llvm-project/llvm/lib/DWARFLinker/DWARFLinker.cpp

2788 lines
106 KiB
C++

//=== DWARFLinker.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DWARFLinker/DWARFLinker.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/NonRelocatableStringpool.h"
#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ThreadPool.h"
#include <vector>
namespace llvm {
/// Hold the input and output of the debug info size in bytes.
struct DebugInfoSize {
uint64_t Input;
uint64_t Output;
};
/// Compute the total size of the debug info.
static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
uint64_t Size = 0;
for (auto &Unit : Dwarf.compile_units()) {
Size += Unit->getLength();
}
return Size;
}
/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
/// CompileUnit object instead.
static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
auto CU = llvm::upper_bound(
Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
return LHS < RHS->getOrigUnit().getNextUnitOffset();
});
return CU != Units.end() ? CU->get() : nullptr;
}
/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
/// The resulting DIE might be in another CompileUnit which is stored into \p
/// ReferencedCU. \returns null if resolving fails for any reason.
DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
const UnitListTy &Units,
const DWARFFormValue &RefValue,
const DWARFDie &DIE,
CompileUnit *&RefCU) {
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
uint64_t RefOffset = *RefValue.getAsReference();
if ((RefCU = getUnitForOffset(Units, RefOffset)))
if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
// In a file with broken references, an attribute might point to a NULL
// DIE.
if (!RefDie.isNULL())
return RefDie;
}
reportWarning("could not find referenced DIE", File, &DIE);
return DWARFDie();
}
/// \returns whether the passed \a Attr type might contain a DIE reference
/// suitable for ODR uniquing.
static bool isODRAttribute(uint16_t Attr) {
switch (Attr) {
default:
return false;
case dwarf::DW_AT_type:
case dwarf::DW_AT_containing_type:
case dwarf::DW_AT_specification:
case dwarf::DW_AT_abstract_origin:
case dwarf::DW_AT_import:
return true;
}
llvm_unreachable("Improper attribute.");
}
static bool isTypeTag(uint16_t Tag) {
switch (Tag) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_pointer_type:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_string_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_set_type:
case dwarf::DW_TAG_subrange_type:
case dwarf::DW_TAG_base_type:
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_file_type:
case dwarf::DW_TAG_namelist:
case dwarf::DW_TAG_packed_type:
case dwarf::DW_TAG_volatile_type:
case dwarf::DW_TAG_restrict_type:
case dwarf::DW_TAG_atomic_type:
case dwarf::DW_TAG_interface_type:
case dwarf::DW_TAG_unspecified_type:
case dwarf::DW_TAG_shared_type:
case dwarf::DW_TAG_immutable_type:
return true;
default:
break;
}
return false;
}
AddressesMap::~AddressesMap() = default;
DwarfEmitter::~DwarfEmitter() = default;
static Optional<StringRef> StripTemplateParameters(StringRef Name) {
// We are looking for template parameters to strip from Name. e.g.
//
// operator<<B>
//
// We look for > at the end but if it does not contain any < then we
// have something like operator>>. We check for the operator<=> case.
if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
return {};
// How many < until we have the start of the template parameters.
size_t NumLeftAnglesToSkip = 1;
// If we have operator<=> then we need to skip its < as well.
NumLeftAnglesToSkip += Name.count("<=>");
size_t RightAngleCount = Name.count('>');
size_t LeftAngleCount = Name.count('<');
// If we have more < than > we have operator< or operator<<
// we to account for their < as well.
if (LeftAngleCount > RightAngleCount)
NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
size_t StartOfTemplate = 0;
while (NumLeftAnglesToSkip--)
StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
return Name.substr(0, StartOfTemplate - 1);
}
bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
AttributesInfo &Info,
OffsetsStringPool &StringPool,
bool StripTemplate) {
// This function will be called on DIEs having low_pcs and
// ranges. As getting the name might be more expansive, filter out
// blocks directly.
if (Die.getTag() == dwarf::DW_TAG_lexical_block)
return false;
if (!Info.MangledName)
if (const char *MangledName = Die.getLinkageName())
Info.MangledName = StringPool.getEntry(MangledName);
if (!Info.Name)
if (const char *Name = Die.getShortName())
Info.Name = StringPool.getEntry(Name);
if (!Info.MangledName)
Info.MangledName = Info.Name;
if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
StringRef Name = Info.Name.getString();
if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
}
return Info.Name || Info.MangledName;
}
/// Resolve the relative path to a build artifact referenced by DWARF by
/// applying DW_AT_comp_dir.
static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
}
/// Collect references to parseable Swift interfaces in imported
/// DW_TAG_module blocks.
static void analyzeImportedModule(
const DWARFDie &DIE, CompileUnit &CU,
swiftInterfacesMap *ParseableSwiftInterfaces,
std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
if (CU.getLanguage() != dwarf::DW_LANG_Swift)
return;
if (!ParseableSwiftInterfaces)
return;
StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
if (!Path.endswith(".swiftinterface"))
return;
// Don't track interfaces that are part of the SDK.
StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
if (SysRoot.empty())
SysRoot = CU.getSysRoot();
if (!SysRoot.empty() && Path.startswith(SysRoot))
return;
Optional<const char*> Name = dwarf::toString(DIE.find(dwarf::DW_AT_name));
if (!Name)
return;
auto &Entry = (*ParseableSwiftInterfaces)[*Name];
// The prepend path is applied later when copying.
DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
SmallString<128> ResolvedPath;
if (sys::path::is_relative(Path))
resolveRelativeObjectPath(ResolvedPath, CUDie);
sys::path::append(ResolvedPath, Path);
if (!Entry.empty() && Entry != ResolvedPath)
ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") +
*Name + ": " + Entry + " and " + Path,
DIE);
Entry = std::string(ResolvedPath.str());
}
/// The distinct types of work performed by the work loop in
/// analyzeContextInfo.
enum class ContextWorklistItemType : uint8_t {
AnalyzeContextInfo,
UpdateChildPruning,
UpdatePruning,
};
/// This class represents an item in the work list. The type defines what kind
/// of work needs to be performed when processing the current item. Everything
/// but the Type and Die fields are optional based on the type.
struct ContextWorklistItem {
DWARFDie Die;
unsigned ParentIdx;
union {
CompileUnit::DIEInfo *OtherInfo;
DeclContext *Context;
};
ContextWorklistItemType Type;
bool InImportedModule;
ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
CompileUnit::DIEInfo *OtherInfo = nullptr)
: Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
InImportedModule(false) {}
ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
bool InImportedModule)
: Die(Die), ParentIdx(ParentIdx), Context(Context),
Type(ContextWorklistItemType::AnalyzeContextInfo),
InImportedModule(InImportedModule) {}
};
static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
uint64_t ModulesEndOffset) {
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
// Prune this DIE if it is either a forward declaration inside a
// DW_TAG_module or a DW_TAG_module that contains nothing but
// forward declarations.
Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
(isTypeTag(Die.getTag()) &&
dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
// Only prune forward declarations inside a DW_TAG_module for which a
// definition exists elsewhere.
if (ModulesEndOffset == 0)
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
else
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
return Info.Prune;
}
static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
CompileUnit::DIEInfo &ChildInfo) {
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
Info.Prune &= ChildInfo.Prune;
}
/// Recursive helper to build the global DeclContext information and
/// gather the child->parent relationships in the original compile unit.
///
/// This function uses the same work list approach as lookForDIEsToKeep.
///
/// \return true when this DIE and all of its children are only
/// forward declarations to types defined in external clang modules
/// (i.e., forward declarations that are children of a DW_TAG_module).
static bool analyzeContextInfo(
const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
bool InImportedModule = false) {
// LIFO work list.
std::vector<ContextWorklistItem> Worklist;
Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
while (!Worklist.empty()) {
ContextWorklistItem Current = Worklist.back();
Worklist.pop_back();
switch (Current.Type) {
case ContextWorklistItemType::UpdatePruning:
updatePruning(Current.Die, CU, ModulesEndOffset);
continue;
case ContextWorklistItemType::UpdateChildPruning:
updateChildPruning(Current.Die, CU, *Current.OtherInfo);
continue;
case ContextWorklistItemType::AnalyzeContextInfo:
break;
}
unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
// Clang imposes an ODR on modules(!) regardless of the language:
// "The module-id should consist of only a single identifier,
// which provides the name of the module being defined. Each
// module shall have a single definition."
//
// This does not extend to the types inside the modules:
// "[I]n C, this implies that if two structs are defined in
// different submodules with the same name, those two types are
// distinct types (but may be compatible types if their
// definitions match)."
//
// We treat non-C++ modules like namespaces for this reason.
if (Current.Die.getTag() == dwarf::DW_TAG_module &&
Current.ParentIdx == 0 &&
dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
CU.getClangModuleName()) {
Current.InImportedModule = true;
analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
ReportWarning);
}
Info.ParentIdx = Current.ParentIdx;
Info.InModuleScope = CU.isClangModule() || Current.InImportedModule;
if (CU.hasODR() || Info.InModuleScope) {
if (Current.Context) {
auto PtrInvalidPair = Contexts.getChildDeclContext(
*Current.Context, Current.Die, CU, Info.InModuleScope);
Current.Context = PtrInvalidPair.getPointer();
Info.Ctxt =
PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
if (Info.Ctxt)
Info.Ctxt->setDefinedInClangModule(Info.InModuleScope);
} else
Info.Ctxt = Current.Context = nullptr;
}
Info.Prune = Current.InImportedModule;
// Add children in reverse order to the worklist to effectively process
// them in order.
Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
for (auto Child : reverse(Current.Die.children())) {
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
Worklist.emplace_back(
Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
Worklist.emplace_back(Child, Current.Context, Idx,
Current.InImportedModule);
}
}
return CU.getInfo(DIE).Prune;
}
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
switch (Tag) {
default:
return false;
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_common_block:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_union_type:
return true;
}
llvm_unreachable("Invalid Tag");
}
void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
Context.clear();
for (DIEBlock *I : DIEBlocks)
I->~DIEBlock();
for (DIELoc *I : DIELocs)
I->~DIELoc();
DIEBlocks.clear();
DIELocs.clear();
DIEAlloc.Reset();
}
/// Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
const DWARFDie &DIE,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
// Global variables with constant value can always be kept.
if (!(Flags & TF_InFunctionScope) &&
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
MyInfo.InDebugMap = true;
return Flags | TF_Keep;
}
// See if there is a relocation to a valid debug map entry inside this
// variable's location. The order is important here. We want to always check
// if the variable has a valid relocation, so that the DIEInfo is filled.
// However, we don't want a static variable in a function to force us to keep
// the enclosing function, unless requested explicitly.
const bool HasLiveMemoryLocation = RelocMgr.isLiveVariable(DIE, MyInfo);
if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
!LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
return Flags;
if (Options.Verbose) {
outs() << "Keeping variable DIE:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
}
return Flags | TF_Keep;
}
/// Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DWARFLinker::shouldKeepSubprogramDIE(
AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
Flags |= TF_InFunctionScope;
auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
if (!LowPc)
return Flags;
assert(LowPc && "low_pc attribute is not an address.");
if (!RelocMgr.isLiveSubprogram(DIE, MyInfo))
return Flags;
if (Options.Verbose) {
outs() << "Keeping subprogram DIE:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
}
if (DIE.getTag() == dwarf::DW_TAG_label) {
if (Unit.hasLabelAt(*LowPc))
return Flags;
DWARFUnit &OrigUnit = Unit.getOrigUnit();
// FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
// that don't fall into the CU's aranges. This is wrong IMO. Debug info
// generation bugs aside, this is really wrong in the case of labels, where
// a label marking the end of a function will have a PC == CU's high_pc.
if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
.value_or(UINT64_MAX) <= LowPc)
return Flags;
Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
return Flags | TF_Keep;
}
Flags |= TF_Keep;
Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
if (!HighPc) {
reportWarning("Function without high_pc. Range will be discarded.\n", File,
&DIE);
return Flags;
}
if (*LowPc > *HighPc) {
reportWarning("low_pc greater than high_pc. Range will be discarded.\n",
File, &DIE);
return Flags;
}
// Replace the debug map range with a more accurate one.
Ranges.insert({*LowPc, *HighPc}, MyInfo.AddrAdjust);
Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
return Flags;
}
/// Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
const DWARFDie &DIE, const DWARFFile &File,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
switch (DIE.getTag()) {
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_variable:
return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_label:
return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
Flags);
case dwarf::DW_TAG_base_type:
// DWARF Expressions may reference basic types, but scanning them
// is expensive. Basic types are tiny, so just keep all of them.
case dwarf::DW_TAG_imported_module:
case dwarf::DW_TAG_imported_declaration:
case dwarf::DW_TAG_imported_unit:
// We always want to keep these.
return Flags | TF_Keep;
default:
break;
}
return Flags;
}
/// Helper that updates the completeness of the current DIE based on the
/// completeness of one of its children. It depends on the incompleteness of
/// the children already being computed.
static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
CompileUnit::DIEInfo &ChildInfo) {
switch (Die.getTag()) {
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_union_type:
break;
default:
return;
}
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
if (ChildInfo.Incomplete || ChildInfo.Prune)
MyInfo.Incomplete = true;
}
/// Helper that updates the completeness of the current DIE based on the
/// completeness of the DIEs it references. It depends on the incompleteness of
/// the referenced DIE already being computed.
static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
CompileUnit::DIEInfo &RefInfo) {
switch (Die.getTag()) {
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_member:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_pointer_type:
break;
default:
return;
}
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
if (MyInfo.Incomplete)
return;
if (RefInfo.Incomplete)
MyInfo.Incomplete = true;
}
/// Look at the children of the given DIE and decide whether they should be
/// kept.
void DWARFLinker::lookForChildDIEsToKeep(
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
SmallVectorImpl<WorklistItem> &Worklist) {
// The TF_ParentWalk flag tells us that we are currently walking up the
// parent chain of a required DIE, and we don't want to mark all the children
// of the parents as kept (consider for example a DW_TAG_namespace node in
// the parent chain). There are however a set of DIE types for which we want
// to ignore that directive and still walk their children.
if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
Flags &= ~DWARFLinker::TF_ParentWalk;
// We're finished if this DIE has no children or we're walking the parent
// chain.
if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
return;
// Add children in reverse order to the worklist to effectively process them
// in order.
for (auto Child : reverse(Die.children())) {
// Add a worklist item before every child to calculate incompleteness right
// after the current child is processed.
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
&ChildInfo);
Worklist.emplace_back(Child, CU, Flags);
}
}
static bool isODRCanonicalCandidate(const DWARFDie &Die, CompileUnit &CU) {
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
if (!Info.Ctxt || (Die.getTag() == dwarf::DW_TAG_namespace))
return false;
if (!CU.hasODR() && !Info.InModuleScope)
return false;
return !Info.Incomplete && Info.Ctxt != CU.getInfo(Info.ParentIdx).Ctxt;
}
void DWARFLinker::markODRCanonicalDie(const DWARFDie &Die, CompileUnit &CU) {
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
Info.ODRMarkingDone = true;
if (Info.Keep && isODRCanonicalCandidate(Die, CU) &&
!Info.Ctxt->hasCanonicalDIE())
Info.Ctxt->setHasCanonicalDIE();
}
/// Look at DIEs referenced by the given DIE and decide whether they should be
/// kept. All DIEs referenced though attributes should be kept.
void DWARFLinker::lookForRefDIEsToKeep(
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
const UnitListTy &Units, const DWARFFile &File,
SmallVectorImpl<WorklistItem> &Worklist) {
bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
? (Flags & DWARFLinker::TF_ODR)
: CU.hasODR();
DWARFUnit &Unit = CU.getOrigUnit();
DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
AttrSpec.Attr == dwarf::DW_AT_sibling) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
Unit.getFormParams());
continue;
}
Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
CompileUnit *ReferencedCU;
if (auto RefDie =
resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
// If the referenced DIE has a DeclContext that has already been
// emitted, then do not keep the one in this CU. We'll link to
// the canonical DIE in cloneDieReferenceAttribute.
//
// FIXME: compatibility with dsymutil-classic. UseODR shouldn't
// be necessary and could be advantageously replaced by
// ReferencedCU->hasODR() && CU.hasODR().
//
// FIXME: compatibility with dsymutil-classic. There is no
// reason not to unique ref_addr references.
if (AttrSpec.Form != dwarf::DW_FORM_ref_addr &&
isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
Info.Ctxt->hasCanonicalDIE())
continue;
// Keep a module forward declaration if there is no definition.
if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
Info.Ctxt->hasCanonicalDIE()))
Info.Prune = false;
ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
}
}
unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
// Add referenced DIEs in reverse order to the worklist to effectively
// process them in order.
for (auto &P : reverse(ReferencedDIEs)) {
// Add a worklist item before every child to calculate incompleteness right
// after the current child is processed.
CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
&Info);
Worklist.emplace_back(P.first, P.second,
DWARFLinker::TF_Keep |
DWARFLinker::TF_DependencyWalk | ODRFlag);
}
}
/// Look at the parent of the given DIE and decide whether they should be kept.
void DWARFLinker::lookForParentDIEsToKeep(
unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
SmallVectorImpl<WorklistItem> &Worklist) {
// Stop if we encounter an ancestor that's already marked as kept.
if (CU.getInfo(AncestorIdx).Keep)
return;
DWARFUnit &Unit = CU.getOrigUnit();
DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
Worklist.emplace_back(ParentDIE, CU, Flags);
}
/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
/// information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection algorithm. It is
/// expected to walk the DIE tree in file order and (though the mediation of
/// its helper) call hasValidRelocation() on each DIE that might be a 'root
/// DIE' (See DwarfLinker class comment).
///
/// While walking the dependencies of root DIEs, this function is also called,
/// but during these dependency walks the file order is not respected. The
/// TF_DependencyWalk flag tells us which kind of traversal we are currently
/// doing.
///
/// The recursive algorithm is implemented iteratively as a work list because
/// very deep recursion could exhaust the stack for large projects. The work
/// list acts as a scheduler for different types of work that need to be
/// performed.
///
/// The recursive nature of the algorithm is simulated by running the "main"
/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
/// fixing up a computed property (UpdateChildIncompleteness,
/// UpdateRefIncompleteness).
///
/// The return value indicates whether the DIE is incomplete.
void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
RangesTy &Ranges, const UnitListTy &Units,
const DWARFDie &Die, const DWARFFile &File,
CompileUnit &Cu, unsigned Flags) {
// LIFO work list.
SmallVector<WorklistItem, 4> Worklist;
Worklist.emplace_back(Die, Cu, Flags);
while (!Worklist.empty()) {
WorklistItem Current = Worklist.pop_back_val();
// Look at the worklist type to decide what kind of work to perform.
switch (Current.Type) {
case WorklistItemType::UpdateChildIncompleteness:
updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
continue;
case WorklistItemType::UpdateRefIncompleteness:
updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
continue;
case WorklistItemType::LookForChildDIEsToKeep:
lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
continue;
case WorklistItemType::LookForRefDIEsToKeep:
lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
Worklist);
continue;
case WorklistItemType::LookForParentDIEsToKeep:
lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
Worklist);
continue;
case WorklistItemType::MarkODRCanonicalDie:
markODRCanonicalDie(Current.Die, Current.CU);
continue;
case WorklistItemType::LookForDIEsToKeep:
break;
}
unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
if (MyInfo.Prune)
continue;
// If the Keep flag is set, we are marking a required DIE's dependencies.
