llvm-project/llvm/lib/ExecutionEngine/Orc/Core.cpp

2005 lines
64 KiB
C++

//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/Core.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#if LLVM_ENABLE_THREADS
#include <future>
#endif
#define DEBUG_TYPE "orc"
using namespace llvm;
namespace {
#ifndef NDEBUG
cl::opt<bool> PrintHidden("debug-orc-print-hidden", cl::init(false),
cl::desc("debug print hidden symbols defined by "
"materialization units"),
cl::Hidden);
cl::opt<bool> PrintCallable("debug-orc-print-callable", cl::init(false),
cl::desc("debug print callable symbols defined by "
"materialization units"),
cl::Hidden);
cl::opt<bool> PrintData("debug-orc-print-data", cl::init(false),
cl::desc("debug print data symbols defined by "
"materialization units"),
cl::Hidden);
#endif // NDEBUG
// SetPrinter predicate that prints every element.
template <typename T> struct PrintAll {
bool operator()(const T &E) { return true; }
};
bool anyPrintSymbolOptionSet() {
#ifndef NDEBUG
return PrintHidden || PrintCallable || PrintData;
#else
return false;
#endif // NDEBUG
}
bool flagsMatchCLOpts(const JITSymbolFlags &Flags) {
#ifndef NDEBUG
// Bail out early if this is a hidden symbol and we're not printing hiddens.
if (!PrintHidden && !Flags.isExported())
return false;
// Return true if this is callable and we're printing callables.
if (PrintCallable && Flags.isCallable())
return true;
// Return true if this is data and we're printing data.
if (PrintData && !Flags.isCallable())
return true;
// otherwise return false.
return false;
#else
return false;
#endif // NDEBUG
}
// Prints a set of items, filtered by an user-supplied predicate.
template <typename Set, typename Pred = PrintAll<typename Set::value_type>>
class SetPrinter {
public:
SetPrinter(const Set &S, Pred ShouldPrint = Pred())
: S(S), ShouldPrint(std::move(ShouldPrint)) {}
void printTo(llvm::raw_ostream &OS) const {
bool PrintComma = false;
OS << "{";
for (auto &E : S) {
if (ShouldPrint(E)) {
if (PrintComma)
OS << ',';
OS << ' ' << E;
PrintComma = true;
}
}
OS << " }";
}
private:
const Set &S;
mutable Pred ShouldPrint;
};
template <typename Set, typename Pred>
SetPrinter<Set, Pred> printSet(const Set &S, Pred P = Pred()) {
return SetPrinter<Set, Pred>(S, std::move(P));
}
// Render a SetPrinter by delegating to its printTo method.
template <typename Set, typename Pred>
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SetPrinter<Set, Pred> &Printer) {
Printer.printTo(OS);
return OS;
}
struct PrintSymbolFlagsMapElemsMatchingCLOpts {
bool operator()(const orc::SymbolFlagsMap::value_type &KV) {
return flagsMatchCLOpts(KV.second);
}
};
struct PrintSymbolMapElemsMatchingCLOpts {
bool operator()(const orc::SymbolMap::value_type &KV) {
return flagsMatchCLOpts(KV.second.getFlags());
}
};
} // end anonymous namespace
namespace llvm {
namespace orc {
SymbolStringPool::PoolMapEntry SymbolStringPtr::Tombstone(0);
char FailedToMaterialize::ID = 0;
char SymbolsNotFound::ID = 0;
char SymbolsCouldNotBeRemoved::ID = 0;
RegisterDependenciesFunction NoDependenciesToRegister =
RegisterDependenciesFunction();
void MaterializationUnit::anchor() {}
raw_ostream &operator<<(raw_ostream &OS, const SymbolStringPtr &Sym) {
return OS << *Sym;
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolNameSet &Symbols) {
return OS << printSet(Symbols, PrintAll<SymbolStringPtr>());
}
raw_ostream &operator<<(raw_ostream &OS, const JITSymbolFlags &Flags) {
if (Flags.isCallable())
OS << "[Callable]";
else
OS << "[Data]";
if (Flags.isWeak())
OS << "[Weak]";
else if (Flags.isCommon())
OS << "[Common]";
if (!Flags.isExported())
OS << "[Hidden]";
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const JITEvaluatedSymbol &Sym) {
return OS << format("0x%016" PRIx64, Sym.getAddress()) << " "
<< Sym.getFlags();
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap::value_type &KV) {
return OS << "(\"" << KV.first << "\", " << KV.second << ")";
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolMap::value_type &KV) {
return OS << "(\"" << KV.first << "\": " << KV.second << ")";
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap &SymbolFlags) {
return OS << printSet(SymbolFlags, PrintSymbolFlagsMapElemsMatchingCLOpts());
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolMap &Symbols) {
return OS << printSet(Symbols, PrintSymbolMapElemsMatchingCLOpts());
}
raw_ostream &operator<<(raw_ostream &OS,
const SymbolDependenceMap::value_type &KV) {
return OS << "(" << KV.first << ", " << KV.second << ")";
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolDependenceMap &Deps) {
return OS << printSet(Deps, PrintAll<SymbolDependenceMap::value_type>());
}
raw_ostream &operator<<(raw_ostream &OS, const MaterializationUnit &MU) {
OS << "MU@" << &MU << " (\"" << MU.getName() << "\"";
if (anyPrintSymbolOptionSet())
OS << ", " << MU.getSymbols();
return OS << ")";
}
raw_ostream &operator<<(raw_ostream &OS, const JITDylibSearchList &JDs) {
OS << "[";
if (!JDs.empty()) {
assert(JDs.front().first && "JITDylibList entries must not be null");
OS << " (\"" << JDs.front().first->getName() << "\", "
<< (JDs.front().second ? "true" : "false") << ")";
for (auto &KV : make_range(std::next(JDs.begin()), JDs.end())) {
assert(KV.first && "JITDylibList entries must not be null");
OS << ", (\"" << KV.first->getName() << "\", "
<< (KV.second ? "true" : "false") << ")";
}
}
OS << " ]";
return OS;
}
FailedToMaterialize::FailedToMaterialize(SymbolNameSet Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code FailedToMaterialize::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void FailedToMaterialize::log(raw_ostream &OS) const {
OS << "Failed to materialize symbols: " << Symbols;
}
SymbolsNotFound::SymbolsNotFound(SymbolNameSet Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsNotFound::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsNotFound::log(raw_ostream &OS) const {
OS << "Symbols not found: " << Symbols;
}
SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(SymbolNameSet Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const {
OS << "Symbols could not be removed: " << Symbols;
}
AsynchronousSymbolQuery::AsynchronousSymbolQuery(
const SymbolNameSet &Symbols, SymbolsResolvedCallback NotifySymbolsResolved,
SymbolsReadyCallback NotifySymbolsReady)
: NotifySymbolsResolved(std::move(NotifySymbolsResolved)),
NotifySymbolsReady(std::move(NotifySymbolsReady)) {
NotYetResolvedCount = NotYetReadyCount = Symbols.size();
for (auto &S : Symbols)
ResolvedSymbols[S] = nullptr;
}
void AsynchronousSymbolQuery::resolve(const SymbolStringPtr &Name,
JITEvaluatedSymbol Sym) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Resolving symbol outside the requested set");
assert(I->second.getAddress() == 0 && "Redundantly resolving symbol Name");
I->second = std::move(Sym);
--NotYetResolvedCount;
}
void AsynchronousSymbolQuery::handleFullyResolved() {
assert(NotYetResolvedCount == 0 && "Not fully resolved?");
if (!NotifySymbolsResolved) {
// handleFullyResolved may be called by handleFullyReady (see comments in
// that method), in which case this is a no-op, so bail out.
