forked from OSchip/llvm-project
213 lines
7.3 KiB
C++
213 lines
7.3 KiB
C++
//===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NewDeleteOverloadsCheck.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
|
|
using namespace clang::ast_matchers;
|
|
|
|
namespace clang {
|
|
namespace tidy {
|
|
namespace misc {
|
|
|
|
namespace {
|
|
|
|
AST_MATCHER(FunctionDecl, isPlacementOverload) {
|
|
bool New;
|
|
switch (Node.getOverloadedOperator()) {
|
|
default:
|
|
return false;
|
|
case OO_New:
|
|
case OO_Array_New:
|
|
New = true;
|
|
break;
|
|
case OO_Delete:
|
|
case OO_Array_Delete:
|
|
New = false;
|
|
break;
|
|
}
|
|
|
|
// Variadic functions are always placement functions.
|
|
if (Node.isVariadic())
|
|
return true;
|
|
|
|
// Placement new is easy: it always has more than one parameter (the first
|
|
// parameter is always the size). If it's an overload of delete or delete[]
|
|
// that has only one parameter, it's never a placement delete.
|
|
if (New)
|
|
return Node.getNumParams() > 1;
|
|
if (Node.getNumParams() == 1)
|
|
return false;
|
|
|
|
// Placement delete is a little more challenging. They always have more than
|
|
// one parameter with the first parameter being a pointer. However, the
|
|
// second parameter can be a size_t for sized deallocation, and that is never
|
|
// a placement delete operator.
|
|
if (Node.getNumParams() <= 1 || Node.getNumParams() > 2)
|
|
return true;
|
|
|
|
const auto *FPT = Node.getType()->castAs<FunctionProtoType>();
|
|
ASTContext &Ctx = Node.getASTContext();
|
|
if (Ctx.getLangOpts().SizedDeallocation &&
|
|
Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) {
|
|
switch (FD->getOverloadedOperator()) {
|
|
default:
|
|
break;
|
|
case OO_New:
|
|
return OO_Delete;
|
|
case OO_Delete:
|
|
return OO_New;
|
|
case OO_Array_New:
|
|
return OO_Array_Delete;
|
|
case OO_Array_Delete:
|
|
return OO_Array_New;
|
|
}
|
|
llvm_unreachable("Not an overloaded allocation operator");
|
|
}
|
|
|
|
const char *getOperatorName(OverloadedOperatorKind K) {
|
|
switch (K) {
|
|
default:
|
|
break;
|
|
case OO_New:
|
|
return "operator new";
|
|
case OO_Delete:
|
|
return "operator delete";
|
|
case OO_Array_New:
|
|
return "operator new[]";
|
|
case OO_Array_Delete:
|
|
return "operator delete[]";
|
|
}
|
|
llvm_unreachable("Not an overloaded allocation operator");
|
|
}
|
|
|
|
bool areCorrespondingOverloads(const FunctionDecl *LHS,
|
|
const FunctionDecl *RHS) {
|
|
return RHS->getOverloadedOperator() == getCorrespondingOverload(LHS);
|
|
}
|
|
|
|
bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD,
|
|
const CXXRecordDecl *RD = nullptr) {
|
|
if (RD) {
|
|
// Check the methods in the given class and accessible to derived classes.
|
|
for (const auto *BMD : RD->methods())
|
|
if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private &&
|
|
areCorrespondingOverloads(MD, BMD))
|
|
return true;
|
|
} else {
|
|
// Get the parent class of the method; we do not need to care about checking
|
|
// the methods in this class as the caller has already done that by looking
|
|
// at the declaration contexts.
|
|
RD = MD->getParent();
|
|
}
|
|
|
|
for (const auto &BS : RD->bases()) {
|
|
// We can't say much about a dependent base class, but to avoid false
|
|
// positives assume it can have a corresponding overload.
|
|
if (BS.getType()->isDependentType())
|
|
return true;
|
|
if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl())
|
|
if (hasCorrespondingOverloadInBaseClass(MD, BaseRD))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
// Match all operator new and operator delete overloads (including the array
|
|
// forms). Do not match implicit operators, placement operators, or
|
|
// deleted/private operators.
|
|
//
|
|
// Technically, trivially-defined operator delete seems like a reasonable
|
|
// thing to also skip. e.g., void operator delete(void *) {}
|
|
// However, I think it's more reasonable to warn in this case as the user
|
|
// should really be writing that as a deleted function.
|
|
Finder->addMatcher(
|
|
functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(),
|
|
isDeleted(), cxxMethodDecl(isPrivate()))),
|
|
anyOf(hasOverloadedOperatorName("new"),
|
|
hasOverloadedOperatorName("new[]"),
|
|
hasOverloadedOperatorName("delete"),
|
|
hasOverloadedOperatorName("delete[]")))
|
|
.bind("func"),
|
|
this);
|
|
}
|
|
|
|
void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) {
|
|
// Add any matches we locate to the list of things to be checked at the
|
|
// end of the translation unit.
|
|
const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func");
|
|
const CXXRecordDecl *RD = nullptr;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
RD = MD->getParent();
|
|
Overloads[RD].push_back(FD);
|
|
}
|
|
|
|
void NewDeleteOverloadsCheck::onEndOfTranslationUnit() {
|
|
// Walk over the list of declarations we've found to see if there is a
|
|
// corresponding overload at the same declaration context or within a base
|
|
// class. If there is not, add the element to the list of declarations to
|
|
// diagnose.
|
|
SmallVector<const FunctionDecl *, 4> Diagnose;
|
|
for (const auto &RP : Overloads) {
|
|
// We don't care about the CXXRecordDecl key in the map; we use it as a way
|
|
// to shard the overloads by declaration context to reduce the algorithmic
|
|
// complexity when searching for corresponding free store functions.
|
|
for (const auto *Overload : RP.second) {
|
|
const auto *Match =
|
|
std::find_if(RP.second.begin(), RP.second.end(),
|
|
[&Overload](const FunctionDecl *FD) {
|
|
if (FD == Overload)
|
|
return false;
|
|
// If the declaration contexts don't match, we don't
|
|
// need to check any further.
|
|
if (FD->getDeclContext() != Overload->getDeclContext())
|
|
return false;
|
|
|
|
// Since the declaration contexts match, see whether
|
|
// the current element is the corresponding operator.
|
|
if (!areCorrespondingOverloads(Overload, FD))
|
|
return false;
|
|
|
|
return true;
|
|
});
|
|
|
|
if (Match == RP.second.end()) {
|
|
// Check to see if there is a corresponding overload in a base class
|
|
// context. If there isn't, or if the overload is not a class member
|
|
// function, then we should diagnose.
|
|
const auto *MD = dyn_cast<CXXMethodDecl>(Overload);
|
|
if (!MD || !hasCorrespondingOverloadInBaseClass(MD))
|
|
Diagnose.push_back(Overload);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto *FD : Diagnose)
|
|
diag(FD->getLocation(), "declaration of %0 has no matching declaration "
|
|
"of '%1' at the same scope")
|
|
<< FD << getOperatorName(getCorrespondingOverload(FD));
|
|
}
|
|
|
|
} // namespace misc
|
|
} // namespace tidy
|
|
} // namespace clang
|