// If our target is already marked as kept, we're all set.
bool AlreadyKept = MyInfo.Keep;
if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
continue;
// We must not call shouldKeepDIE while called from keepDIEAndDependencies,
// because it would screw up the relocation finding logic.
if (!(Current.Flags & TF_DependencyWalk))
Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
Current.CU, MyInfo, Current.Flags);
// We need to mark context for the canonical die in the end of normal
// traversing(not TF_DependencyWalk) or after normal traversing if die
// was not marked as kept.
if (!(Current.Flags & TF_DependencyWalk) ||
(MyInfo.ODRMarkingDone && !MyInfo.Keep)) {
if (Current.CU.hasODR() || MyInfo.InModuleScope)
Worklist.emplace_back(Current.Die, Current.CU,
WorklistItemType::MarkODRCanonicalDie);
}
// Finish by looking for child DIEs. Because of the LIFO worklist we need
// to schedule that work before any subsequent items are added to the
// worklist.
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
WorklistItemType::LookForChildDIEsToKeep);
if (AlreadyKept || !(Current.Flags & TF_Keep))
continue;
// If it is a newly kept DIE mark it as well as all its dependencies as
// kept.
MyInfo.Keep = true;
// We're looking for incomplete types.
MyInfo.Incomplete =
Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
Current.Die.getTag() != dwarf::DW_TAG_member &&
dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
// After looking at the parent chain, look for referenced DIEs. Because of
// the LIFO worklist we need to schedule that work before any subsequent
// items are added to the worklist.
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
WorklistItemType::LookForRefDIEsToKeep);
bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
: Current.CU.hasODR();
unsigned ODRFlag = UseOdr ? TF_ODR : 0;
unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
// Now schedule the parent walk.
Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
}
}
/// Assign an abbreviation number to \p Abbrev.
///
/// Our DIEs get freed after every DebugMapObject has been processed,
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
/// the instances hold by the DIEs. When we encounter an abbreviation
/// that we don't know, we create a permanent copy of it.
void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
// Check the set for priors.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
void *InsertToken;
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
// If it's newly added.
if (InSet) {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
} else {
// Add to abbreviation list.
Abbreviations.push_back(
std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
for (const auto &Attr : Abbrev.getData())
Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
// Assign the unique abbreviation number.
Abbrev.setNumber(Abbreviations.size());
Abbreviations.back()->setNumber(Abbreviations.size());
}
}
unsigned DWARFLinker::DIECloner::cloneStringAttribute(
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
const DWARFUnit &, OffsetsStringPool &StringPool, AttributesInfo &Info) {
Optional<const char *> String = dwarf::toString(Val);
if (!String)
return 0;
// Switch everything to out of line strings.
auto StringEntry = StringPool.getEntry(*String);
// Update attributes info.
if (AttrSpec.Attr == dwarf::DW_AT_name)
Info.Name = StringEntry;
else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
AttrSpec.Attr == dwarf::DW_AT_linkage_name)
Info.MangledName = StringEntry;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
DIEInteger(StringEntry.getOffset()));
return 4;
}
unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
CompileUnit &Unit) {
const DWARFUnit &U = Unit.getOrigUnit();
uint64_t Ref = *Val.getAsReference();
DIE *NewRefDie = nullptr;
CompileUnit *RefUnit = nullptr;
DWARFDie RefDie =
Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
// If the referenced DIE is not found, drop the attribute.
if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
return 0;
CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
// If we already have emitted an equivalent DeclContext, just point
// at it.
if (isODRAttribute(AttrSpec.Attr) && RefInfo.Ctxt &&
RefInfo.Ctxt->getCanonicalDIEOffset()) {
assert(RefInfo.Ctxt->hasCanonicalDIE() &&
"Offset to canonical die is set, but context is not marked");
DIEInteger Attr(RefInfo.Ctxt->getCanonicalDIEOffset());
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, Attr);
return U.getRefAddrByteSize();
}
if (!RefInfo.Clone) {
assert(Ref > InputDIE.getOffset());
// We haven't cloned this DIE yet. Just create an empty one and
// store it. It'll get really cloned when we process it.
RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
}
NewRefDie = RefInfo.Clone;
if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
(Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
// We cannot currently rely on a DIEEntry to emit ref_addr
// references, because the implementation calls back to DwarfDebug
// to find the unit offset. (We don't have a DwarfDebug)
// FIXME: we should be able to design DIEEntry reliance on
// DwarfDebug away.
uint64_t Attr;
if (Ref < InputDIE.getOffset()) {
// We must have already cloned that DIE.
uint32_t NewRefOffset =
RefUnit->getStartOffset() + NewRefDie->getOffset();
Attr = NewRefOffset;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
} else {
// A forward reference. Note and fixup later.
Attr = 0xBADDEF;
Unit.noteForwardReference(
NewRefDie, RefUnit, RefInfo.Ctxt,
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
}
return U.getRefAddrByteSize();
}
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
return AttrSize;
}
void DWARFLinker::DIECloner::cloneExpression(
DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
using Encoding = DWARFExpression::Operation::Encoding;
uint64_t OpOffset = 0;
for (auto &Op : Expression) {
auto Description = Op.getDescription();
// DW_OP_const_type is variable-length and has 3
// operands. DWARFExpression thus far only supports 2.
auto Op0 = Description.Op[0];
auto Op1 = Description.Op[1];
if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
(Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
Linker.reportWarning("Unsupported DW_OP encoding.", File);
if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
(Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
// This code assumes that the other non-typeref operand fits into 1 byte.
assert(OpOffset < Op.getEndOffset());
uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
assert(ULEBsize <= 16);
// Copy over the operation.
OutputBuffer.push_back(Op.getCode());
uint64_t RefOffset;
if (Op1 == Encoding::SizeNA) {
RefOffset = Op.getRawOperand(0);
} else {
OutputBuffer.push_back(Op.getRawOperand(0));
RefOffset = Op.getRawOperand(1);
}
uint32_t Offset = 0;
// Look up the base type. For DW_OP_convert, the operand may be 0 to
// instead indicate the generic type. The same holds for
// DW_OP_reinterpret, which is currently not supported.
if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
RefOffset += Unit.getOrigUnit().getOffset();
auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
if (DIE *Clone = Info.Clone)
Offset = Clone->getOffset();
else
Linker.reportWarning(
"base type ref doesn't point to DW_TAG_base_type.", File);
}
uint8_t ULEB[16];
unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
if (RealSize > ULEBsize) {
// Emit the generic type as a fallback.
RealSize = encodeULEB128(0, ULEB, ULEBsize);
Linker.reportWarning("base type ref doesn't fit.", File);
}
assert(RealSize == ULEBsize && "padding failed");
ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
} else {
// Copy over everything else unmodified.
StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
OutputBuffer.append(Bytes.begin(), Bytes.end());
}
OpOffset = Op.getEndOffset();
}
}
unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
DIEValueList *Attr;
DIEValue Value;
DIELoc *Loc = nullptr;
DIEBlock *Block = nullptr;
if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
Loc = new (DIEAlloc) DIELoc;
Linker.DIELocs.push_back(Loc);
} else {
Block = new (DIEAlloc) DIEBlock;
Linker.DIEBlocks.push_back(Block);
}
Attr = Loc ? static_cast<DIEValueList *>(Loc)
: static_cast<DIEValueList *>(Block);
if (Loc)
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), Loc);
else
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), Block);
// If the block is a DWARF Expression, clone it into the temporary
// buffer using cloneExpression(), otherwise copy the data directly.
SmallVector<uint8_t, 32> Buffer;
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
(Val.isFormClass(DWARFFormValue::FC_Block) ||
Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
DWARFUnit &OrigUnit = Unit.getOrigUnit();
DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
IsLittleEndian, OrigUnit.getAddressByteSize());
DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
OrigUnit.getFormParams().Format);
cloneExpression(Data, Expr, File, Unit, Buffer);
Bytes = Buffer;
}
for (auto Byte : Bytes)
Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
dwarf::DW_FORM_data1, DIEInteger(Byte));
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
// the DIE class, this "if" could be replaced by
// Attr->setSize(Bytes.size()).
if (Loc)
Loc->setSize(Bytes.size());
else
Block->setSize(Bytes.size());
Die.addValue(DIEAlloc, Value);
return AttrSize;
}
unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
const CompileUnit &Unit, AttributesInfo &Info) {
if (LLVM_UNLIKELY(Linker.Options.Update)) {
if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
Info.HasLowPc = true;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
return Unit.getOrigUnit().getAddressByteSize();
}
dwarf::Form Form = AttrSpec.Form;
uint64_t Addr = 0;
if (Form == dwarf::DW_FORM_addrx) {
if (Optional<uint64_t> AddrOffsetSectionBase =
Unit.getOrigUnit().getAddrOffsetSectionBase()) {
uint64_t StartOffset =
*AddrOffsetSectionBase +
Val.getRawUValue() * Unit.getOrigUnit().getAddressByteSize();
uint64_t EndOffset =
StartOffset + Unit.getOrigUnit().getAddressByteSize();
if (llvm::Expected<uint64_t> RelocAddr =
ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
Addr = *RelocAddr;
else
Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
} else
Linker.reportWarning("no base offset for address table", ObjFile);
// Generation of DWARFv5 .debug_addr table is not supported yet.
// Convert attribute into the dwarf::DW_FORM_addr.