assert(!NotifySymbolsReady &&
"NotifySymbolsResolved already called or an error occurred");
return;
}
auto TmpNotifySymbolsResolved = std::move(NotifySymbolsResolved);
NotifySymbolsResolved = SymbolsResolvedCallback();
TmpNotifySymbolsResolved(std::move(ResolvedSymbols));
}
void AsynchronousSymbolQuery::notifySymbolReady() {
assert(NotYetReadyCount != 0 && "All symbols already emitted");
--NotYetReadyCount;
}
void AsynchronousSymbolQuery::handleFullyReady() {
assert(NotifySymbolsReady &&
"NotifySymbolsReady already called or an error occurred");
auto TmpNotifySymbolsReady = std::move(NotifySymbolsReady);
NotifySymbolsReady = SymbolsReadyCallback();
if (NotYetResolvedCount == 0 && NotifySymbolsResolved) {
// The NotifyResolved callback of one query must have caused this query to
// become ready (i.e. there is still a handleFullyResolved callback waiting
// to be made back up the stack). Fold the handleFullyResolved call into
// this one before proceeding. This will cause the call further up the
// stack to become a no-op.
handleFullyResolved();
}
assert(QueryRegistrations.empty() &&
"Query is still registered with some symbols");
assert(!NotifySymbolsResolved && "Resolution not applied yet");
TmpNotifySymbolsReady(Error::success());
}
bool AsynchronousSymbolQuery::canStillFail() {
return (NotifySymbolsResolved || NotifySymbolsReady);
}
void AsynchronousSymbolQuery::handleFailed(Error Err) {
assert(QueryRegistrations.empty() && ResolvedSymbols.empty() &&
NotYetResolvedCount == 0 && NotYetReadyCount == 0 &&
"Query should already have been abandoned");
if (NotifySymbolsResolved) {
NotifySymbolsResolved(std::move(Err));
NotifySymbolsResolved = SymbolsResolvedCallback();
} else {
assert(NotifySymbolsReady && "Failed after both callbacks issued?");
NotifySymbolsReady(std::move(Err));
}
NotifySymbolsReady = SymbolsReadyCallback();
}
void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD,
SymbolStringPtr Name) {
bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second;
(void)Added;
assert(Added && "Duplicate dependence notification?");
}
void AsynchronousSymbolQuery::removeQueryDependence(
JITDylib &JD, const SymbolStringPtr &Name) {
auto QRI = QueryRegistrations.find(&JD);
assert(QRI != QueryRegistrations.end() &&
"No dependencies registered for JD");
assert(QRI->second.count(Name) && "No dependency on Name in JD");
QRI->second.erase(Name);
if (QRI->second.empty())
QueryRegistrations.erase(QRI);
}
void AsynchronousSymbolQuery::detach() {
ResolvedSymbols.clear();
NotYetResolvedCount = 0;
NotYetReadyCount = 0;
for (auto &KV : QueryRegistrations)
KV.first->detachQueryHelper(*this, KV.second);
QueryRegistrations.clear();
}
MaterializationResponsibility::MaterializationResponsibility(
JITDylib &JD, SymbolFlagsMap SymbolFlags, VModuleKey K)
: JD(JD), SymbolFlags(std::move(SymbolFlags)), K(std::move(K)) {
assert(!this->SymbolFlags.empty() && "Materializing nothing?");
#ifndef NDEBUG
for (auto &KV : this->SymbolFlags)
KV.second |= JITSymbolFlags::Materializing;
#endif
}
MaterializationResponsibility::~MaterializationResponsibility() {
assert(SymbolFlags.empty() &&
"All symbols should have been explicitly materialized or failed");
}
SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const {
return JD.getRequestedSymbols(SymbolFlags);
}
void MaterializationResponsibility::resolve(const SymbolMap &Symbols) {
LLVM_DEBUG(dbgs() << "In " << JD.getName() << " resolving " << Symbols
<< "\n");
#ifndef NDEBUG
for (auto &KV : Symbols) {
auto I = SymbolFlags.find(KV.first);
assert(I != SymbolFlags.end() &&
"Resolving symbol outside this responsibility set");
assert(I->second.isMaterializing() && "Duplicate resolution");
I->second &= ~JITSymbolFlags::Materializing;
if (I->second.isWeak())
assert(I->second == (KV.second.getFlags() | JITSymbolFlags::Weak) &&
"Resolving symbol with incorrect flags");
else
assert(I->second == KV.second.getFlags() &&
"Resolving symbol with incorrect flags");
}
#endif
JD.resolve(Symbols);
}
void MaterializationResponsibility::emit() {
#ifndef NDEBUG
for (auto &KV : SymbolFlags)
assert(!KV.second.isMaterializing() &&
"Failed to resolve symbol before emission");
#endif // NDEBUG
JD.emit(SymbolFlags);
SymbolFlags.clear();
}
Error MaterializationResponsibility::defineMaterializing(
const SymbolFlagsMap &NewSymbolFlags) {
// Add the given symbols to this responsibility object.
// It's ok if we hit a duplicate here: In that case the new version will be
// discarded, and the JITDylib::defineMaterializing method will return a
// duplicate symbol error.
for (auto &KV : NewSymbolFlags) {
auto I = SymbolFlags.insert(KV).first;
(void)I;
#ifndef NDEBUG
I->second |= JITSymbolFlags::Materializing;
#endif
}
return JD.defineMaterializing(NewSymbolFlags);
}
void MaterializationResponsibility::failMaterialization() {
SymbolNameSet FailedSymbols;
for (auto &KV : SymbolFlags)
FailedSymbols.insert(KV.first);
JD.notifyFailed(FailedSymbols);
SymbolFlags.clear();
}
void MaterializationResponsibility::replace(
std::unique_ptr<MaterializationUnit> MU) {
for (auto &KV : MU->getSymbols())
SymbolFlags.erase(KV.first);
LLVM_DEBUG(JD.getExecutionSession().runSessionLocked([&]() {
dbgs() << "In " << JD.getName() << " replacing symbols with " << *MU
<< "\n";
}););
JD.replace(std::move(MU));
}
MaterializationResponsibility
MaterializationResponsibility::delegate(const SymbolNameSet &Symbols,
VModuleKey NewKey) {
if (NewKey == VModuleKey())
NewKey = K;
SymbolFlagsMap DelegatedFlags;
for (auto &Name : Symbols) {
auto I = SymbolFlags.find(Name);
assert(I != SymbolFlags.end() &&
"Symbol is not tracked by this MaterializationResponsibility "
"instance");
DelegatedFlags[Name] = std::move(I->second);
SymbolFlags.erase(I);
}
return MaterializationResponsibility(JD, std::move(DelegatedFlags),
std::move(NewKey));
}
void MaterializationResponsibility::addDependencies(
const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) {
assert(SymbolFlags.count(Name) &&
"Symbol not covered by this MaterializationResponsibility instance");
JD.addDependencies(Name, Dependencies);
}
void MaterializationResponsibility::addDependenciesForAll(
const SymbolDependenceMap &Dependencies) {
for (auto &KV : SymbolFlags)
JD.addDependencies(KV.first, Dependencies);
}
AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit(
SymbolMap Symbols, VModuleKey K)
: MaterializationUnit(extractFlags(Symbols), std::move(K)),
Symbols(std::move(Symbols)) {}
StringRef AbsoluteSymbolsMaterializationUnit::getName() const {
return "<Absolute Symbols>";
}
void AbsoluteSymbolsMaterializationUnit::materialize(
MaterializationResponsibility R) {
R.resolve(Symbols);
R.emit();
}
void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Symbols.count(Name) && "Symbol is not part of this MU");
Symbols.erase(Name);
}
SymbolFlagsMap
AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) {
SymbolFlagsMap Flags;
for (const auto &KV : Symbols)
Flags[KV.first] = KV.second.getFlags();
return Flags;
}
ReExportsMaterializationUnit::ReExportsMaterializationUnit(
JITDylib *SourceJD, bool MatchNonExported, SymbolAliasMap Aliases,
VModuleKey K)
: MaterializationUnit(extractFlags(Aliases), std::move(K)),
SourceJD(SourceJD), MatchNonExported(MatchNonExported),
Aliases(std::move(Aliases)) {}
StringRef ReExportsMaterializationUnit::getName() const {
return "<Reexports>";
}
void ReExportsMaterializationUnit::materialize(
MaterializationResponsibility R) {
auto &ES = R.getTargetJITDylib().getExecutionSession();
JITDylib &TgtJD = R.getTargetJITDylib();
JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD;
// Find the set of requested aliases and aliasees. Return any unrequested
// aliases back to the JITDylib so as to not prematurely materialize any
// aliasees.
