llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_linux.cc

664 lines
19 KiB
C++

//===-- sanitizer_linux.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements linux-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#ifdef __linux__
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_linux.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/prctl.h>
#include <unistd.h>
#include <unwind.h>
#if !defined(__ANDROID__) && !defined(ANDROID)
#include <sys/signal.h>
#endif
// <linux/futex.h> is broken on some linux distributions.
const int FUTEX_WAIT = 0;
const int FUTEX_WAKE = 1;
// Are we using 32-bit or 64-bit syscalls?
// x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32
// but it still needs to use 64-bit syscalls.
#if defined(__x86_64__) || SANITIZER_WORDSIZE == 64
# define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1
#else
# define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0
#endif
namespace __sanitizer {
// --------------- sanitizer_libc.h
void *internal_mmap(void *addr, uptr length, int prot, int flags,
int fd, u64 offset) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
return (void *)syscall(__NR_mmap, addr, length, prot, flags, fd, offset);
#else
return (void *)syscall(__NR_mmap2, addr, length, prot, flags, fd, offset);
#endif
}
int internal_munmap(void *addr, uptr length) {
return syscall(__NR_munmap, addr, length);
}
int internal_close(fd_t fd) {
return syscall(__NR_close, fd);
}
fd_t internal_open(const char *filename, int flags) {
return syscall(__NR_open, filename, flags);
}
fd_t internal_open(const char *filename, int flags, u32 mode) {
return syscall(__NR_open, filename, flags, mode);
}
fd_t OpenFile(const char *filename, bool write) {
return internal_open(filename,
write ? O_WRONLY | O_CREAT /*| O_CLOEXEC*/ : O_RDONLY, 0660);
}
uptr internal_read(fd_t fd, void *buf, uptr count) {
sptr res;
HANDLE_EINTR(res, (sptr)syscall(__NR_read, fd, buf, count));
return res;
}
uptr internal_write(fd_t fd, const void *buf, uptr count) {
sptr res;
HANDLE_EINTR(res, (sptr)syscall(__NR_write, fd, buf, count));
return res;
}
int internal_stat(const char *path, void *buf) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
return syscall(__NR_stat, path, buf);
#else
return syscall(__NR_stat64, path, buf);
#endif
}
int internal_lstat(const char *path, void *buf) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
return syscall(__NR_lstat, path, buf);
#else
return syscall(__NR_lstat64, path, buf);
#endif
}
int internal_fstat(fd_t fd, void *buf) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
return syscall(__NR_fstat, fd, buf);
#else
return syscall(__NR_fstat64, fd, buf);
#endif
}
uptr internal_filesize(fd_t fd) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
struct stat st;
#else
struct stat64 st;
#endif
if (internal_fstat(fd, &st))
return -1;
return (uptr)st.st_size;
}
int internal_dup2(int oldfd, int newfd) {
return syscall(__NR_dup2, oldfd, newfd);
}
uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
return (uptr)syscall(__NR_readlink, path, buf, bufsize);
}
int internal_sched_yield() {
return syscall(__NR_sched_yield);
}
void internal__exit(int exitcode) {
syscall(__NR_exit_group, exitcode);
Die(); // Unreachable.
}
// ----------------- sanitizer_common.h
bool FileExists(const char *filename) {
#if SANITIZER_LINUX_USES_64BIT_SYSCALLS
struct stat st;
if (syscall(__NR_stat, filename, &st))
return false;
#else
struct stat64 st;
if (syscall(__NR_stat64, filename, &st))
return false;
#endif
// Sanity check: filename is a regular file.
return S_ISREG(st.st_mode);
}
uptr GetTid() {
return syscall(__NR_gettid);
}
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
static const uptr kMaxThreadStackSize = 256 * (1 << 20); // 256M
CHECK(stack_top);
CHECK(stack_bottom);
if (at_initialization) {
// This is the main thread. Libpthread may not be initialized yet.
struct rlimit rl;
CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0);
// Find the mapping that contains a stack variable.