Form = dwarf::DW_FORM_addr;
} else
Addr = *Val.getAsAddress();
if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
Die.getTag() == dwarf::DW_TAG_lexical_block ||
Die.getTag() == dwarf::DW_TAG_label) {
// The low_pc of a block or inline subroutine might get
// relocated because it happens to match the low_pc of the
// enclosing subprogram. To prevent issues with that, always use
// the low_pc from the input DIE if relocations have been applied.
Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
? Info.OrigLowPc
: Addr) +
Info.PCOffset;
} else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
Addr = Unit.getLowPc();
if (Addr == std::numeric_limits<uint64_t>::max())
return 0;
}
Info.HasLowPc = true;
} else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (uint64_t HighPc = Unit.getHighPc())
Addr = HighPc;
else
return 0;
} else
// If we have a high_pc recorded for the input DIE, use
// it. Otherwise (when no relocations where applied) just use the
// one we just decoded.
Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
} else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
// Relocate a return PC address within a call site entry.
if (Die.getTag() == dwarf::DW_TAG_call_site)
Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
Info.PCOffset;
} else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
// Relocate the address of a branch instruction within a call site entry.
if (Die.getTag() == dwarf::DW_TAG_call_site)
Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
}
Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
static_cast<dwarf::Form>(Form), DIEInteger(Addr));
return Unit.getOrigUnit().getAddressByteSize();
}
unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
unsigned AttrSize, AttributesInfo &Info) {
uint64_t Value;
if (LLVM_UNLIKELY(Linker.Options.Update)) {
if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else if (auto OptionalValue = Val.getAsSignedConstant())
Value = *OptionalValue;
else if (auto OptionalValue = Val.getAsSectionOffset())
Value = *OptionalValue;
else {
Linker.reportWarning(
"Unsupported scalar attribute form. Dropping attribute.", File,
&InputDIE);
return 0;
}
if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
Info.IsDeclaration = true;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
return AttrSize;
}
if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (Unit.getLowPc() == -1ULL)
return 0;
// Dwarf >= 4 high_pc is an size, not an address.
Value = Unit.getHighPc() - Unit.getLowPc();
} else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
Value = *Val.getAsSectionOffset();
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
Value = *Val.getAsSignedConstant();
else if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else {
Linker.reportWarning(
"Unsupported scalar attribute form. Dropping attribute.", File,
&InputDIE);
return 0;
}
PatchLocation Patch =
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
Unit.noteRangeAttribute(Die, Patch);
Info.HasRanges = true;
}
// A more generic way to check for location attributes would be
// nice, but it's very unlikely that any other attribute needs a
// location list.
// FIXME: use DWARFAttribute::mayHaveLocationDescription().
else if (AttrSpec.Attr == dwarf::DW_AT_location ||
AttrSpec.Attr == dwarf::DW_AT_frame_base) {
Unit.noteLocationAttribute(Patch, Info.PCOffset);
} else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
Info.IsDeclaration = true;
return AttrSize;
}
/// Clone \p InputDIE's attribute described by \p AttrSpec with
/// value \p Val, and add it to \p Die.
/// \returns the size of the cloned attribute.
unsigned DWARFLinker::DIECloner::cloneAttribute(
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
bool IsLittleEndian) {
const DWARFUnit &U = Unit.getOrigUnit();
switch (AttrSpec.Form) {
case dwarf::DW_FORM_strp:
case dwarf::DW_FORM_string:
case dwarf::DW_FORM_strx:
case dwarf::DW_FORM_strx1:
case dwarf::DW_FORM_strx2:
case dwarf::DW_FORM_strx3:
case dwarf::DW_FORM_strx4:
return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
case dwarf::DW_FORM_ref_addr:
case dwarf::DW_FORM_ref1:
case dwarf::DW_FORM_ref2:
case dwarf::DW_FORM_ref4:
case dwarf::DW_FORM_ref8:
return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
File, Unit);
case dwarf::DW_FORM_block:
case dwarf::DW_FORM_block1:
case dwarf::DW_FORM_block2:
case dwarf::DW_FORM_block4:
case dwarf::DW_FORM_exprloc:
return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
IsLittleEndian);
case dwarf::DW_FORM_addr:
case dwarf::DW_FORM_addrx:
return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
case dwarf::DW_FORM_sec_offset:
case dwarf::DW_FORM_flag:
case dwarf::DW_FORM_flag_present:
return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
AttrSize, Info);
default:
Linker.reportWarning("Unsupported attribute form " +
dwarf::FormEncodingString(AttrSpec.Form) +
" in cloneAttribute. Dropping.",
File, &InputDIE);
}
return 0;
}
static bool isObjCSelector(StringRef Name) {
return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
(Name[1] == '[');
}
void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
const DIE *Die,
DwarfStringPoolEntryRef Name,
OffsetsStringPool &StringPool,
bool SkipPubSection) {
assert(isObjCSelector(Name.getString()) && "not an objc selector");
// Objective C method or class function.
// "- [Class(Category) selector :withArg ...]"
StringRef ClassNameStart(Name.getString().drop_front(2));
size_t FirstSpace = ClassNameStart.find(' ');
if (FirstSpace == StringRef::npos)
return;
StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
if (!SelectorStart.size())
return;
StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
// Add an entry for the class name that points to this
// method/class function.
StringRef ClassName(ClassNameStart.data(), FirstSpace);
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
if (ClassName[ClassName.size() - 1] == ')') {
size_t OpenParens = ClassName.find('(');
if (OpenParens != StringRef::npos) {
StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
SkipPubSection);
std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
// FIXME: The missing space here may be a bug, but
// dsymutil-classic also does it this way.
MethodNameNoCategory.append(std::string(SelectorStart));
Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
SkipPubSection);
}
}
}
static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
uint16_t Tag, bool InDebugMap, bool SkipPC,
bool InFunctionScope) {
switch (AttrSpec.Attr) {
default:
return false;
case dwarf::DW_AT_low_pc:
case dwarf::DW_AT_high_pc:
case dwarf::DW_AT_ranges:
return SkipPC;
case dwarf::DW_AT_str_offsets_base:
// FIXME: Use the string offset table with Dwarf 5.
return true;
case dwarf::DW_AT_location:
case dwarf::DW_AT_frame_base:
// FIXME: for some reason dsymutil-classic keeps the location attributes
// when they are of block type (i.e. not location lists). This is totally
// wrong for globals where we will keep a wrong address. It is mostly
// harmless for locals, but there is no point in keeping these anyway when
// the function wasn't linked.
return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
!InDebugMap)) &&
!DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
}
}
DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
const DWARFFile &File, CompileUnit &Unit,
OffsetsStringPool &StringPool,
int64_t PCOffset, uint32_t OutOffset,
unsigned Flags, bool IsLittleEndian,
DIE *Die) {
DWARFUnit &U = Unit.getOrigUnit();
unsigned Idx = U.getDIEIndex(InputDIE);
CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
// Should the DIE appear in the output?
if (!Unit.getInfo(Idx).Keep)
return nullptr;
uint64_t Offset = InputDIE.getOffset();
assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
if (!Die) {
// The DIE might have been already created by a forward reference
// (see cloneDieReferenceAttribute()).
if (!Info.Clone)
Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
Die = Info.Clone;
}
assert(Die->getTag() == InputDIE.getTag());
Die->setOffset(OutOffset);
if (isODRCanonicalCandidate(InputDIE, Unit) && Info.Ctxt &&
(Info.Ctxt->getCanonicalDIEOffset() == 0)) {
if (!Info.Ctxt->hasCanonicalDIE())
Info.Ctxt->setHasCanonicalDIE();
// We are about to emit a DIE that is the root of its own valid
// DeclContext tree. Make the current offset the canonical offset
// for this context.
Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
}
// Extract and clone every attribute.
DWARFDataExtractor Data = U.getDebugInfoExtractor();
// Point to the next DIE (generally there is always at least a NULL
// entry after the current one). If this is a lone
// DW_TAG_compile_unit without any children, point to the next unit.
uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
? U.getDIEAtIndex(Idx + 1).getOffset()
: U.getNextUnitOffset();
AttributesInfo AttrInfo;
// We could copy the data only if we need to apply a relocation to it. After
// testing, it seems there is no performance downside to doing the copy
// unconditionally, and it makes the code simpler.
SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
Data =
DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
// Modify the copy with relocated addresses.
if (ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
Data.isLittleEndian())) {
// If we applied relocations, we store the value of high_pc that was
// potentially stored in the input DIE. If high_pc is an address
// (Dwarf version == 2), then it might have been relocated to a
// totally unrelated value (because the end address in the object
// file might be start address of another function which got moved
// independently by the linker). The computation of the actual
// high_pc value is done in cloneAddressAttribute().
AttrInfo.OrigHighPc =
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
// Also store the low_pc. It might get relocated in an
// inline_subprogram that happens at the beginning of its
// inlining function.
AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
std::numeric_limits<uint64_t>::max());
AttrInfo.OrigCallReturnPc =
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
AttrInfo.OrigCallPc =
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
}
// Reset the Offset to 0 as we will be working on the local copy of
// the data.