auto RequestedSymbols = R.getRequestedSymbols();
SymbolAliasMap RequestedAliases;
for (auto &Name : RequestedSymbols) {
auto I = Aliases.find(Name);
assert(I != Aliases.end() && "Symbol not found in aliases map?");
RequestedAliases[Name] = std::move(I->second);
Aliases.erase(I);
}
if (!Aliases.empty()) {
if (SourceJD)
R.replace(reexports(*SourceJD, std::move(Aliases), MatchNonExported));
else
R.replace(symbolAliases(std::move(Aliases)));
}
// The OnResolveInfo struct will hold the aliases and responsibilty for each
// query in the list.
struct OnResolveInfo {
OnResolveInfo(MaterializationResponsibility R, SymbolAliasMap Aliases)
: R(std::move(R)), Aliases(std::move(Aliases)) {}
MaterializationResponsibility R;
SymbolAliasMap Aliases;
};
// Build a list of queries to issue. In each round we build the largest set of
// aliases that we can resolve without encountering a chain definition of the
// form Foo -> Bar, Bar -> Baz. Such a form would deadlock as the query would
// be waitin on a symbol that it itself had to resolve. Usually this will just
// involve one round and a single query.
std::vector<std::pair<SymbolNameSet, std::shared_ptr<OnResolveInfo>>>
QueryInfos;
while (!RequestedAliases.empty()) {
SymbolNameSet ResponsibilitySymbols;
SymbolNameSet QuerySymbols;
SymbolAliasMap QueryAliases;
// Collect as many aliases as we can without including a chain.
for (auto &KV : RequestedAliases) {
// Chain detected. Skip this symbol for this round.
if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) ||
RequestedAliases.count(KV.second.Aliasee)))
continue;
ResponsibilitySymbols.insert(KV.first);
QuerySymbols.insert(KV.second.Aliasee);
QueryAliases[KV.first] = std::move(KV.second);
}
// Remove the aliases collected this round from the RequestedAliases map.
for (auto &KV : QueryAliases)
RequestedAliases.erase(KV.first);
assert(!QuerySymbols.empty() && "Alias cycle detected!");
auto QueryInfo = std::make_shared<OnResolveInfo>(
R.delegate(ResponsibilitySymbols), std::move(QueryAliases));
QueryInfos.push_back(
make_pair(std::move(QuerySymbols), std::move(QueryInfo)));
}
// Issue the queries.
while (!QueryInfos.empty()) {
auto QuerySymbols = std::move(QueryInfos.back().first);
auto QueryInfo = std::move(QueryInfos.back().second);
QueryInfos.pop_back();
auto RegisterDependencies = [QueryInfo,
&SrcJD](const SymbolDependenceMap &Deps) {
// If there were no materializing symbols, just bail out.
if (Deps.empty())
return;
// Otherwise the only deps should be on SrcJD.
assert(Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports");
auto &SrcJDDeps = Deps.find(&SrcJD)->second;
SymbolDependenceMap PerAliasDepsMap;
auto &PerAliasDeps = PerAliasDepsMap[&SrcJD];
for (auto &KV : QueryInfo->Aliases)
if (SrcJDDeps.count(KV.second.Aliasee)) {
PerAliasDeps = {KV.second.Aliasee};
QueryInfo->R.addDependencies(KV.first, PerAliasDepsMap);
}
};
auto OnResolve = [QueryInfo](Expected<SymbolMap> Result) {
if (Result) {
SymbolMap ResolutionMap;
for (auto &KV : QueryInfo->Aliases) {
assert(Result->count(KV.second.Aliasee) &&
"Result map missing entry?");
ResolutionMap[KV.first] = JITEvaluatedSymbol(
(*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags);
}
QueryInfo->R.resolve(ResolutionMap);
QueryInfo->R.emit();
} else {
auto &ES = QueryInfo->R.getTargetJITDylib().getExecutionSession();
ES.reportError(Result.takeError());
QueryInfo->R.failMaterialization();
}
};
auto OnReady = [&ES](Error Err) { ES.reportError(std::move(Err)); };
ES.lookup(JITDylibSearchList({{&SrcJD, MatchNonExported}}), QuerySymbols,
std::move(OnResolve), std::move(OnReady),
std::move(RegisterDependencies));
}
}
void ReExportsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Aliases.count(Name) &&
"Symbol not covered by this MaterializationUnit");
Aliases.erase(Name);
}
SymbolFlagsMap
ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) {
SymbolFlagsMap SymbolFlags;
for (auto &KV : Aliases)
SymbolFlags[KV.first] = KV.second.AliasFlags;
return SymbolFlags;
}
Expected<SymbolAliasMap>
buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols) {
auto Flags = SourceJD.lookupFlags(Symbols);
if (Flags.size() != Symbols.size()) {
SymbolNameSet Unresolved = Symbols;
for (auto &KV : Flags)
Unresolved.erase(KV.first);
return make_error<SymbolsNotFound>(std::move(Unresolved));
}
SymbolAliasMap Result;
for (auto &Name : Symbols) {
assert(Flags.count(Name) && "Missing entry in flags map");
Result[Name] = SymbolAliasMapEntry(Name, Flags[Name]);
}
return Result;
}
ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD,
bool MatchNonExported,
SymbolPredicate Allow)
: SourceJD(SourceJD), MatchNonExported(MatchNonExported),
Allow(std::move(Allow)) {}
SymbolNameSet ReexportsGenerator::operator()(JITDylib &JD,
const SymbolNameSet &Names) {
orc::SymbolNameSet Added;
orc::SymbolAliasMap AliasMap;
auto Flags = SourceJD.lookupFlags(Names);
for (auto &KV : Flags) {
if (Allow && !Allow(KV.first))
continue;
AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second);
Added.insert(KV.first);
}
if (!Added.empty())
cantFail(JD.define(reexports(SourceJD, AliasMap, MatchNonExported)));
return Added;
}
Error JITDylib::defineMaterializing(const SymbolFlagsMap &SymbolFlags) {
return ES.runSessionLocked([&]() -> Error {
std::vector<SymbolMap::iterator> AddedSyms;
for (auto &KV : SymbolFlags) {
SymbolMap::iterator EntryItr;
bool Added;
auto NewFlags = KV.second;
NewFlags |= JITSymbolFlags::Materializing;
std::tie(EntryItr, Added) = Symbols.insert(
std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags)));
if (Added)
AddedSyms.push_back(EntryItr);
else {
// Remove any symbols already added.
for (auto &SI : AddedSyms)
Symbols.erase(SI);
// FIXME: Return all duplicates.
return make_error<DuplicateDefinition>(*KV.first);
}
}
return Error::success();
});
}
void JITDylib::replace(std::unique_ptr<MaterializationUnit> MU) {
assert(MU != nullptr && "Can not replace with a null MaterializationUnit");
auto MustRunMU =
ES.runSessionLocked([&, this]() -> std::unique_ptr<MaterializationUnit> {
#ifndef NDEBUG
for (auto &KV : MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Replacing unknown symbol");
assert(!SymI->second.getFlags().isLazy() &&
SymI->second.getFlags().isMaterializing() &&
"Can not replace symbol that is not materializing");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Symbol being replaced should have no UnmaterializedInfo");
}
#endif // NDEBUG
// If any symbol has pending queries against it then we need to
// materialize MU immediately.
