llvm-project/llvm/tools/llvm-exegesis/lib/SnippetGenerator.cpp

276 lines
10 KiB
C++

//===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "SnippetGenerator.h"
#include "Target.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Program.h"
namespace llvm {
namespace exegesis {
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
std::vector<CodeTemplate> Result;
Result.push_back(std::move(CT));
return Result;
}
SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S)
: StringError(S, inconvertibleErrorCode()) {}
SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts)
: State(State), Opts(Opts) {}
SnippetGenerator::~SnippetGenerator() = default;
Error SnippetGenerator::generateConfigurations(
const InstructionTemplate &Variant, std::vector<BenchmarkCode> &Benchmarks,
const BitVector &ExtraForbiddenRegs) const {
BitVector ForbiddenRegs = State.getRATC().reservedRegisters();
ForbiddenRegs |= ExtraForbiddenRegs;
// If the instruction has memory registers, prevent the generator from
// using the scratch register and its aliasing registers.
if (Variant.getInstr().hasMemoryOperands()) {
const auto &ET = State.getExegesisTarget();
unsigned ScratchSpacePointerInReg =
ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
if (ScratchSpacePointerInReg == 0)
return make_error<Failure>(
"Infeasible : target does not support memory instructions");
const auto &ScratchRegAliases =
State.getRATC().getRegister(ScratchSpacePointerInReg).aliasedBits();
// If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
// FIXME: We could make a copy of the scratch register.
for (const auto &Op : Variant.getInstr().Operands) {
if (Op.isDef() && Op.isImplicitReg() &&
ScratchRegAliases.test(Op.getImplicitReg()))
return make_error<Failure>(
"Infeasible : memory instruction uses scratch memory register");
}
ForbiddenRegs |= ScratchRegAliases;
}
if (auto E = generateCodeTemplates(Variant, ForbiddenRegs)) {
MutableArrayRef<CodeTemplate> Templates = E.get();
// Avoid reallocations in the loop.
Benchmarks.reserve(Benchmarks.size() + Templates.size());
for (CodeTemplate &CT : Templates) {
// TODO: Generate as many BenchmarkCode as needed.
{
BenchmarkCode BC;
BC.Info = CT.Info;
for (InstructionTemplate &IT : CT.Instructions) {
if (auto error = randomizeUnsetVariables(State, ForbiddenRegs, IT))
return error;
BC.Key.Instructions.push_back(IT.build());
}
if (CT.ScratchSpacePointerInReg)
BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
BC.Key.RegisterInitialValues =
computeRegisterInitialValues(CT.Instructions);
BC.Key.Config = CT.Config;
Benchmarks.emplace_back(std::move(BC));
if (Benchmarks.size() >= Opts.MaxConfigsPerOpcode) {
// We reached the number of allowed configs and return early.
return Error::success();
}
}
}
return Error::success();
} else
return E.takeError();
}
std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
const std::vector<InstructionTemplate> &Instructions) const {
// Collect all register uses and create an assignment for each of them.
// Ignore memory operands which are handled separately.
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
// before the current instruction.
BitVector DefinedRegs = State.getRATC().emptyRegisters();
std::vector<RegisterValue> RIV;
for (const InstructionTemplate &IT : Instructions) {
// Returns the register that this Operand sets or uses, or 0 if this is not
// a register.
const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
if (Op.isMemory())
return 0;
if (Op.isImplicitReg())
return Op.getImplicitReg();
if (Op.isExplicit() && IT.getValueFor(Op).isReg())
return IT.getValueFor(Op).getReg();
return 0;
};
// Collect used registers that have never been def'ed.
for (const Operand &Op : IT.getInstr().Operands) {
if (Op.isUse()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0 && !DefinedRegs.test(Reg)) {
RIV.push_back(RegisterValue::zero(Reg));
DefinedRegs.set(Reg);
}
}
}
// Mark defs as having been def'ed.