Offset = 0;
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
Offset += getULEB128Size(Abbrev->getCode());
// We are entering a subprogram. Get and propagate the PCOffset.
if (Die->getTag() == dwarf::DW_TAG_subprogram)
PCOffset = Info.AddrAdjust;
AttrInfo.PCOffset = PCOffset;
if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
Flags |= TF_InFunctionScope;
if (!Info.InDebugMap && LLVM_LIKELY(!Update))
Flags |= TF_SkipPC;
} else if (Abbrev->getTag() == dwarf::DW_TAG_variable) {
// Function-local globals could be in the debug map even when the function
// is not, e.g., inlined functions.
if ((Flags & TF_InFunctionScope) && Info.InDebugMap)
Flags &= ~TF_SkipPC;
}
for (const auto &AttrSpec : Abbrev->attributes()) {
if (LLVM_LIKELY(!Update) &&
shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
U.getFormParams());
continue;
}
DWARFFormValue Val(AttrSpec.Form);
uint64_t AttrSize = Offset;
Val.extractValue(Data, &Offset, U.getFormParams(), &U);
AttrSize = Offset - AttrSize;
OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
}
// Look for accelerator entries.
uint16_t Tag = InputDIE.getTag();
// FIXME: This is slightly wrong. An inline_subroutine without a
// low_pc, but with AT_ranges might be interesting to get into the
// accelerator tables too. For now stick with dsymutil's behavior.
if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
Tag != dwarf::DW_TAG_compile_unit &&
getDIENames(InputDIE, AttrInfo, StringPool,
Tag != dwarf::DW_TAG_inlined_subroutine)) {
if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
Unit.addNameAccelerator(Die, AttrInfo.MangledName,
Tag == dwarf::DW_TAG_inlined_subroutine);
if (AttrInfo.Name) {
if (AttrInfo.NameWithoutTemplate)
Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
/* SkipPubSection */ true);
Unit.addNameAccelerator(Die, AttrInfo.Name,
Tag == dwarf::DW_TAG_inlined_subroutine);
}
if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
/* SkipPubSection =*/true);
} else if (Tag == dwarf::DW_TAG_namespace) {
if (!AttrInfo.Name)
AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
} else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
AttrInfo.Name.getString()[0]) {
uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
uint64_t RuntimeLang =
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
.value_or(0);
bool ObjCClassIsImplementation =
(RuntimeLang == dwarf::DW_LANG_ObjC ||
RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
.value_or(0);
Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
Hash);
}
// Determine whether there are any children that we want to keep.
bool HasChildren = false;
for (auto Child : InputDIE.children()) {
unsigned Idx = U.getDIEIndex(Child);
if (Unit.getInfo(Idx).Keep) {
HasChildren = true;
break;
}
}
DIEAbbrev NewAbbrev = Die->generateAbbrev();
if (HasChildren)
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
// Assign a permanent abbrev number
Linker.assignAbbrev(NewAbbrev);
Die->setAbbrevNumber(NewAbbrev.getNumber());
// Add the size of the abbreviation number to the output offset.
OutOffset += getULEB128Size(Die->getAbbrevNumber());
if (!HasChildren) {
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
// Recursively clone children.
for (auto Child : InputDIE.children()) {
if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
OutOffset, Flags, IsLittleEndian)) {
Die->addChild(Clone);
OutOffset = Clone->getOffset() + Clone->getSize();
}
}
// Account for the end of children marker.
OutOffset += sizeof(int8_t);
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
/// Patch the input object file relevant debug_ranges entries
/// and emit them in the output file. Update the relevant attributes
/// to point at the new entries.
void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
DWARFContext &OrigDwarf,
const DWARFFile &File) const {
DWARFDebugRangeList RangeList;
const auto &FunctionRanges = Unit.getFunctionRanges();
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
OrigDwarf.getDWARFObj().getRangesSection(),
OrigDwarf.isLittleEndian(), AddressSize);
Optional<std::pair<AddressRange, int64_t>> CurrRange;
DWARFUnit &OrigUnit = Unit.getOrigUnit();
auto OrigUnitDie = OrigUnit.getUnitDIE(false);
uint64_t OrigLowPc =
dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
// Ranges addresses are based on the unit's low_pc. Compute the
// offset we need to apply to adapt to the new unit's low_pc.
int64_t UnitPcOffset = 0;
if (OrigLowPc != -1ULL)
UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
uint64_t Offset = RangeAttribute.get();
RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
llvm::consumeError(std::move(E));
reportWarning("invalid range list ignored.", File);
RangeList.clear();
}
const auto &Entries = RangeList.getEntries();
if (!Entries.empty()) {
const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
if (!CurrRange ||
!CurrRange->first.contains(First.StartAddress + OrigLowPc)) {
CurrRange = FunctionRanges.getRangeValueThatContains(
First.StartAddress + OrigLowPc);
if (!CurrRange) {
reportWarning("no mapping for range.", File);
continue;
}
}
}
TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
Entries, AddressSize);
}
}
/// Generate the debug_aranges entries for \p Unit and if the
/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
/// contribution for this attribute.
/// FIXME: this could actually be done right in patchRangesForUnit,
/// but for the sake of initial bit-for-bit compatibility with legacy
/// dsymutil, we have to do it in a delayed pass.
void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
auto Attr = Unit.getUnitRangesAttribute();
if (Attr)
Attr->set(TheDwarfEmitter->getRangesSectionSize());
TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
}
/// Insert the new line info sequence \p Seq into the current
/// set of already linked line info \p Rows.
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
std::vector<DWARFDebugLine::Row> &Rows) {
if (Seq.empty())
return;
if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
llvm::append_range(Rows, Seq);
Seq.clear();
return;
}
object::SectionedAddress Front = Seq.front().Address;
auto InsertPoint = partition_point(
Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
// FIXME: this only removes the unneeded end_sequence if the
// sequences have been inserted in order. Using a global sort like
// described in patchLineTableForUnit() and delaying the end_sequene
// elimination to emitLineTableForUnit() we can get rid of all of them.
if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
InsertPoint->EndSequence) {
*InsertPoint = Seq.front();
Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
} else {
Rows.insert(InsertPoint, Seq.begin(), Seq.end());
}
Seq.clear();
}
static void patchStmtList(DIE &Die, DIEInteger Offset) {
for (auto &V : Die.values())
if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
V = DIEValue(V.getAttribute(), V.getForm(), Offset);
return;
}
llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
}
/// Extract the line table for \p Unit from \p OrigDwarf, and
/// recreate a relocated version of these for the address ranges that
/// are present in the binary.
void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
DWARFContext &OrigDwarf,
const DWARFFile &File) {
DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
if (!StmtList)
return;
// Update the cloned DW_AT_stmt_list with the correct debug_line offset.
if (auto *OutputDIE = Unit.getOutputUnitDIE())
patchStmtList(*OutputDIE,
DIEInteger(TheDwarfEmitter->getLineSectionSize()));
RangesTy &Ranges = File.Addresses->getValidAddressRanges();
// Parse the original line info for the unit.
DWARFDebugLine::LineTable LineTable;
uint64_t StmtOffset = *StmtList;
DWARFDataExtractor LineExtractor(
OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
if (needToTranslateStrings())
return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
if (Error Err =
LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
&Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
OrigDwarf.getWarningHandler()(std::move(Err));
// This vector is the output line table.
std::vector<DWARFDebugLine::Row> NewRows;
NewRows.reserve(LineTable.Rows.size());
// Current sequence of rows being extracted, before being inserted
// in NewRows.
std::vector<DWARFDebugLine::Row> Seq;
const auto &FunctionRanges = Unit.getFunctionRanges();
Optional<std::pair<AddressRange, int64_t>> CurrRange;
// FIXME: This logic is meant to generate exactly the same output as
// Darwin's classic dsymutil. There is a nicer way to implement this
// by simply putting all the relocated line info in NewRows and simply
// sorting NewRows before passing it to emitLineTableForUnit. This
// should be correct as sequences for a function should stay
// together in the sorted output. There are a few corner cases that
// look suspicious though, and that required to implement the logic
// this way. Revisit that once initial validation is finished.
// Iterate over the object file line info and extract the sequences
// that correspond to linked functions.
for (auto &Row : LineTable.Rows) {
// Check whether we stepped out of the range. The range is
// half-open, but consider accept the end address of the range if
// it is marked as end_sequence in the input (because in that
// case, the relocation offset is accurate and that entry won't
// serve as the start of another function).
if (!CurrRange || !CurrRange->first.contains(Row.Address.Address) ||
(Row.Address.Address == CurrRange->first.end() && !Row.EndSequence)) {
// We just stepped out of a known range. Insert a end_sequence
// corresponding to the end of the range.
uint64_t StopAddress =
CurrRange ? CurrRange->first.end() + CurrRange->second : -1ULL;
CurrRange = FunctionRanges.getRangeValueThatContains(Row.Address.Address);
if (!CurrRange) {
if (StopAddress != -1ULL) {
// Try harder by looking in the Address ranges map.
// There are corner cases where this finds a
// valid entry. It's unclear if this is right or wrong, but
// for now do as dsymutil.
// FIXME: Understand exactly what cases this addresses and
// potentially remove it along with the Ranges map.
if (Optional<std::pair<AddressRange, int64_t>> Range =
Ranges.getRangeValueThatContains(Row.Address.Address))
StopAddress = Row.Address.Address + (*Range).second;
}
}
if (StopAddress != -1ULL && !Seq.empty()) {
// Insert end sequence row with the computed end address, but
// the same line as the previous one.
auto NextLine = Seq.back();
NextLine.Address.Address = StopAddress;
NextLine.EndSequence = 1;
NextLine.PrologueEnd = 0;
NextLine.BasicBlock = 0;
NextLine.EpilogueBegin = 0;
Seq.push_back(NextLine);
insertLineSequence(Seq, NewRows);
}
if (!CurrRange)
continue;
}
// Ignore empty sequences.
if (Row.EndSequence && Seq.empty())
continue;
// Relocate row address and add it to the current sequence.
Row.Address.Address += CurrRange->second;
Seq.emplace_back(Row);
if (Row.EndSequence)
insertLineSequence(Seq, NewRows);
}
// Finished extracting, now emit the line tables.
