llvm-project/mlir/integration_test
Sean Silva 53a0d45db6 [mlir] Add pass to convert elementwise ops to linalg.
This patch converts elementwise ops on tensors to linalg.generic ops
with the same elementwise op in the payload (except rewritten to
operate on scalars, obviously). This is a great form for later fusion to
clean up.

E.g.

```
// Compute: %arg0 + %arg1 - %arg2
func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> {
  %0 = addf %arg0, %arg1 : tensor<?xf32>
  %1 = subf %0, %arg2 : tensor<?xf32>
  return %1 : tensor<?xf32>
}
```

Running this through
`mlir-opt -convert-std-to-linalg -linalg-fusion-for-tensor-ops` we get:

```
func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> {
  %0 = linalg.generic {indexing_maps = [#map0, #map0, #map0, #map0], iterator_types = ["parallel"]} ins(%arg0, %arg1, %arg2 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) {
  ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):  // no predecessors
    %1 = addf %arg3, %arg4 : f32
    %2 = subf %1, %arg5 : f32
    linalg.yield %2 : f32
  } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}
```

So the elementwise ops on tensors have nicely collapsed into a single
linalg.generic, which is the form we want for further transformations.

Differential Revision: https://reviews.llvm.org/D90354
2020-11-10 13:44:44 -08:00
..
Dialect [mlir] Add pass to convert elementwise ops to linalg. 2020-11-10 13:44:44 -08:00
Sparse/CPU [mlir] [sparse] Rename getSparseMatrix to getMatrix 2020-10-07 14:25:05 -07:00
data [mlir] [sparse] convenience runtime support to read Matrix Market format 2020-10-06 13:17:05 -07:00
CMakeLists.txt [mlir] [sparse] convenience runtime support to read Matrix Market format 2020-10-06 13:17:05 -07:00
lit.cfg.py [mlir] NFC: fix trivial typo under test and tools 2020-08-27 15:37:42 +09:00
lit.site.cfg.py.in