for (auto &KV : MU->getSymbols()) {
auto MII = MaterializingInfos.find(KV.first);
if (MII != MaterializingInfos.end()) {
if (!MII->second.PendingQueries.empty())
return std::move(MU);
}
}
// Otherwise, make MU responsible for all the symbols.
auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU));
for (auto &KV : UMI->MU->getSymbols()) {
assert(!KV.second.isLazy() &&
"Lazy flag should be managed internally.");
assert(!KV.second.isMaterializing() &&
"Materializing flags should be managed internally.");
auto SymI = Symbols.find(KV.first);
JITSymbolFlags ReplaceFlags = KV.second;
ReplaceFlags |= JITSymbolFlags::Lazy;
SymI->second = JITEvaluatedSymbol(SymI->second.getAddress(),
std::move(ReplaceFlags));
UnmaterializedInfos[KV.first] = UMI;
}
return nullptr;
});
if (MustRunMU)
ES.dispatchMaterialization(*this, std::move(MustRunMU));
}
SymbolNameSet
JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const {
return ES.runSessionLocked([&]() {
SymbolNameSet RequestedSymbols;
for (auto &KV : SymbolFlags) {
assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?");
assert(Symbols.find(KV.first)->second.getFlags().isMaterializing() &&
"getRequestedSymbols can only be called for materializing "
"symbols");
auto I = MaterializingInfos.find(KV.first);
if (I == MaterializingInfos.end())
continue;
if (!I->second.PendingQueries.empty())
RequestedSymbols.insert(KV.first);
}
return RequestedSymbols;
});
}
void JITDylib::addDependencies(const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies) {
assert(Symbols.count(Name) && "Name not in symbol table");
assert((Symbols[Name].getFlags().isLazy() ||
Symbols[Name].getFlags().isMaterializing()) &&
"Symbol is not lazy or materializing");
auto &MI = MaterializingInfos[Name];
assert(!MI.IsEmitted && "Can not add dependencies to an emitted symbol");
for (auto &KV : Dependencies) {
assert(KV.first && "Null JITDylib in dependency?");
auto &OtherJITDylib = *KV.first;
auto &DepsOnOtherJITDylib = MI.UnemittedDependencies[&OtherJITDylib];
for (auto &OtherSymbol : KV.second) {
#ifndef NDEBUG
// Assert that this symbol exists and has not been emitted already.
auto SymI = OtherJITDylib.Symbols.find(OtherSymbol);
assert(SymI != OtherJITDylib.Symbols.end() &&
(SymI->second.getFlags().isLazy() ||
SymI->second.getFlags().isMaterializing()) &&
"Dependency on emitted symbol");
#endif
auto &OtherMI = OtherJITDylib.MaterializingInfos[OtherSymbol];
if (OtherMI.IsEmitted)
transferEmittedNodeDependencies(MI, Name, OtherMI);
else if (&OtherJITDylib != this || OtherSymbol != Name) {
OtherMI.Dependants[this].insert(Name);
DepsOnOtherJITDylib.insert(OtherSymbol);
}
}
if (DepsOnOtherJITDylib.empty())
MI.UnemittedDependencies.erase(&OtherJITDylib);
}
}
void JITDylib::resolve(const SymbolMap &Resolved) {
auto FullyResolvedQueries = ES.runSessionLocked([&, this]() {
AsynchronousSymbolQuerySet FullyResolvedQueries;
for (const auto &KV : Resolved) {
auto &Name = KV.first;
auto Sym = KV.second;
assert(!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing() &&
"Materializing flags should be managed internally");
auto I = Symbols.find(Name);
assert(I != Symbols.end() && "Symbol not found");
assert(!I->second.getFlags().isLazy() &&
I->second.getFlags().isMaterializing() &&
"Symbol should be materializing");
assert(I->second.getAddress() == 0 && "Symbol has already been resolved");
assert((Sym.getFlags() & ~JITSymbolFlags::Weak) ==
(JITSymbolFlags::stripTransientFlags(I->second.getFlags()) &
~JITSymbolFlags::Weak) &&
"Resolved flags should match the declared flags");
// Once resolved, symbols can never be weak.
JITSymbolFlags ResolvedFlags = Sym.getFlags();
ResolvedFlags &= ~JITSymbolFlags::Weak;
ResolvedFlags |= JITSymbolFlags::Materializing;
I->second = JITEvaluatedSymbol(Sym.getAddress(), ResolvedFlags);
auto &MI = MaterializingInfos[Name];
for (auto &Q : MI.PendingQueries) {
Q->resolve(Name, Sym);
if (Q->isFullyResolved())
FullyResolvedQueries.insert(Q);
}
}
return FullyResolvedQueries;
});
for (auto &Q : FullyResolvedQueries) {
assert(Q->isFullyResolved() && "Q not fully resolved");
Q->handleFullyResolved();
}
}
void JITDylib::emit(const SymbolFlagsMap &Emitted) {
auto FullyReadyQueries = ES.runSessionLocked([&, this]() {
AsynchronousSymbolQuerySet ReadyQueries;
for (const auto &KV : Emitted) {
const auto &Name = KV.first;
auto MII = MaterializingInfos.find(Name);
assert(MII != MaterializingInfos.end() &&
"Missing MaterializingInfo entry");
auto &MI = MII->second;
// For each dependant, transfer this node's emitted dependencies to
// it. If the dependant node is ready (i.e. has no unemitted
// dependencies) then notify any pending queries.
for (auto &KV : MI.Dependants) {
auto &DependantJD = *KV.first;
for (auto &DependantName : KV.second) {
auto DependantMII =
DependantJD.MaterializingInfos.find(DependantName);
assert(DependantMII != DependantJD.MaterializingInfos.end() &&
"Dependant should have MaterializingInfo");
auto &DependantMI = DependantMII->second;
// Remove the dependant's dependency on this node.
assert(DependantMI.UnemittedDependencies[this].count(Name) &&
"Dependant does not count this symbol as a dependency?");
DependantMI.UnemittedDependencies[this].erase(Name);
if (DependantMI.UnemittedDependencies[this].empty())
DependantMI.UnemittedDependencies.erase(this);
// Transfer unemitted dependencies from this node to the dependant.
DependantJD.transferEmittedNodeDependencies(DependantMI,
DependantName, MI);
// If the dependant is emitted and this node was the last of its
// unemitted dependencies then the dependant node is now ready, so
// notify any pending queries on the dependant node.
if (DependantMI.IsEmitted &&
DependantMI.UnemittedDependencies.empty()) {
assert(DependantMI.Dependants.empty() &&
"Dependants should be empty by now");
for (auto &Q : DependantMI.PendingQueries) {
Q->notifySymbolReady();
if (Q->isFullyReady())
ReadyQueries.insert(Q);
Q->removeQueryDependence(DependantJD, DependantName);
}
// Since this dependant is now ready, we erase its MaterializingInfo
// and update its materializing state.
assert(DependantJD.Symbols.count(DependantName) &&
"Dependant has no entry in the Symbols table");
auto &DependantSym = DependantJD.Symbols[DependantName];
DependantSym.setFlags(DependantSym.getFlags() &
~JITSymbolFlags::Materializing);
DependantJD.MaterializingInfos.erase(DependantMII);
}
}
}
MI.Dependants.clear();
MI.IsEmitted = true;
if (MI.UnemittedDependencies.empty()) {
for (auto &Q : MI.PendingQueries) {
Q->notifySymbolReady();
if (Q->isFullyReady())
ReadyQueries.insert(Q);
Q->removeQueryDependence(*this, Name);
}
assert(Symbols.count(Name) &&
"Symbol has no entry in the Symbols table");
auto &Sym = Symbols[Name];
Sym.setFlags(Sym.getFlags() & ~JITSymbolFlags::Materializing);
MaterializingInfos.erase(MII);
}
}
return ReadyQueries;
});
for (auto &Q : FullyReadyQueries) {
assert(Q->isFullyReady() && "Q is not fully ready");
Q->handleFullyReady();
}
}
void JITDylib::notifyFailed(const SymbolNameSet &FailedSymbols) {
// FIXME: This should fail any transitively dependant symbols too.