// FIXME: LLVM hard-codes its prologue values. We just copy the
// prologue over and that works because we act as both producer and
// consumer. It would be nicer to have a real configurable line
// table emitter.
if (LineTable.Prologue.getVersion() < 2 ||
LineTable.Prologue.getVersion() > 5 ||
LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
LineTable.Prologue.OpcodeBase > 13)
reportWarning("line table parameters mismatch. Cannot emit.", File);
else {
uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
// DWARF v5 has an extra 2 bytes of information before the header_length
// field.
if (LineTable.Prologue.getVersion() == 5)
PrologueEnd += 2;
StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
MCDwarfLineTableParams Params;
Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
Params.DWARF2LineBase = LineTable.Prologue.LineBase;
Params.DWARF2LineRange = LineTable.Prologue.LineRange;
TheDwarfEmitter->emitLineTableForUnit(
Params, LineData.slice(*StmtList + 4, PrologueEnd),
LineTable.Prologue.MinInstLength, NewRows,
Unit.getOrigUnit().getAddressByteSize());
}
}
void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
switch (Options.TheAccelTableKind) {
case DwarfLinkerAccelTableKind::None:
// Nothing to do.
break;
case DwarfLinkerAccelTableKind::Apple:
emitAppleAcceleratorEntriesForUnit(Unit);
break;
case DwarfLinkerAccelTableKind::Dwarf:
emitDwarfAcceleratorEntriesForUnit(Unit);
break;
case DwarfLinkerAccelTableKind::Pub:
emitPubAcceleratorEntriesForUnit(Unit);
break;
case DwarfLinkerAccelTableKind::Default:
llvm_unreachable("The default must be updated to a concrete value.");
break;
}
}
void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
// Add namespaces.
for (const auto &Namespace : Unit.getNamespaces())
AppleNamespaces.addName(Namespace.Name,
Namespace.Die->getOffset() + Unit.getStartOffset());
/// Add names.
for (const auto &Pubname : Unit.getPubnames())
AppleNames.addName(Pubname.Name,
Pubname.Die->getOffset() + Unit.getStartOffset());
/// Add types.
for (const auto &Pubtype : Unit.getPubtypes())
AppleTypes.addName(
Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
Pubtype.Die->getTag(),
Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
: 0,
Pubtype.QualifiedNameHash);
/// Add ObjC names.
for (const auto &ObjC : Unit.getObjC())
AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
}
void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
for (const auto &Namespace : Unit.getNamespaces())
DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
Namespace.Die->getTag(), Unit.getUniqueID());
for (const auto &Pubname : Unit.getPubnames())
DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
Pubname.Die->getTag(), Unit.getUniqueID());
for (const auto &Pubtype : Unit.getPubtypes())
DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
Pubtype.Die->getTag(), Unit.getUniqueID());
}
void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) {
TheDwarfEmitter->emitPubNamesForUnit(Unit);
TheDwarfEmitter->emitPubTypesForUnit(Unit);
}
/// Read the frame info stored in the object, and emit the
/// patched frame descriptions for the resulting file.
///
/// This is actually pretty easy as the data of the CIEs and FDEs can
/// be considered as black boxes and moved as is. The only thing to do
/// is to patch the addresses in the headers.
void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
RangesTy &Ranges,
DWARFContext &OrigDwarf,
unsigned AddrSize) {
StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
if (FrameData.empty())
return;
DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
uint64_t InputOffset = 0;
// Store the data of the CIEs defined in this object, keyed by their
// offsets.
DenseMap<uint64_t, StringRef> LocalCIES;
while (Data.isValidOffset(InputOffset)) {
uint64_t EntryOffset = InputOffset;
uint32_t InitialLength = Data.getU32(&InputOffset);
if (InitialLength == 0xFFFFFFFF)
return reportWarning("Dwarf64 bits no supported", File);
uint32_t CIEId = Data.getU32(&InputOffset);
if (CIEId == 0xFFFFFFFF) {
// This is a CIE, store it.
StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
LocalCIES[EntryOffset] = CIEData;
// The -4 is to account for the CIEId we just read.
InputOffset += InitialLength - 4;
continue;
}
uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
// Some compilers seem to emit frame info that doesn't start at
// the function entry point, thus we can't just lookup the address
// in the debug map. Use the AddressInfo's range map to see if the FDE
// describes something that we can relocate.
Optional<std::pair<AddressRange, int64_t>> Range =
Ranges.getRangeValueThatContains(Loc);
if (!Range) {
// The +4 is to account for the size of the InitialLength field itself.
InputOffset = EntryOffset + InitialLength + 4;
continue;
}
// This is an FDE, and we have a mapping.
// Have we already emitted a corresponding CIE?
StringRef CIEData = LocalCIES[CIEId];
if (CIEData.empty())
return reportWarning("Inconsistent debug_frame content. Dropping.", File);
// Look if we already emitted a CIE that corresponds to the
// referenced one (the CIE data is the key of that lookup).
auto IteratorInserted = EmittedCIEs.insert(
std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
// If there is no CIE yet for this ID, emit it.
if (IteratorInserted.second) {
LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
IteratorInserted.first->getValue() = LastCIEOffset;
TheDwarfEmitter->emitCIE(CIEData);
}
// Emit the FDE with updated address and CIE pointer.
// (4 + AddrSize) is the size of the CIEId + initial_location
// fields that will get reconstructed by emitFDE().
unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
Loc + Range->second,
FrameData.substr(InputOffset, FDERemainingBytes));
InputOffset += FDERemainingBytes;
}
}
uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
CompileUnit &U,
const DWARFFile &File,
int ChildRecurseDepth) {
const char *Name = nullptr;
DWARFUnit *OrigUnit = &U.getOrigUnit();
CompileUnit *CU = &U;
Optional<DWARFFormValue> Ref;
while (true) {
if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
Name = CurrentName;
if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
!(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
break;
if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
break;
CompileUnit *RefCU;
if (auto RefDIE =
Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
CU = RefCU;
OrigUnit = &RefCU->getOrigUnit();
DIE = RefDIE;
}
}
unsigned Idx = OrigUnit->getDIEIndex(DIE);
if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
Name = "(anonymous namespace)";
if (CU->getInfo(Idx).ParentIdx == 0 ||
// FIXME: dsymutil-classic compatibility. Ignore modules.
CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
dwarf::DW_TAG_module)
return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
return djbHash(
(Name ? Name : ""),
djbHash((Name ? "::" : ""),
hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
}
static uint64_t getDwoId(const DWARFDie &CUDie) {
auto DwoId = dwarf::toUnsigned(
CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
if (DwoId)
return *DwoId;
return 0;
}
static std::string remapPath(StringRef Path,
const objectPrefixMap &ObjectPrefixMap) {
if (ObjectPrefixMap.empty())
return Path.str();
SmallString<256> p = Path;
for (const auto &Entry : ObjectPrefixMap)
if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
break;
return p.str().str();
}
static std::string getPCMFile(const DWARFDie &CUDie,
objectPrefixMap *ObjectPrefixMap) {
std::string PCMFile = dwarf::toString(
CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
if (PCMFile.empty())
return PCMFile;
if (ObjectPrefixMap)
PCMFile = remapPath(PCMFile, *ObjectPrefixMap);
return PCMFile;
}
std::pair<bool, bool> DWARFLinker::isClangModuleRef(const DWARFDie &CUDie,
std::string &PCMFile,
LinkContext &Context,
unsigned Indent,
bool Quiet) {
if (PCMFile.empty())
return std::make_pair(false, false);
// Clang module DWARF skeleton CUs abuse this for the path to the module.
uint64_t DwoId = getDwoId(CUDie);
std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
if (Name.empty()) {
if (!Quiet)
reportWarning("Anonymous module skeleton CU for " + PCMFile,
Context.File);
return std::make_pair(true, true);
}
if (!Quiet && Options.Verbose) {
outs().indent(Indent);
outs() << "Found clang module reference " << PCMFile;
}
auto Cached = ClangModules.find(PCMFile);
if (Cached != ClangModules.end()) {
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
// ASTFileSignatures will change randomly when a module is rebuilt.
if (!Quiet && Options.Verbose && (Cached->second != DwoId))
reportWarning(Twine("hash mismatch: this object file was built against a "
"different version of the module ") +
PCMFile,
Context.File);
if (!Quiet && Options.Verbose)
outs() << " [cached].\n";
return std::make_pair(true, true);
}
return std::make_pair(true, false);
}
bool DWARFLinker::registerModuleReference(const DWARFDie &CUDie,
LinkContext &Context,
objFileLoader Loader,
CompileUnitHandler OnCUDieLoaded,
unsigned Indent) {
std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
std::pair<bool, bool> IsClangModuleRef =
isClangModuleRef(CUDie, PCMFile, Context, Indent, false);
if (!IsClangModuleRef.first)
return false;
if (IsClangModuleRef.second)
return true;
if (Options.Verbose)
outs() << " ...\n";
// Cyclic dependencies are disallowed by Clang, but we still
// shouldn't run into an infinite loop, so mark it as processed now.
ClangModules.insert({PCMFile, getDwoId(CUDie)});
if (Error E = loadClangModule(Loader, CUDie, PCMFile, Context, OnCUDieLoaded,
Indent + 2)) {
consumeError(std::move(E));
return false;
}
return true;
}
Error DWARFLinker::loadClangModule(objFileLoader Loader, const DWARFDie &CUDie,
const std::string &PCMFile,
LinkContext &Context,
CompileUnitHandler OnCUDieLoaded,
unsigned Indent) {
uint64_t DwoId = getDwoId(CUDie);
std::string ModuleName = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
/// Using a SmallString<0> because loadClangModule() is recursive.