MemoryMappingLayout proc_maps;
uptr start, end, offset;
uptr prev_end = 0;
while (proc_maps.Next(&start, &end, &offset, 0, 0)) {
if ((uptr)&rl < end)
break;
prev_end = end;
}
CHECK((uptr)&rl >= start && (uptr)&rl < end);
// Get stacksize from rlimit, but clip it so that it does not overlap
// with other mappings.
uptr stacksize = rl.rlim_cur;
if (stacksize > end - prev_end)
stacksize = end - prev_end;
// When running with unlimited stack size, we still want to set some limit.
// The unlimited stack size is caused by 'ulimit -s unlimited'.
// Also, for some reason, GNU make spawns subprocesses with unlimited stack.
if (stacksize > kMaxThreadStackSize)
stacksize = kMaxThreadStackSize;
*stack_top = end;
*stack_bottom = end - stacksize;
return;
}
pthread_attr_t attr;
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
uptr stacksize = 0;
void *stackaddr = 0;
pthread_attr_getstack(&attr, &stackaddr, (size_t*)&stacksize);
pthread_attr_destroy(&attr);
*stack_top = (uptr)stackaddr + stacksize;
*stack_bottom = (uptr)stackaddr;
CHECK(stacksize < kMaxThreadStackSize); // Sanity check.
}
// Like getenv, but reads env directly from /proc and does not use libc.
// This function should be called first inside __asan_init.
const char *GetEnv(const char *name) {
static char *environ;
static uptr len;
static bool inited;
if (!inited) {
inited = true;
uptr environ_size;
len = ReadFileToBuffer("/proc/self/environ",
&environ, &environ_size, 1 << 26);
}
if (!environ || len == 0) return 0;
uptr namelen = internal_strlen(name);
const char *p = environ;
while (*p != '\0') { // will happen at the \0\0 that terminates the buffer
// proc file has the format NAME=value\0NAME=value\0NAME=value\0...
const char* endp =
(char*)internal_memchr(p, '\0', len - (p - environ));
if (endp == 0) // this entry isn't NUL terminated
return 0;
else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match.
return p + namelen + 1; // point after =
p = endp + 1;
}
return 0; // Not found.
}
#ifdef __GLIBC__
extern "C" {
extern void *__libc_stack_end;
}
static void GetArgsAndEnv(char ***argv, char ***envp) {
uptr *stack_end = (uptr *)__libc_stack_end;
int argc = *stack_end;
*argv = (char**)(stack_end + 1);
*envp = (char**)(stack_end + argc + 2);
}
#else // __GLIBC__
static void ReadNullSepFileToArray(const char *path, char ***arr,
int arr_size) {
char *buff;
uptr buff_size = 0;
*arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray");
ReadFileToBuffer(path, &buff, &buff_size, 1024 * 1024);
(*arr)[0] = buff;
int count, i;
for (count = 1, i = 1; ; i++) {
if (buff[i] == 0) {
if (buff[i+1] == 0) break;
(*arr)[count] = &buff[i+1];
CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible.
count++;
}
}
(*arr)[count] = 0;
}
static void GetArgsAndEnv(char ***argv, char ***envp) {
static const int kMaxArgv = 2000, kMaxEnvp = 2000;
ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv);
ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp);
}
#endif // __GLIBC__
void ReExec() {
char **argv, **envp;
GetArgsAndEnv(&argv, &envp);
execve("/proc/self/exe", argv, envp);
Printf("execve failed, errno %d\n", errno);
Die();
}
void PrepareForSandboxing() {
// Some kinds of sandboxes may forbid filesystem access, so we won't be able
// to read the file mappings from /proc/self/maps. Luckily, neither the
// process will be able to load additional libraries, so it's fine to use the
// cached mappings.