auto FailedQueriesToNotify = ES.runSessionLocked([&, this]() {
AsynchronousSymbolQuerySet FailedQueries;
for (auto &Name : FailedSymbols) {
auto I = Symbols.find(Name);
assert(I != Symbols.end() && "Symbol not present in this JITDylib");
Symbols.erase(I);
auto MII = MaterializingInfos.find(Name);
// If we have not created a MaterializingInfo for this symbol yet then
// there is nobody to notify.
if (MII == MaterializingInfos.end())
continue;
// Copy all the queries to the FailedQueries list, then abandon them.
// This has to be a copy, and the copy has to come before the abandon
// operation: Each Q.detach() call will reach back into this
// PendingQueries list to remove Q.
for (auto &Q : MII->second.PendingQueries)
FailedQueries.insert(Q);
for (auto &Q : FailedQueries)
Q->detach();
assert(MII->second.PendingQueries.empty() &&
"Queries remain after symbol was failed");
MaterializingInfos.erase(MII);
}
return FailedQueries;
});
for (auto &Q : FailedQueriesToNotify)
Q->handleFailed(make_error<FailedToMaterialize>(FailedSymbols));
}
void JITDylib::setSearchOrder(JITDylibSearchList NewSearchOrder,
bool SearchThisJITDylibFirst,
bool MatchNonExportedInThisDylib) {
if (SearchThisJITDylibFirst && NewSearchOrder.front().first != this)
NewSearchOrder.insert(NewSearchOrder.begin(),
{this, MatchNonExportedInThisDylib});
ES.runSessionLocked([&]() { SearchOrder = std::move(NewSearchOrder); });
}
void JITDylib::addToSearchOrder(JITDylib &JD, bool MatchNonExported) {
ES.runSessionLocked([&]() {
SearchOrder.push_back({&JD, MatchNonExported});
});
}
void JITDylib::replaceInSearchOrder(JITDylib &OldJD, JITDylib &NewJD,
bool MatchNonExported) {
ES.runSessionLocked([&]() {
auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(),
[&](const JITDylibSearchList::value_type &KV) {
return KV.first == &OldJD;
});
if (I != SearchOrder.end())
*I = {&NewJD, MatchNonExported};
});
}
void JITDylib::removeFromSearchOrder(JITDylib &JD) {
ES.runSessionLocked([&]() {
auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(),
[&](const JITDylibSearchList::value_type &KV) {
return KV.first == &JD;
});
if (I != SearchOrder.end())
SearchOrder.erase(I);
});
}
Error JITDylib::remove(const SymbolNameSet &Names) {
return ES.runSessionLocked([&]() -> Error {
using SymbolMaterializerItrPair =
std::pair<SymbolMap::iterator, UnmaterializedInfosMap::iterator>;
std::vector<SymbolMaterializerItrPair> SymbolsToRemove;
SymbolNameSet Missing;
SymbolNameSet Materializing;
for (auto &Name : Names) {
auto I = Symbols.find(Name);
// Note symbol missing.
if (I == Symbols.end()) {
Missing.insert(Name);
continue;
}
// Note symbol materializing.
if (I->second.getFlags().isMaterializing()) {
Materializing.insert(Name);
continue;
}
auto UMII = I->second.getFlags().isLazy() ? UnmaterializedInfos.find(Name)
: UnmaterializedInfos.end();
SymbolsToRemove.push_back(std::make_pair(I, UMII));
}
// If any of the symbols are not defined, return an error.
if (!Missing.empty())
return make_error<SymbolsNotFound>(std::move(Missing));
// If any of the symbols are currently materializing, return an error.
if (!Materializing.empty())
return make_error<SymbolsCouldNotBeRemoved>(std::move(Materializing));
// Remove the symbols.
for (auto &SymbolMaterializerItrPair : SymbolsToRemove) {
auto UMII = SymbolMaterializerItrPair.second;
// If there is a materializer attached, call discard.
if (UMII != UnmaterializedInfos.end()) {
UMII->second->MU->doDiscard(*this, UMII->first);
UnmaterializedInfos.erase(UMII);
}
auto SymI = SymbolMaterializerItrPair.first;
Symbols.erase(SymI);
}
return Error::success();
});
}
SymbolFlagsMap JITDylib::lookupFlags(const SymbolNameSet &Names) {
return ES.runSessionLocked([&, this]() {
SymbolFlagsMap Result;
auto Unresolved = lookupFlagsImpl(Result, Names);
if (DefGenerator && !Unresolved.empty()) {
auto NewDefs = DefGenerator(*this, Unresolved);
if (!NewDefs.empty()) {
auto Unresolved2 = lookupFlagsImpl(Result, NewDefs);
(void)Unresolved2;
assert(Unresolved2.empty() &&
"All fallback defs should have been found by lookupFlagsImpl");
}
};
return Result;
});
}
SymbolNameSet JITDylib::lookupFlagsImpl(SymbolFlagsMap &Flags,
const SymbolNameSet &Names) {
SymbolNameSet Unresolved;
for (auto &Name : Names) {
auto I = Symbols.find(Name);
if (I == Symbols.end()) {
Unresolved.insert(Name);
continue;
}
assert(!Flags.count(Name) && "Symbol already present in Flags map");
Flags[Name] = JITSymbolFlags::stripTransientFlags(I->second.getFlags());
}
return Unresolved;
}
void JITDylib::lodgeQuery(std::shared_ptr<AsynchronousSymbolQuery> &Q,
SymbolNameSet &Unresolved, bool MatchNonExported,
MaterializationUnitList &MUs) {
assert(Q && "Query can not be null");
lodgeQueryImpl(Q, Unresolved, MatchNonExported, MUs);
if (DefGenerator && !Unresolved.empty()) {
auto NewDefs = DefGenerator(*this, Unresolved);
if (!NewDefs.empty()) {
for (auto &D : NewDefs)
Unresolved.erase(D);
lodgeQueryImpl(Q, NewDefs, MatchNonExported, MUs);
assert(NewDefs.empty() &&
"All fallback defs should have been found by lookupImpl");
}
}
}
void JITDylib::lodgeQueryImpl(
std::shared_ptr<AsynchronousSymbolQuery> &Q, SymbolNameSet &Unresolved,
bool MatchNonExported,
std::vector<std::unique_ptr<MaterializationUnit>> &MUs) {
std::vector<SymbolStringPtr> ToRemove;
for (auto Name : Unresolved) {
// Search for the name in Symbols. Skip it if not found.
auto SymI = Symbols.find(Name);
if (SymI == Symbols.end())
continue;
// If this is a non exported symbol and we're skipping those then skip it.
if (!SymI->second.getFlags().isExported() && !MatchNonExported)
continue;
// If we matched against Name in JD, mark it to be removed from the Unresolved
// set.