SmallString<0> Path(Options.PrependPath);
if (sys::path::is_relative(PCMFile))
resolveRelativeObjectPath(Path, CUDie);
sys::path::append(Path, PCMFile);
// Don't use the cached binary holder because we have no thread-safety
// guarantee and the lifetime is limited.
if (Loader == nullptr) {
reportError("Could not load clang module: loader is not specified.\n",
Context.File);
return Error::success();
}
auto ErrOrObj = Loader(Context.File.FileName, Path);
if (!ErrOrObj)
return Error::success();
std::unique_ptr<CompileUnit> Unit;
for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
OnCUDieLoaded(*CU);
// Recursively get all modules imported by this one.
auto ChildCUDie = CU->getUnitDIE();
if (!ChildCUDie)
continue;
if (!registerModuleReference(ChildCUDie, Context, Loader, OnCUDieLoaded,
Indent)) {
if (Unit) {
std::string Err =
(PCMFile +
": Clang modules are expected to have exactly 1 compile unit.\n");
reportError(Err, Context.File);
return make_error<StringError>(Err, inconvertibleErrorCode());
}
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
// ASTFileSignatures will change randomly when a module is rebuilt.
uint64_t PCMDwoId = getDwoId(ChildCUDie);
if (PCMDwoId != DwoId) {
if (Options.Verbose)
reportWarning(
Twine("hash mismatch: this object file was built against a "
"different version of the module ") +
PCMFile,
Context.File);
// Update the cache entry with the DwoId of the module loaded from disk.
ClangModules[PCMFile] = PCMDwoId;
}
// Add this module.
Unit = std::make_unique<CompileUnit>(*CU, UniqueUnitID++, !Options.NoODR,
ModuleName);
}
}
if (Unit)
Context.ModuleUnits.emplace_back(RefModuleUnit{*ErrOrObj, std::move(Unit)});
return Error::success();
}
uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
DWARFContext &DwarfContext, const DWARFFile &File,
OffsetsStringPool &StringPool, bool IsLittleEndian) {
uint64_t OutputDebugInfoSize =
Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
for (auto &CurrentUnit : CompileUnits) {
const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
CurrentUnit->setStartOffset(OutputDebugInfoSize);
if (!InputDIE) {
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
continue;
}
if (CurrentUnit->getInfo(0).Keep) {
// Clone the InputDIE into your Unit DIE in our compile unit since it
// already has a DIE inside of it.
CurrentUnit->createOutputDIE();
cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
UnitHeaderSize, 0, IsLittleEndian,
CurrentUnit->getOutputUnitDIE());
}
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
if (!Linker.Options.NoOutput) {
assert(Emitter);
if (LLVM_LIKELY(!Linker.Options.Update) ||
Linker.needToTranslateStrings())
Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
if (LLVM_UNLIKELY(Linker.Options.Update))
continue;
Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
auto ProcessExpr = [&](StringRef Bytes,
SmallVectorImpl<uint8_t> &Buffer) {
DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
DataExtractor Data(Bytes, IsLittleEndian,
OrigUnit.getAddressByteSize());
cloneExpression(Data,
DWARFExpression(Data, OrigUnit.getAddressByteSize(),
OrigUnit.getFormParams().Format),
File, *CurrentUnit, Buffer);
};
Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
}
}
if (!Linker.Options.NoOutput) {
assert(Emitter);
// Emit all the compile unit's debug information.
for (auto &CurrentUnit : CompileUnits) {
if (LLVM_LIKELY(!Linker.Options.Update))
Linker.generateUnitRanges(*CurrentUnit);
CurrentUnit->fixupForwardReferences();
if (!CurrentUnit->getOutputUnitDIE())
continue;
unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
assert(Emitter->getDebugInfoSectionSize() ==
CurrentUnit->getStartOffset());
Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
assert(Emitter->getDebugInfoSectionSize() ==
CurrentUnit->computeNextUnitOffset(DwarfVersion));
}
}
return OutputDebugInfoSize - StartOutputDebugInfoSize;
}
void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
if (Options.TheAccelTableKind != DwarfLinkerAccelTableKind::Default)
return;
auto &DwarfObj = Dwarf.getDWARFObj();
if (!AtLeastOneDwarfAccelTable &&
(!DwarfObj.getAppleNamesSection().Data.empty() ||
!DwarfObj.getAppleTypesSection().Data.empty() ||
!DwarfObj.getAppleNamespacesSection().Data.empty() ||
!DwarfObj.getAppleObjCSection().Data.empty())) {
AtLeastOneAppleAccelTable = true;
}
if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
AtLeastOneDwarfAccelTable = true;
}
}
bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
OffsetsStringPool &StringPool) {
if (File.Warnings.empty())
return false;
DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
CUDie->setOffset(11);
StringRef Producer;
StringRef WarningHeader;
switch (DwarfLinkerClientID) {
case DwarfLinkerClient::Dsymutil:
Producer = StringPool.internString("dsymutil");
WarningHeader = "dsymutil_warning";
break;
default:
Producer = StringPool.internString("dwarfopt");
WarningHeader = "dwarfopt_warning";
break;
}
StringRef FileName = StringPool.internString(File.FileName);
CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset(Producer)));
DIEBlock *String = new (DIEAlloc) DIEBlock();
DIEBlocks.push_back(String);
for (auto &C : FileName)
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
DIEInteger(C));
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
DIEInteger(0));
CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
for (const auto &Warning : File.Warnings) {
DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset(WarningHeader)));
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
DIEInteger(1));
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset(Warning)));
}
unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
DIEAbbrev Abbrev = CUDie->generateAbbrev();
assignAbbrev(Abbrev);
CUDie->setAbbrevNumber(Abbrev.getNumber());
Size += getULEB128Size(Abbrev.getNumber());
// Abbreviation ordering needed for classic compatibility.
for (auto &Child : CUDie->children()) {
Abbrev = Child.generateAbbrev();
assignAbbrev(Abbrev);
Child.setAbbrevNumber(Abbrev.getNumber());
Size += getULEB128Size(Abbrev.getNumber());
}
CUDie->setSize(Size);
TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
return true;
}
void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
if (!needToTranslateStrings())
TheDwarfEmitter->emitSectionContents(
Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
"debug_loc");
TheDwarfEmitter->emitSectionContents(
Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
TheDwarfEmitter->emitSectionContents(
Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
"debug_aranges");
}
void DWARFLinker::addObjectFile(DWARFFile &File, objFileLoader Loader,
CompileUnitHandler OnCUDieLoaded) {
ObjectContexts.emplace_back(LinkContext(File));
if (ObjectContexts.back().File.Dwarf) {
updateAccelKind(*ObjectContexts.back().File.Dwarf);
for (const std::unique_ptr<DWARFUnit> &CU :
ObjectContexts.back().File.Dwarf->compile_units()) {
DWARFDie CUDie = CU->getUnitDIE();
if (!CUDie)
continue;
OnCUDieLoaded(*CU);
if (!LLVM_UNLIKELY(Options.Update))
registerModuleReference(CUDie, ObjectContexts.back(), Loader,
OnCUDieLoaded);
}
}
}
Error DWARFLinker::link() {
assert(Options.NoOutput || TheDwarfEmitter);
assert((Options.TargetDWARFVersion != 0) &&
"TargetDWARFVersion should be set");
// First populate the data structure we need for each iteration of the
// parallel loop.
unsigned NumObjects = ObjectContexts.size();
// This Dwarf string pool which is used for emission. It must be used
// serially as the order of calling getStringOffset matters for
// reproducibility.
OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
// ODR Contexts for the optimize.
DeclContextTree ODRContexts;
// If we haven't decided on an accelerator table kind yet, we base ourselves
// on the DWARF we have seen so far. At this point we haven't pulled in debug
// information from modules yet, so it is technically possible that they
// would affect the decision. However, as they're built with the same
// compiler and flags, it is safe to assume that they will follow the
// decision made here.
if (Options.TheAccelTableKind == DwarfLinkerAccelTableKind::Default) {
if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Dwarf;
else
Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Apple;
}
for (LinkContext &OptContext : ObjectContexts) {
if (Options.Verbose) {
if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
else
outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
}
if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
continue;
if (!OptContext.File.Dwarf)
continue;
if (Options.VerifyInputDWARF)
verify(OptContext.File);
// Look for relocations that correspond to address map entries.
// there was findvalidrelocations previously ... probably we need to gather
// info here
if (LLVM_LIKELY(!Options.Update) &&
!OptContext.File.Addresses->hasValidRelocs()) {
if (Options.Verbose)
outs() << "No valid relocations found. Skipping.\n";
// Set "Skip" flag as a signal to other loops that we should not
// process this iteration.
OptContext.Skip = true;
continue;
}
// Setup access to the debug info.
if (!OptContext.File.Dwarf)
continue;
// Check whether type units are presented.
if (!OptContext.File.Dwarf->types_section_units().empty()) {
reportWarning("type units are not currently supported: file will "
"be skipped",
OptContext.File);
OptContext.Skip = true;
continue;
}
// Check for unsupported sections. Following sections can be referenced
// from .debug_info section. Current DWARFLinker implementation does not
// support or update references to these tables. Thus we report warning
// and skip corresponding object file.
if (!OptContext.File.Dwarf->getDWARFObj()
.getRnglistsSection()
.Data.empty()) {
reportWarning("'.debug_rnglists' is not currently supported: file "
"will be skipped",
OptContext.File);
OptContext.Skip = true;
continue;
}
if (!OptContext.File.Dwarf->getDWARFObj()
.getLoclistsSection()
.Data.empty()) {
reportWarning("'.debug_loclists' is not currently supported: file "
"will be skipped",
OptContext.File);
OptContext.Skip = true;
continue;
}
if (!OptContext.File.Dwarf->getDWARFObj().getMacroSection().Data.empty()) {
reportWarning("'.debug_macro' is not currently supported: file "
"will be skipped",
OptContext.File);
OptContext.Skip = true;
continue;
}
if (OptContext.File.Dwarf->getDWARFObj().getMacinfoSection().size() > 0) {
if (OptContext.File.Dwarf->getDWARFObj().getMacinfoSection().find_if(
[](char Sym) { return Sym != 0; }) != StringRef::npos) {
reportWarning("'.debug_macinfo' is not currently supported: file "
"will be skipped",
OptContext.File);
OptContext.Skip = true;
continue;
}
}
// In a first phase, just read in the debug info and load all clang modules.