MemoryMappingLayout::CacheMemoryMappings();
}
// ----------------- sanitizer_procmaps.h
// Linker initialized.
ProcSelfMapsBuff MemoryMappingLayout::cached_proc_self_maps_;
StaticSpinMutex MemoryMappingLayout::cache_lock_; // Linker initialized.
MemoryMappingLayout::MemoryMappingLayout() {
proc_self_maps_.len =
ReadFileToBuffer("/proc/self/maps", &proc_self_maps_.data,
&proc_self_maps_.mmaped_size, 1 << 26);
if (proc_self_maps_.mmaped_size == 0) {
LoadFromCache();
CHECK_GT(proc_self_maps_.len, 0);
}
// internal_write(2, proc_self_maps_.data, proc_self_maps_.len);
Reset();
// FIXME: in the future we may want to cache the mappings on demand only.
CacheMemoryMappings();
}
MemoryMappingLayout::~MemoryMappingLayout() {
// Only unmap the buffer if it is different from the cached one. Otherwise
// it will be unmapped when the cache is refreshed.
if (proc_self_maps_.data != cached_proc_self_maps_.data) {
UnmapOrDie(proc_self_maps_.data, proc_self_maps_.mmaped_size);
}
}
void MemoryMappingLayout::Reset() {
current_ = proc_self_maps_.data;
}
// static
void MemoryMappingLayout::CacheMemoryMappings() {
SpinMutexLock l(&cache_lock_);
// Don't invalidate the cache if the mappings are unavailable.
ProcSelfMapsBuff old_proc_self_maps;
old_proc_self_maps = cached_proc_self_maps_;
cached_proc_self_maps_.len =
ReadFileToBuffer("/proc/self/maps", &cached_proc_self_maps_.data,
&cached_proc_self_maps_.mmaped_size, 1 << 26);
if (cached_proc_self_maps_.mmaped_size == 0) {
cached_proc_self_maps_ = old_proc_self_maps;
} else {
if (old_proc_self_maps.mmaped_size) {
UnmapOrDie(old_proc_self_maps.data,
old_proc_self_maps.mmaped_size);
}
}
}
void MemoryMappingLayout::LoadFromCache() {
SpinMutexLock l(&cache_lock_);
if (cached_proc_self_maps_.data) {
proc_self_maps_ = cached_proc_self_maps_;
}
}
// Parse a hex value in str and update str.
static uptr ParseHex(char **str) {
uptr x = 0;
char *s;
for (s = *str; ; s++) {
char c = *s;
uptr v = 0;
if (c >= '0' && c <= '9')
v = c - '0';
else if (c >= 'a' && c <= 'f')
v = c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
v = c - 'A' + 10;
else
break;
x = x * 16 + v;
}
*str = s;
return x;
}
static bool IsOnOf(char c, char c1, char c2) {
return c == c1 || c == c2;
}
static bool IsDecimal(char c) {
return c >= '0' && c <= '9';
}
bool MemoryMappingLayout::Next(uptr *start, uptr *end, uptr *offset,
char filename[], uptr filename_size) {
char *last = proc_self_maps_.data + proc_self_maps_.len;
if (current_ >= last) return false;
uptr dummy;
if (!start) start = &dummy;
if (!end) end = &dummy;
if (!offset) offset = &dummy;
char *next_line = (char*)internal_memchr(current_, '\n', last - current_);
if (next_line == 0)
next_line = last;
// Example: 08048000-08056000 r-xp 00000000 03:0c 64593 /foo/bar
*start = ParseHex(&current_);
CHECK_EQ(*current_++, '-');
*end = ParseHex(&current_);
CHECK_EQ(*current_++, ' ');
CHECK(IsOnOf(*current_++, '-', 'r'));
CHECK(IsOnOf(*current_++, '-', 'w'));
CHECK(IsOnOf(*current_++, '-', 'x'));
CHECK(IsOnOf(*current_++, 's', 'p'));
CHECK_EQ(*current_++, ' ');
*offset = ParseHex(&current_);
CHECK_EQ(*current_++, ' ');
ParseHex(&current_);
CHECK_EQ(*current_++, ':');
ParseHex(&current_);
CHECK_EQ(*current_++, ' ');
while (IsDecimal(*current_))
current_++;
CHECK_EQ(*current_++, ' ');
// Skip spaces.