ToRemove.push_back(Name);
// If the symbol has an address then resolve it.
if (SymI->second.getAddress() != 0)
Q->resolve(Name, SymI->second);
// If the symbol is lazy, get the MaterialiaztionUnit for it.
if (SymI->second.getFlags().isLazy()) {
assert(SymI->second.getAddress() == 0 &&
"Lazy symbol should not have a resolved address");
assert(!SymI->second.getFlags().isMaterializing() &&
"Materializing and lazy should not both be set");
auto UMII = UnmaterializedInfos.find(Name);
assert(UMII != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto MU = std::move(UMII->second->MU);
assert(MU != nullptr && "Materializer should not be null");
// Move all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : MU->getSymbols()) {
auto SymK = Symbols.find(KV.first);
auto Flags = SymK->second.getFlags();
Flags &= ~JITSymbolFlags::Lazy;
Flags |= JITSymbolFlags::Materializing;
SymK->second.setFlags(Flags);
UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
MUs.push_back(std::move(MU));
} else if (!SymI->second.getFlags().isMaterializing()) {
// The symbol is neither lazy nor materializing, so it must be
// ready. Notify the query and continue.
Q->notifySymbolReady();
continue;
}
// Add the query to the PendingQueries list.
assert(SymI->second.getFlags().isMaterializing() &&
"By this line the symbol should be materializing");
auto &MI = MaterializingInfos[Name];
MI.PendingQueries.push_back(Q);
Q->addQueryDependence(*this, Name);
}
// Remove any symbols that we found.
for (auto &Name : ToRemove)
Unresolved.erase(Name);
}
SymbolNameSet JITDylib::legacyLookup(std::shared_ptr<AsynchronousSymbolQuery> Q,
SymbolNameSet Names) {
assert(Q && "Query can not be null");
ES.runOutstandingMUs();
LookupImplActionFlags ActionFlags = None;
std::vector<std::unique_ptr<MaterializationUnit>> MUs;
SymbolNameSet Unresolved = std::move(Names);
ES.runSessionLocked([&, this]() {
ActionFlags = lookupImpl(Q, MUs, Unresolved);
if (DefGenerator && !Unresolved.empty()) {
assert(ActionFlags == None &&
"ActionFlags set but unresolved symbols remain?");
auto NewDefs = DefGenerator(*this, Unresolved);
if (!NewDefs.empty()) {
for (auto &D : NewDefs)
Unresolved.erase(D);
ActionFlags = lookupImpl(Q, MUs, NewDefs);
assert(NewDefs.empty() &&
"All fallback defs should have been found by lookupImpl");
}
}
});
assert((MUs.empty() || ActionFlags == None) &&
"If action flags are set, there should be no work to do (so no MUs)");
if (ActionFlags & NotifyFullyResolved)
Q->handleFullyResolved();
if (ActionFlags & NotifyFullyReady)
Q->handleFullyReady();
// FIXME: Swap back to the old code below once RuntimeDyld works with
// callbacks from asynchronous queries.
// Add MUs to the OutstandingMUs list.
{
std::lock_guard<std::recursive_mutex> Lock(ES.OutstandingMUsMutex);
for (auto &MU : MUs)
ES.OutstandingMUs.push_back(make_pair(this, std::move(MU)));
}
ES.runOutstandingMUs();
// Dispatch any required MaterializationUnits for materialization.
// for (auto &MU : MUs)
// ES.dispatchMaterialization(*this, std::move(MU));
return Unresolved;
}
JITDylib::LookupImplActionFlags
JITDylib::lookupImpl(std::shared_ptr<AsynchronousSymbolQuery> &Q,
std::vector<std::unique_ptr<MaterializationUnit>> &MUs,
SymbolNameSet &Unresolved) {
LookupImplActionFlags ActionFlags = None;
std::vector<SymbolStringPtr> ToRemove;
for (auto Name : Unresolved) {
// Search for the name in Symbols. Skip it if not found.
auto SymI = Symbols.find(Name);
if (SymI == Symbols.end())
continue;
// If we found Name, mark it to be removed from the Unresolved set.
ToRemove.push_back(Name);
// If the symbol has an address then resolve it.
if (SymI->second.getAddress() != 0) {
Q->resolve(Name, SymI->second);
if (Q->isFullyResolved())
ActionFlags |= NotifyFullyResolved;
}
// If the symbol is lazy, get the MaterialiaztionUnit for it.
if (SymI->second.getFlags().isLazy()) {
assert(SymI->second.getAddress() == 0 &&
"Lazy symbol should not have a resolved address");
assert(!SymI->second.getFlags().isMaterializing() &&
"Materializing and lazy should not both be set");
auto UMII = UnmaterializedInfos.find(Name);
assert(UMII != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto MU = std::move(UMII->second->MU);
assert(MU != nullptr && "Materializer should not be null");
// Kick all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : MU->getSymbols()) {
auto SymK = Symbols.find(KV.first);
auto Flags = SymK->second.getFlags();
Flags &= ~JITSymbolFlags::Lazy;
Flags |= JITSymbolFlags::Materializing;
SymK->second.setFlags(Flags);
UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
MUs.push_back(std::move(MU));
} else if (!SymI->second.getFlags().isMaterializing()) {
// The symbol is neither lazy nor materializing, so it must be ready.
// Notify the query and continue.
Q->notifySymbolReady();
if (Q->isFullyReady())
ActionFlags |= NotifyFullyReady;
continue;
}
// Add the query to the PendingQueries list.
assert(SymI->second.getFlags().isMaterializing() &&
"By this line the symbol should be materializing");
auto &MI = MaterializingInfos[Name];
MI.PendingQueries.push_back(Q);
Q->addQueryDependence(*this, Name);
}
// Remove any marked symbols from the Unresolved set.
for (auto &Name : ToRemove)
Unresolved.erase(Name);
return ActionFlags;
}
void JITDylib::dump(raw_ostream &OS) {
ES.runSessionLocked([&, this]() {
OS << "JITDylib \"" << JITDylibName << "\" (ES: "
<< format("0x%016" PRIx64, reinterpret_cast<uintptr_t>(&ES)) << "):\n"
<< "Search order: [";
for (auto &KV : SearchOrder)
OS << " (\"" << KV.first->getName() << "\", "
<< (KV.second ? "all" : "exported only") << ")";
OS << " ]\n"
<< "Symbol table:\n";
for (auto &KV : Symbols) {
OS << " \"" << *KV.first << "\": ";
if (auto Addr = KV.second.getAddress())
OS << format("0x%016" PRIx64, Addr) << ", " << KV.second.getFlags();
else
OS << "<not resolved>";
if (KV.second.getFlags().isLazy() ||
KV.second.getFlags().isMaterializing()) {
OS << " (";
if (KV.second.getFlags().isLazy()) {
auto I = UnmaterializedInfos.find(KV.first);
assert(I != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
OS << " Lazy (MU=" << I->second->MU.get() << ")";
}
if (KV.second.getFlags().isMaterializing())
OS << " Materializing";
OS << ", " << KV.second.getFlags() << " )\n";
} else
OS << "\n";
}
if (!MaterializingInfos.empty())
OS << " MaterializingInfos entries:\n";
for (auto &KV : MaterializingInfos) {
OS << " \"" << *KV.first << "\":\n"
<< " IsEmitted = " << (KV.second.IsEmitted ? "true" : "false")
<< "\n"
<< " " << KV.second.PendingQueries.size()
<< " pending queries: { ";
for (auto &Q : KV.second.PendingQueries)
OS << Q.get() << " ";
OS << "}\n Dependants:\n";
for (auto &KV2 : KV.second.Dependants)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
OS << " Unemitted Dependencies:\n";
for (auto &KV2 : KV.second.UnemittedDependencies)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
}
});
}
JITDylib::JITDylib(ExecutionSession &ES, std::string Name)
: ES(ES), JITDylibName(std::move(Name)) {
SearchOrder.push_back({this, true});
}
Error JITDylib::defineImpl(MaterializationUnit &MU) {
SymbolNameSet Duplicates;
SymbolNameSet MUDefsOverridden;
struct ExistingDefOverriddenEntry {
SymbolMap::iterator ExistingDefItr;
JITSymbolFlags NewFlags;
};
std::vector<ExistingDefOverriddenEntry> ExistingDefsOverridden;
for (auto &KV : MU.getSymbols()) {
assert(!KV.second.isLazy() && "Lazy flag should be managed internally.");
assert(!KV.second.isMaterializing() &&
"Materializing flags should be managed internally.");
SymbolMap::iterator EntryItr;
bool Added;
auto NewFlags = KV.second;
NewFlags |= JITSymbolFlags::Lazy;
std::tie(EntryItr, Added) = Symbols.insert(
std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags)));
if (!Added) {
if (KV.second.isStrong()) {
if (EntryItr->second.getFlags().isStrong() ||
(EntryItr->second.getFlags() & JITSymbolFlags::Materializing))
Duplicates.insert(KV.first);
else
ExistingDefsOverridden.push_back({EntryItr, NewFlags});
} else
MUDefsOverridden.insert(KV.first);
}
}
if (!Duplicates.empty()) {
// We need to remove the symbols we added.