for (const Operand &Op : IT.getInstr().Operands) {
if (Op.isDef()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0)
DefinedRegs.set(Reg);
}
}
}
return RIV;
}
Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(InstructionTemplate Variant) {
const AliasingConfigurations SelfAliasing(Variant.getInstr(),
Variant.getInstr());
if (SelfAliasing.empty())
return make_error<SnippetGeneratorFailure>("empty self aliasing");
std::vector<CodeTemplate> Result;
Result.emplace_back();
CodeTemplate &CT = Result.back();
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "implicit Self cycles, picking random values.";
} else {
CT.Info = "explicit self cycles, selecting one aliasing Conf.";
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice Variant in the following call.
setRandomAliasing(SelfAliasing, Variant, Variant);
}
CT.Instructions.push_back(std::move(Variant));
return std::move(Result);
}
Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
StringRef Msg) {
std::vector<CodeTemplate> Result;
Result.emplace_back();
CodeTemplate &CT = Result.back();
CT.Info =
std::string(formatv("{0}, repeating an unconstrained assignment", Msg));
CT.Instructions.push_back(std::move(Variant));
return std::move(Result);
}
std::mt19937 &randomGenerator() {
static std::random_device RandomDevice;
static std::mt19937 RandomGenerator(RandomDevice());
return RandomGenerator;
}
size_t randomIndex(size_t Max) {
std::uniform_int_distribution<> Distribution(0, Max);
return Distribution(randomGenerator());
}
template <typename C> static decltype(auto) randomElement(const C &Container) {
assert(!Container.empty() &&
"Can't pick a random element from an empty container)");
return Container[randomIndex(Container.size() - 1)];
}
static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
InstructionTemplate &IB) {
assert(ROV.Op);
if (ROV.Op->isExplicit()) {
auto &AssignedValue = IB.getValueFor(*ROV.Op);
if (AssignedValue.isValid()) {
assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
return;
}
AssignedValue = MCOperand::createReg(ROV.Reg);
} else {
assert(ROV.Op->isImplicitReg());
assert(ROV.Reg == ROV.Op->getImplicitReg());
}
}
size_t randomBit(const BitVector &Vector) {
assert(Vector.any());
auto Itr = Vector.set_bits_begin();
for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
++Itr;
return *Itr;
}
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
assert(!AliasingConfigurations.empty());
assert(!AliasingConfigurations.hasImplicitAliasing());
const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
}
static Error randomizeMCOperand(const LLVMState &State,
const Instruction &Instr, const Variable &Var,
MCOperand &AssignedValue,
const BitVector &ForbiddenRegs) {
const Operand &Op = Instr.getPrimaryOperand(Var);
if (Op.getExplicitOperandInfo().OperandType >=
MCOI::OperandType::OPERAND_FIRST_TARGET)
return State.getExegesisTarget().randomizeTargetMCOperand(
Instr, Var, AssignedValue, ForbiddenRegs);
switch (Op.getExplicitOperandInfo().OperandType) {
case MCOI::OperandType::OPERAND_IMMEDIATE:
// FIXME: explore immediate values too.
AssignedValue = MCOperand::createImm(1);
break;
case MCOI::OperandType::OPERAND_REGISTER: {
assert(Op.isReg());
auto AllowedRegs = Op.getRegisterAliasing().sourceBits();
assert(AllowedRegs.size() == ForbiddenRegs.size());
for (auto I : ForbiddenRegs.set_bits())
AllowedRegs.reset(I);
if (!AllowedRegs.any())
return make_error<Failure>(
Twine("no available registers:\ncandidates:\n")
.concat(debugString(State.getRegInfo(),
Op.getRegisterAliasing().sourceBits()))
.concat("\nforbidden:\n")
.concat(debugString(State.getRegInfo(), ForbiddenRegs)));
AssignedValue = MCOperand::createReg(randomBit(AllowedRegs));
break;
}
default:
break;
}
return Error::success();
}
Error randomizeUnsetVariables(const LLVMState &State,
const BitVector &ForbiddenRegs,
InstructionTemplate &IT) {
for (const Variable &Var : IT.getInstr().Variables) {
MCOperand &AssignedValue = IT.getValueFor(Var);
if (!AssignedValue.isValid())
if (auto Err = randomizeMCOperand(State, IT.getInstr(), Var,
AssignedValue, ForbiddenRegs))
return Err;
}
return Error::success();
}
} // namespace exegesis
} // namespace llvm