while (current_ < next_line && *current_ == ' ')
current_++;
// Fill in the filename.
uptr i = 0;
while (current_ < next_line) {
if (filename && i < filename_size - 1)
filename[i++] = *current_;
current_++;
}
if (filename && i < filename_size)
filename[i] = 0;
current_ = next_line + 1;
return true;
}
// Gets the object name and the offset by walking MemoryMappingLayout.
bool MemoryMappingLayout::GetObjectNameAndOffset(uptr addr, uptr *offset,
char filename[],
uptr filename_size) {
return IterateForObjectNameAndOffset(addr, offset, filename, filename_size);
}
bool SanitizerSetThreadName(const char *name) {
#ifdef PR_SET_NAME
return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0); // NOLINT
#else
return false;
#endif
}
bool SanitizerGetThreadName(char *name, int max_len) {
#ifdef PR_GET_NAME
char buff[17];
if (prctl(PR_GET_NAME, (unsigned long)buff, 0, 0, 0)) // NOLINT
return false;
internal_strncpy(name, buff, max_len);
name[max_len] = 0;
return true;
#else
return false;
#endif
}
#ifndef SANITIZER_GO
//------------------------- SlowUnwindStack -----------------------------------
#ifdef __arm__
#define UNWIND_STOP _URC_END_OF_STACK
#define UNWIND_CONTINUE _URC_NO_REASON
#else
#define UNWIND_STOP _URC_NORMAL_STOP
#define UNWIND_CONTINUE _URC_NO_REASON
#endif
uptr Unwind_GetIP(struct _Unwind_Context *ctx) {
#ifdef __arm__
uptr val;
_Unwind_VRS_Result res = _Unwind_VRS_Get(ctx, _UVRSC_CORE,
15 /* r15 = PC */, _UVRSD_UINT32, &val);
CHECK(res == _UVRSR_OK && "_Unwind_VRS_Get failed");
// Clear the Thumb bit.
return val & ~(uptr)1;
#else
return _Unwind_GetIP(ctx);
#endif
}
_Unwind_Reason_Code Unwind_Trace(struct _Unwind_Context *ctx, void *param) {
StackTrace *b = (StackTrace*)param;
CHECK(b->size < b->max_size);
uptr pc = Unwind_GetIP(ctx);
b->trace[b->size++] = pc;
if (b->size == b->max_size) return UNWIND_STOP;
return UNWIND_CONTINUE;
}
static bool MatchPc(uptr cur_pc, uptr trace_pc) {
return cur_pc - trace_pc <= 64 || trace_pc - cur_pc <= 64;
}
void StackTrace::SlowUnwindStack(uptr pc, uptr max_depth) {
this->size = 0;
this->max_size = max_depth;
if (max_depth > 1) {
_Unwind_Backtrace(Unwind_Trace, this);
// We need to pop a few frames so that pc is on top.
// trace[0] belongs to the current function so we always pop it.