for (auto &KV : MU.getSymbols()) {
if (Duplicates.count(KV.first))
continue;
bool Found = false;
for (const auto &EDO : ExistingDefsOverridden)
if (EDO.ExistingDefItr->first == KV.first)
Found = true;
if (!Found)
Symbols.erase(KV.first);
}
// FIXME: Return all duplicates.
return make_error<DuplicateDefinition>(**Duplicates.begin());
}
// Update flags on existing defs and call discard on their materializers.
for (auto &EDO : ExistingDefsOverridden) {
assert(EDO.ExistingDefItr->second.getFlags().isLazy() &&
!EDO.ExistingDefItr->second.getFlags().isMaterializing() &&
"Overridden existing def should be in the Lazy state");
EDO.ExistingDefItr->second.setFlags(EDO.NewFlags);
auto UMII = UnmaterializedInfos.find(EDO.ExistingDefItr->first);
assert(UMII != UnmaterializedInfos.end() &&
"Overridden existing def should have an UnmaterializedInfo");
UMII->second->MU->doDiscard(*this, EDO.ExistingDefItr->first);
}
// Discard overridden symbols povided by MU.
for (auto &Sym : MUDefsOverridden)
MU.doDiscard(*this, Sym);
return Error::success();
}
void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q,
const SymbolNameSet &QuerySymbols) {
for (auto &QuerySymbol : QuerySymbols) {
assert(MaterializingInfos.count(QuerySymbol) &&
"QuerySymbol does not have MaterializingInfo");
auto &MI = MaterializingInfos[QuerySymbol];
auto IdenticalQuery =
[&](const std::shared_ptr<AsynchronousSymbolQuery> &R) {
return R.get() == &Q;
};
auto I = std::find_if(MI.PendingQueries.begin(), MI.PendingQueries.end(),
IdenticalQuery);
assert(I != MI.PendingQueries.end() &&
"Query Q should be in the PendingQueries list for QuerySymbol");
MI.PendingQueries.erase(I);
}
}
void JITDylib::transferEmittedNodeDependencies(
MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName,
MaterializingInfo &EmittedMI) {
for (auto &KV : EmittedMI.UnemittedDependencies) {
auto &DependencyJD = *KV.first;
SymbolNameSet *UnemittedDependenciesOnDependencyJD = nullptr;
for (auto &DependencyName : KV.second) {
auto &DependencyMI = DependencyJD.MaterializingInfos[DependencyName];
// Do not add self dependencies.
if (&DependencyMI == &DependantMI)
continue;
// If we haven't looked up the dependencies for DependencyJD yet, do it
// now and cache the result.
if (!UnemittedDependenciesOnDependencyJD)
UnemittedDependenciesOnDependencyJD =
&DependantMI.UnemittedDependencies[&DependencyJD];
DependencyMI.Dependants[this].insert(DependantName);
UnemittedDependenciesOnDependencyJD->insert(DependencyName);
}
}
}
ExecutionSession::ExecutionSession(std::shared_ptr<SymbolStringPool> SSP)
: SSP(SSP ? std::move(SSP) : std::make_shared<SymbolStringPool>()) {
// Construct the main dylib.
JDs.push_back(std::unique_ptr<JITDylib>(new JITDylib(*this, "<main>")));
}
JITDylib &ExecutionSession::getMainJITDylib() {
return runSessionLocked([this]() -> JITDylib & { return *JDs.front(); });
}
JITDylib &ExecutionSession::createJITDylib(std::string Name,
bool AddToMainDylibSearchOrder) {
return runSessionLocked([&, this]() -> JITDylib & {
JDs.push_back(
std::unique_ptr<JITDylib>(new JITDylib(*this, std::move(Name))));
if (AddToMainDylibSearchOrder)
JDs.front()->addToSearchOrder(*JDs.back());
return *JDs.back();
});
}
void ExecutionSession::legacyFailQuery(AsynchronousSymbolQuery &Q, Error Err) {
assert(!!Err && "Error should be in failure state");
bool SendErrorToQuery;
runSessionLocked([&]() {
Q.detach();
SendErrorToQuery = Q.canStillFail();
});
if (SendErrorToQuery)
Q.handleFailed(std::move(Err));
else
reportError(std::move(Err));
}
Expected<SymbolMap> ExecutionSession::legacyLookup(
LegacyAsyncLookupFunction AsyncLookup, SymbolNameSet Names,
bool WaitUntilReady, RegisterDependenciesFunction RegisterDependencies) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<SymbolMap> PromisedResult;
std::mutex ErrMutex;
Error ResolutionError = Error::success();
std::promise<void> PromisedReady;
Error ReadyError = Error::success();
auto OnResolve = [&](Expected<SymbolMap> R) {
if (R)
PromisedResult.set_value(std::move(*R));
else {
{
ErrorAsOutParameter _(&ResolutionError);
std::lock_guard<std::mutex> Lock(ErrMutex);
ResolutionError = R.takeError();
}
PromisedResult.set_value(SymbolMap());
}
};
std::function<void(Error)> OnReady;
if (WaitUntilReady) {
OnReady = [&](Error Err) {
if (Err) {
ErrorAsOutParameter _(&ReadyError);
std::lock_guard<std::mutex> Lock(ErrMutex);
ReadyError = std::move(Err);
}
PromisedReady.set_value();
};
} else {
OnReady = [&](Error Err) {
if (Err)
reportError(std::move(Err));
};
}
#else
SymbolMap Result;
Error ResolutionError = Error::success();
Error ReadyError = Error::success();
auto OnResolve = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(&ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
std::function<void(Error)> OnReady;
if (WaitUntilReady) {
OnReady = [&](Error Err) {
ErrorAsOutParameter _(&ReadyError);
if (Err)
ReadyError = std::move(Err);
};
} else {
OnReady = [&](Error Err) {
if (Err)
reportError(std::move(Err));
};
}
#endif
auto Query = std::make_shared<AsynchronousSymbolQuery>(
Names, std::move(OnResolve), std::move(OnReady));
// FIXME: This should be run session locked along with the registration code
// and error reporting below.