OptContext.CompileUnits.reserve(
OptContext.File.Dwarf->getNumCompileUnits());
for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
auto CUDie = CU->getUnitDIE(false);
if (Options.Verbose) {
outs() << "Input compilation unit:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
CUDie.dump(outs(), 0, DumpOpts);
}
}
for (auto &CU : OptContext.ModuleUnits) {
if (Error Err =
cloneModuleUnit(OptContext, CU, ODRContexts, OffsetsStringPool))
reportWarning(toString(std::move(Err)), CU.File);
}
}
// At this point we know how much data we have emitted. We use this value to
// compare canonical DIE offsets in analyzeContextInfo to see if a definition
// is already emitted, without being affected by canonical die offsets set
// later. This prevents undeterminism when analyze and clone execute
// concurrently, as clone set the canonical DIE offset and analyze reads it.
const uint64_t ModulesEndOffset =
Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
// These variables manage the list of processed object files.
// The mutex and condition variable are to ensure that this is thread safe.
std::mutex ProcessedFilesMutex;
std::condition_variable ProcessedFilesConditionVariable;
BitVector ProcessedFiles(NumObjects, false);
// Analyzing the context info is particularly expensive so it is executed in
// parallel with emitting the previous compile unit.
auto AnalyzeLambda = [&](size_t I) {
auto &Context = ObjectContexts[I];
if (Context.Skip || !Context.File.Dwarf)
return;
for (const auto &CU : Context.File.Dwarf->compile_units()) {
// The !isClangModuleRef condition effectively skips over fully resolved
// skeleton units.
auto CUDie = CU->getUnitDIE();
std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
!isClangModuleRef(CUDie, PCMFile, Context, 0, true).first) {
Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
*CU, UniqueUnitID++, !Options.NoODR && !Options.Update, ""));
}
}
// Now build the DIE parent links that we will use during the next phase.
for (auto &CurrentUnit : Context.CompileUnits) {
auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
if (!CUDie)
continue;
analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
*CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
ModulesEndOffset, Options.ParseableSwiftInterfaces,
[&](const Twine &Warning, const DWARFDie &DIE) {
reportWarning(Warning, Context.File, &DIE);
});
}
};
// For each object file map how many bytes were emitted.
StringMap<DebugInfoSize> SizeByObject;
// And then the remaining work in serial again.
// Note, although this loop runs in serial, it can run in parallel with
// the analyzeContextInfo loop so long as we process files with indices >=
// than those processed by analyzeContextInfo.
auto CloneLambda = [&](size_t I) {
auto &OptContext = ObjectContexts[I];
if (OptContext.Skip || !OptContext.File.Dwarf)
return;
// Then mark all the DIEs that need to be present in the generated output
// and collect some information about them.
// Note that this loop can not be merged with the previous one because
// cross-cu references require the ParentIdx to be setup for every CU in
// the object file before calling this.
if (LLVM_UNLIKELY(Options.Update)) {
for (auto &CurrentUnit : OptContext.CompileUnits)
CurrentUnit->markEverythingAsKept();
copyInvariantDebugSection(*OptContext.File.Dwarf);
} else {
for (auto &CurrentUnit : OptContext.CompileUnits)
lookForDIEsToKeep(*OptContext.File.Addresses,
OptContext.File.Addresses->getValidAddressRanges(),
OptContext.CompileUnits,
CurrentUnit->getOrigUnit().getUnitDIE(),
OptContext.File, *CurrentUnit, 0);
}
// The calls to applyValidRelocs inside cloneDIE will walk the reloc
// array again (in the same way findValidRelocsInDebugInfo() did). We
// need to reset the NextValidReloc index to the beginning.
if (OptContext.File.Addresses->hasValidRelocs() ||
LLVM_UNLIKELY(Options.Update)) {
SizeByObject[OptContext.File.FileName].Input =
getDebugInfoSize(*OptContext.File.Dwarf);
SizeByObject[OptContext.File.FileName].Output =
DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
OptContext.CompileUnits, Options.Update)
.cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
OffsetsStringPool,
OptContext.File.Dwarf->isLittleEndian());
}
if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
LLVM_LIKELY(!Options.Update))
patchFrameInfoForObject(
OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
*OptContext.File.Dwarf,
OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
// Clean-up before starting working on the next object.
cleanupAuxiliarryData(OptContext);
};
auto EmitLambda = [&]() {
// Emit everything that's global.
if (!Options.NoOutput) {
TheDwarfEmitter->emitAbbrevs(Abbreviations, Options.TargetDWARFVersion);
TheDwarfEmitter->emitStrings(OffsetsStringPool);
switch (Options.TheAccelTableKind) {
case DwarfLinkerAccelTableKind::None:
// Nothing to do.
break;
case DwarfLinkerAccelTableKind::Apple:
TheDwarfEmitter->emitAppleNames(AppleNames);
TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
TheDwarfEmitter->emitAppleTypes(AppleTypes);
TheDwarfEmitter->emitAppleObjc(AppleObjc);
break;
case DwarfLinkerAccelTableKind::Dwarf:
TheDwarfEmitter->emitDebugNames(DebugNames);
break;
case DwarfLinkerAccelTableKind::Pub:
// Already emitted by emitPubAcceleratorEntriesForUnit.
break;
case DwarfLinkerAccelTableKind::Default:
llvm_unreachable("Default should have already been resolved.");
break;
}
}
};
auto AnalyzeAll = [&]() {
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
AnalyzeLambda(I);
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
ProcessedFiles.set(I);
ProcessedFilesConditionVariable.notify_one();
}
};
auto CloneAll = [&]() {
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
{
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
if (!ProcessedFiles[I]) {
ProcessedFilesConditionVariable.wait(
LockGuard, [&]() { return ProcessedFiles[I]; });
}
}
CloneLambda(I);
}
EmitLambda();
};
// To limit memory usage in the single threaded case, analyze and clone are
// run sequentially so the OptContext is freed after processing each object
// in endDebugObject.
if (Options.Threads == 1) {
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
AnalyzeLambda(I);
CloneLambda(I);
}
EmitLambda();
} else {
ThreadPool Pool(hardware_concurrency(2));
Pool.async(AnalyzeAll);
Pool.async(CloneAll);
Pool.wait();
}
if (Options.Statistics) {
// Create a vector sorted in descending order by output size.
std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
for (auto &E : SizeByObject)
Sorted.emplace_back(E.first(), E.second);
llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
return LHS.second.Output > RHS.second.Output;
});
auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
const float Difference = Output - Input;
const float Sum = Input + Output;
if (Sum == 0)
return 0;
return (Difference / (Sum / 2));
};
int64_t InputTotal = 0;
int64_t OutputTotal = 0;
const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
// Print header.
outs() << ".debug_info section size (in bytes)\n";
outs() << "----------------------------------------------------------------"
"---------------\n";
outs() << "Filename Object "
" dSYM Change\n";
outs() << "----------------------------------------------------------------"
"---------------\n";
// Print body.
for (auto &E : Sorted) {
InputTotal += E.second.Input;
OutputTotal += E.second.Output;
llvm::outs() << formatv(
FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
}
// Print total and footer.
outs() << "----------------------------------------------------------------"
"---------------\n";
llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
ComputePercentange(InputTotal, OutputTotal));
outs() << "----------------------------------------------------------------"
"---------------\n\n";
}
return Error::success();
}
Error DWARFLinker::cloneModuleUnit(LinkContext &Context, RefModuleUnit &Unit,
DeclContextTree &ODRContexts,
OffsetsStringPool &OffsetsStringPool,
unsigned Indent) {
assert(Unit.Unit.get() != nullptr);
if (!Unit.Unit->getOrigUnit().getUnitDIE().hasChildren())
return Error::success();
if (Options.Verbose) {
outs().indent(Indent);
outs() << "cloning .debug_info from " << Unit.File.FileName << "\n";
}
// Analyze context for the module.
analyzeContextInfo(Unit.Unit->getOrigUnit().getUnitDIE(), 0, *(Unit.Unit),
&ODRContexts.getRoot(), ODRContexts, 0,
Options.ParseableSwiftInterfaces,
[&](const Twine &Warning, const DWARFDie &DIE) {
reportWarning(Warning, Context.File, &DIE);
});
// Keep everything.
Unit.Unit->markEverythingAsKept();
// Clone unit.
UnitListTy CompileUnits;
CompileUnits.emplace_back(std::move(Unit.Unit));
assert(TheDwarfEmitter);
DIECloner(*this, TheDwarfEmitter, Unit.File, DIEAlloc, CompileUnits,
Options.Update)
.cloneAllCompileUnits(*Unit.File.Dwarf, Unit.File, OffsetsStringPool,
Unit.File.Dwarf->isLittleEndian());
return Error::success();
}
bool DWARFLinker::verify(const DWARFFile &File) {
assert(File.Dwarf);
DIDumpOptions DumpOpts;
if (!File.Dwarf->verify(llvm::outs(), DumpOpts.noImplicitRecursion())) {
reportWarning("input verification failed", File);
return false;
}
return true;
}
} // namespace llvm