int to_pop = 1;
/**/ if (size > 1 && MatchPc(pc, trace[1])) to_pop = 1;
else if (size > 2 && MatchPc(pc, trace[2])) to_pop = 2;
else if (size > 3 && MatchPc(pc, trace[3])) to_pop = 3;
else if (size > 4 && MatchPc(pc, trace[4])) to_pop = 4;
else if (size > 5 && MatchPc(pc, trace[5])) to_pop = 5;
this->PopStackFrames(to_pop);
}
this->trace[0] = pc;
}
#endif // #ifndef SANITIZER_GO
enum MutexState {
MtxUnlocked = 0,
MtxLocked = 1,
MtxSleeping = 2
};
BlockingMutex::BlockingMutex(LinkerInitialized) {
CHECK_EQ(owner_, 0);
}
void BlockingMutex::Lock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
return;
while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked)
syscall(__NR_futex, m, FUTEX_WAIT, MtxSleeping, 0, 0, 0);
}
void BlockingMutex::Unlock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
u32 v = atomic_exchange(m, MtxUnlocked, memory_order_relaxed);
CHECK_NE(v, MtxUnlocked);
if (v == MtxSleeping)
syscall(__NR_futex, m, FUTEX_WAKE, 1, 0, 0, 0);
}
void BlockingMutex::CheckLocked() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}
// ----------------- sanitizer_linux.h
// The actual size of this structure is specified by d_reclen.
// Note that getdents64 uses a different structure format. We only provide the
// 32-bit syscall here.
struct linux_dirent {
unsigned long d_ino;
unsigned long d_off;
unsigned short d_reclen;
char d_name[256];
};
// Syscall wrappers.
long internal_ptrace(int request, int pid, void *addr, void *data) {
return syscall(__NR_ptrace, request, pid, addr, data);
}
int internal_waitpid(int pid, int *status, int options) {
return syscall(__NR_wait4, pid, status, options, NULL /* rusage */);
}
int internal_getppid() {
return syscall(__NR_getppid);
}
int internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) {
return syscall(__NR_getdents, fd, dirp, count);
}
OFF_T internal_lseek(fd_t fd, OFF_T offset, int whence) {
return syscall(__NR_lseek, fd, offset, whence);
}
int internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) {
return syscall(__NR_prctl, option, arg2, arg3, arg4, arg5);
}
int internal_sigaltstack(const struct sigaltstack *ss,
struct sigaltstack *oss) {
return syscall(__NR_sigaltstack, ss, oss);
}
// ThreadLister implementation.
ThreadLister::ThreadLister(int pid)
: pid_(pid),
descriptor_(-1),
error_(true),
entry_((linux_dirent *)buffer_),
bytes_read_(0) {
char task_directory_path[80];
internal_snprintf(task_directory_path, sizeof(task_directory_path),
"/proc/%d/task/", pid);
descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY);
if (descriptor_ < 0) {
error_ = true;
Report("Can't open /proc/%d/task for reading.\n", pid);
} else {
error_ = false;
}
}
int ThreadLister::GetNextTID() {
int tid = -1;
do {
if (error_)
return -1;
if ((char *)entry_ >= &buffer_[bytes_read_] && !GetDirectoryEntries())
return -1;
if (entry_->d_ino != 0 && entry_->d_name[0] >= '0' &&
entry_->d_name[0] <= '9') {
// Found a valid tid.
tid = (int)internal_atoll(entry_->d_name);
}
entry_ = (struct linux_dirent *)(((char *)entry_) + entry_->d_reclen);
} while (tid < 0);
return tid;
}
void ThreadLister::Reset() {
if (error_ || descriptor_ < 0)
return;
internal_lseek(descriptor_, 0, SEEK_SET);
}
ThreadLister::~ThreadLister() {
if (descriptor_ >= 0)
internal_close(descriptor_);
}
bool ThreadLister::error() { return error_; }
bool ThreadLister::GetDirectoryEntries() {
CHECK_GE(descriptor_, 0);
CHECK_NE(error_, true);
bytes_read_ = internal_getdents(descriptor_,
(struct linux_dirent *)buffer_,
sizeof(buffer_));
if (bytes_read_ < 0) {
Report("Can't read directory entries from /proc/%d/task.\n", pid_);
error_ = true;
return false;
} else if (bytes_read_ == 0) {
return false;
}
entry_ = (struct linux_dirent *)buffer_;
return true;
}
} // namespace __sanitizer
#endif // __linux__