llvm-project/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp

465 lines
17 KiB
C++

//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//
#include "HexagonMCInstrInfo.h"
#include "Hexagon.h"
#include "HexagonBaseInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
namespace llvm {
iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
assert(isBundle(MCI));
return iterator_range<MCInst::const_iterator>(
MCI.begin() + bundleInstructionsOffset, MCI.end());
}
size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
if (HexagonMCInstrInfo::isBundle(MCI))
return (MCI.size() - bundleInstructionsOffset);
else
return (1);
}
void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII, MCInst &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
MCOperand &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// If the extended value is a constant, then use it for the extended and
// for the extender instructions, masking off the lower 6 bits and
// including the assumed bits.
if (exOp.isImm()) {
unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
int64_t Bits = exOp.getImm();
exOp.setImm((Bits & 0x3f) << Shift);
}
}
MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
MCInst const &inst0,
MCInst const &inst1) {
assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
MCInst *duplexInst = new (Context) MCInst;
duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
duplexInst->addOperand(MCOperand::createInst(SubInst0));
duplexInst->addOperand(MCOperand::createInst(SubInst1));
return duplexInst;
}
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
size_t Index) {
assert(Index <= bundleSize(MCB));
if (Index == 0)
return nullptr;
MCInst const *Inst =
MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
if (isImmext(*Inst))
return Inst;
return nullptr;
}
HexagonII::MemAccessSize
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
HexagonII::MemAccesSizeMask));
}
unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return constant extended operand number.
unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (MCII.get(MCI.getOpcode()));
}
unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCOperand const &
HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
MCOperand const &MO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
(MO.isImm() || MO.isExpr()));
return (MO);
}
unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
}
unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned isSigned =
(F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1U << (bits - 1));
else
return ~(-1U << bits);
}
// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned isSigned =
(F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1U << (bits - 1);
else
return 0;
}
char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.getName(MCI.getOpcode());
}
unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
}
MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned const O =
(F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
(F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
switch (Target) {
default:
return Hexagon::ArchV4;
case HexagonII::HasV5SubT:
return Hexagon::ArchV5;
}
}
// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
}
bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
auto MI = I.getInst();
if (isImmext(*MI))
return true;
}
return false;
}
bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
return extenderForIndex(MCB, Index) != nullptr;
}
// Return whether the instruction is a legal new-value producer.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
assert(isBundle(MCB));
assert(Index < HEXAGON_PACKET_SIZE);
return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
}
bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
auto Result = Hexagon::BUNDLE == MCI.getOpcode();
assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
return Result;
}
// Return whether the insn is an actual insn.
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
!HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
}
bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
}
// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
// isExtendable:
// 2) For immediate extended operands, return true only if the value is
// out-of-range.
// 3) For global address, always return true.
bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::isExtended(MCII, MCI))
return true;
if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
return false;
short ExtOpNum = HexagonMCInstrInfo::getCExtOpNum(MCII, MCI);
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
MCOperand const &MO = MCI.getOperand(ExtOpNum);
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
if (MO.isExpr())
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
}
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
}
bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
auto Op = MCI.getOpcode();
return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
}
bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & innerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
}
bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
}
// Return whether the insn is a new-value consumer.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
// Return whether the operand can be constant extended.
bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
MCInst const &MCI,
unsigned short OperandNum) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
OperandNum;
}
bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & outerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}
bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
}
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
}
bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
}
bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
}
void HexagonMCInstrInfo::padEndloop(MCInst &MCB) {
MCInst Nop;
Nop.setOpcode(Hexagon::A2_nop);
assert(isBundle(MCB));
while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
((HexagonMCInstrInfo::isOuterLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
MCB.addOperand(MCOperand::createInst(new MCInst(Nop)));
}
bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
return false;
unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
switch (SchedClass) {
case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
case Hexagon::Sched::ALU64_tc_2_SLOT23:
case Hexagon::Sched::ALU64_tc_3x_SLOT23:
case Hexagon::Sched::M_tc_2_SLOT23:
case Hexagon::Sched::M_tc_3x_SLOT23:
case Hexagon::Sched::S_2op_tc_2_SLOT23:
case Hexagon::Sched::S_3op_tc_2_SLOT23:
case Hexagon::Sched::S_3op_tc_3x_SLOT23:
return true;
}
return false;
}
void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
DuplexCandidate Candidate) {
assert(Candidate.packetIndexI < MCB.size());
assert(Candidate.packetIndexJ < MCB.size());
assert(isBundle(MCB));
MCInst *Duplex =
deriveDuplex(Context, Candidate.iClass,
*MCB.getOperand(Candidate.packetIndexJ).getInst(),
*MCB.getOperand(Candidate.packetIndexI).getInst());
assert(Duplex != nullptr);
MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
MCB.erase(MCB.begin() + Candidate.packetIndexJ);
}
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | innerLoopMask);
}
void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | outerLoopMask);
}
}