
void ValueDecl::anchor() { }
bool ValueDecl::isWeak() const {
for (const auto *I : attrs())
if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
return true;
return isWeakImported();
}
void ImplicitParamDecl::anchor() { }
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc,
IdentifierInfo *Id,
QualType Type) {
return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
}
ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
QualType());
}
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
bool isInlineSpecified,
bool hasWrittenPrototype,
bool isConstexprSpecified) {
FunctionDecl *New =
new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
SC, isInlineSpecified, isConstexprSpecified);
New->HasWrittenPrototype = hasWrittenPrototype;
return New;
}
FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
DeclarationNameInfo(), QualType(), nullptr,
SC_None, false, false);
}
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
return new (C, DC) BlockDecl(DC, L);
}
BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) BlockDecl(nullptr, SourceLocation());
}
CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
unsigned NumParams) {
return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
CapturedDecl(DC, NumParams);
}
CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumParams) {
return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
CapturedDecl(nullptr, NumParams);
}
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
SourceLocation L,
IdentifierInfo *Id, QualType T,
Expr *E, const llvm::APSInt &V) {
return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
}
EnumConstantDecl *
EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
QualType(), nullptr, llvm::APSInt());
}
void IndirectFieldDecl::anchor() { }
IndirectFieldDecl *
IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, NamedDecl **CH,
unsigned CHS) {
return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
}
IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
DeclarationName(), QualType(), nullptr,
0);
}
SourceRange EnumConstantDecl::getSourceRange() const {
SourceLocation End = getLocation();
if (Init)
End = Init->getLocEnd();
return SourceRange(getLocation(), End);
}
void TypeDecl::anchor() { }
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo) {
return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
}
void TypedefNameDecl::anchor() { }
TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
nullptr, nullptr);
}
TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
TypeSourceInfo *TInfo) {
return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
}
TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
SourceLocation(), nullptr, nullptr);
}
SourceRange TypedefDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocation();
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
if (typeIsPostfix(TInfo->getType()))
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
}
return SourceRange(getLocStart(), RangeEnd);
}
SourceRange TypeAliasDecl::getSourceRange() const {
SourceLocation RangeEnd = getLocStart();
if (TypeSourceInfo *TInfo = getTypeSourceInfo())
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
return SourceRange(getLocStart(), RangeEnd);
}
void FileScopeAsmDecl::anchor() { }
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
StringLiteral *Str,
SourceLocation AsmLoc,
SourceLocation RParenLoc) {
return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
}
FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
SourceLocation());
}
void EmptyDecl::anchor() {}
EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
return new (C, DC) EmptyDecl(DC, L);
}
EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) EmptyDecl(nullptr, SourceLocation());
}
//===----------------------------------------------------------------------===//
// ImportDecl Implementation
//===----------------------------------------------------------------------===//
/// \brief Retrieve the number of module identifiers needed to name the given
/// module.
static unsigned getNumModuleIdentifiers(Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs)
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
NextLocalImport()
{
assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
memcpy(StoredLocs, IdentifierLocs.data(),
IdentifierLocs.size() * sizeof(SourceLocation));
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
Module *Imported, SourceLocation EndLoc)
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
NextLocalImport()
{
*reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
}
ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs) {
return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
}
ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
Module *Imported,
SourceLocation EndLoc) {
ImportDecl *Import =
new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
Imported, EndLoc);
Import->setImplicit();
return Import;
}
ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumLocations) {
return new (C, ID, NumLocations * sizeof(SourceLocation))
ImportDecl(EmptyShell());
}
ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
if (!ImportedAndComplete.getInt())
return None;
const SourceLocation *StoredLocs
= reinterpret_cast<const SourceLocation *>(this + 1);
return llvm::makeArrayRef(StoredLocs,
getNumModuleIdentifiers(getImportedModule()));
}
SourceRange ImportDecl::getSourceRange() const {
if (!ImportedAndComplete.getInt())
return SourceRange(getLocation(),
*reinterpret_cast<const SourceLocation *>(this + 1));
return SourceRange(getLocation(), getIdentifierLocs().back());
}