SymbolNameSet UnresolvedSymbols = AsyncLookup(Query, std::move(Names));
// If the query was lodged successfully then register the dependencies,
// otherwise fail it with an error.
if (UnresolvedSymbols.empty())
RegisterDependencies(Query->QueryRegistrations);
else {
bool DeliverError = runSessionLocked([&]() {
Query->detach();
return Query->canStillFail();
});
auto Err = make_error<SymbolsNotFound>(std::move(UnresolvedSymbols));
if (DeliverError)
Query->handleFailed(std::move(Err));
else
reportError(std::move(Err));
}
#if LLVM_ENABLE_THREADS
auto ResultFuture = PromisedResult.get_future();
auto Result = ResultFuture.get();
{
std::lock_guard<std::mutex> Lock(ErrMutex);
if (ResolutionError) {
// ReadyError will never be assigned. Consume the success value.
cantFail(std::move(ReadyError));
return std::move(ResolutionError);
}
}
if (WaitUntilReady) {
auto ReadyFuture = PromisedReady.get_future();
ReadyFuture.get();
{
std::lock_guard<std::mutex> Lock(ErrMutex);
if (ReadyError)
return std::move(ReadyError);
}
} else
cantFail(std::move(ReadyError));
return std::move(Result);
#else
if (ResolutionError) {
// ReadyError will never be assigned. Consume the success value.
cantFail(std::move(ReadyError));
return std::move(ResolutionError);
}
if (ReadyError)
return std::move(ReadyError);
return Result;
#endif
}
void ExecutionSession::lookup(
const JITDylibSearchList &SearchOrder, SymbolNameSet Symbols,
SymbolsResolvedCallback OnResolve, SymbolsReadyCallback OnReady,
RegisterDependenciesFunction RegisterDependencies) {
// lookup can be re-entered recursively if running on a single thread. Run any
// outstanding MUs in case this query depends on them, otherwise this lookup
// will starve waiting for a result from an MU that is stuck in the queue.
runOutstandingMUs();
auto Unresolved = std::move(Symbols);
std::map<JITDylib *, MaterializationUnitList> CollectedMUsMap;
auto Q = std::make_shared<AsynchronousSymbolQuery>(
Unresolved, std::move(OnResolve), std::move(OnReady));
bool QueryIsFullyResolved = false;
bool QueryIsFullyReady = false;
bool QueryFailed = false;
runSessionLocked([&]() {
for (auto &KV : SearchOrder) {
assert(KV.first && "JITDylibList entries must not be null");
assert(!CollectedMUsMap.count(KV.first) &&
"JITDylibList should not contain duplicate entries");
auto &JD = *KV.first;
auto MatchNonExported = KV.second;
JD.lodgeQuery(Q, Unresolved, MatchNonExported, CollectedMUsMap[&JD]);
}
if (Unresolved.empty()) {
// Query lodged successfully.
// Record whether this query is fully ready / resolved. We will use
// this to call handleFullyResolved/handleFullyReady outside the session
// lock.
QueryIsFullyResolved = Q->isFullyResolved();
QueryIsFullyReady = Q->isFullyReady();
// Call the register dependencies function.
if (RegisterDependencies && !Q->QueryRegistrations.empty())
RegisterDependencies(Q->QueryRegistrations);
} else {
// Query failed due to unresolved symbols.
QueryFailed = true;
// Disconnect the query from its dependencies.
Q->detach();
// Replace the MUs.
for (auto &KV : CollectedMUsMap)
for (auto &MU : KV.second)
KV.first->replace(std::move(MU));
}
});
if (QueryFailed) {
Q->handleFailed(make_error<SymbolsNotFound>(std::move(Unresolved)));
return;
} else {
if (QueryIsFullyResolved)
Q->handleFullyResolved();
if (QueryIsFullyReady)
Q->handleFullyReady();
}
// Move the MUs to the OutstandingMUs list, then materialize.
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
for (auto &KV : CollectedMUsMap)
for (auto &MU : KV.second)
OutstandingMUs.push_back(std::make_pair(KV.first, std::move(MU)));
}
runOutstandingMUs();
}
Expected<SymbolMap> ExecutionSession::lookup(
const JITDylibSearchList &SearchOrder, const SymbolNameSet &Symbols,
RegisterDependenciesFunction RegisterDependencies, bool WaitUntilReady) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<SymbolMap> PromisedResult;
std::mutex ErrMutex;
Error ResolutionError = Error::success();
std::promise<void> PromisedReady;
Error ReadyError = Error::success();
auto OnResolve = [&](Expected<SymbolMap> R) {
if (R)
PromisedResult.set_value(std::move(*R));
else {
{
ErrorAsOutParameter _(&ResolutionError);
std::lock_guard<std::mutex> Lock(ErrMutex);
ResolutionError = R.takeError();
}
PromisedResult.set_value(SymbolMap());
}
};
std::function<void(Error)> OnReady;
if (WaitUntilReady) {
OnReady = [&](Error Err) {
if (Err) {
ErrorAsOutParameter _(&ReadyError);
std::lock_guard<std::mutex> Lock(ErrMutex);
ReadyError = std::move(Err);
}
PromisedReady.set_value();
};
} else {
OnReady = [&](Error Err) {
if (Err)
reportError(std::move(Err));
};
}
#else
SymbolMap Result;
Error ResolutionError = Error::success();
Error ReadyError = Error::success();
auto OnResolve = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(&ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
std::function<void(Error)> OnReady;
if (WaitUntilReady) {
OnReady = [&](Error Err) {
ErrorAsOutParameter _(&ReadyError);
if (Err)
ReadyError = std::move(Err);
};
} else {
OnReady = [&](Error Err) {
if (Err)
reportError(std::move(Err));
};
}
#endif
// Perform the asynchronous lookup.
lookup(SearchOrder, Symbols, OnResolve, OnReady, RegisterDependencies);
#if LLVM_ENABLE_THREADS
auto ResultFuture = PromisedResult.get_future();
auto Result = ResultFuture.get();
{
std::lock_guard<std::mutex> Lock(ErrMutex);
if (ResolutionError) {
// ReadyError will never be assigned. Consume the success value.
cantFail(std::move(ReadyError));
return std::move(ResolutionError);
}
}
if (WaitUntilReady) {
auto ReadyFuture = PromisedReady.get_future();
ReadyFuture.get();
{
std::lock_guard<std::mutex> Lock(ErrMutex);
if (ReadyError)
return std::move(ReadyError);
}
} else
cantFail(std::move(ReadyError));
return std::move(Result);
#else
if (ResolutionError) {
// ReadyError will never be assigned. Consume the success value.
cantFail(std::move(ReadyError));
return std::move(ResolutionError);
}
if (ReadyError)
return std::move(ReadyError);
return Result;
#endif
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(const JITDylibSearchList &SearchOrder,
SymbolStringPtr Name) {
SymbolNameSet Names({Name});
if (auto ResultMap = lookup(SearchOrder, std::move(Names),
NoDependenciesToRegister, true)) {
assert(ResultMap->size() == 1 && "Unexpected number of results");
assert(ResultMap->count(Name) && "Missing result for symbol");
return std::move(ResultMap->begin()->second);
} else
return ResultMap.takeError();
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder,
SymbolStringPtr Name) {
SymbolNameSet Names({Name});
JITDylibSearchList FullSearchOrder;
FullSearchOrder.reserve(SearchOrder.size());
for (auto *JD : SearchOrder)
FullSearchOrder.push_back({JD, false});
return lookup(FullSearchOrder, Name);
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Name) {
return lookup(SearchOrder, intern(Name));
}
void ExecutionSession::dump(raw_ostream &OS) {
runSessionLocked([this, &OS]() {
for (auto &JD : JDs)
JD->dump(OS);
});
}
void ExecutionSession::runOutstandingMUs() {
while (1) {
std::pair<JITDylib *, std::unique_ptr<MaterializationUnit>> JITDylibAndMU;
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
if (!OutstandingMUs.empty()) {
JITDylibAndMU = std::move(OutstandingMUs.back());
OutstandingMUs.pop_back();
}
}
if (JITDylibAndMU.first) {
assert(JITDylibAndMU.second && "JITDylib, but no MU?");
dispatchMaterialization(*JITDylibAndMU.first,
std::move(JITDylibAndMU.second));
} else
break;
}
}
MangleAndInterner::MangleAndInterner(ExecutionSession &ES, const DataLayout &DL)
: ES(ES), DL(DL) {}
SymbolStringPtr MangleAndInterner::operator()(StringRef Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
}
return ES.intern(MangledName);
}
} // End namespace orc.
} // End namespace llvm.