forked from OSchip/llvm-project
514 lines
20 KiB
C++
514 lines
20 KiB
C++
//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains routines that help determine which pointers are captured.
|
|
// A pointer value is captured if the function makes a copy of any part of the
|
|
// pointer that outlives the call. Not being captured means, more or less, that
|
|
// the pointer is only dereferenced and not stored in a global. Returning part
|
|
// of the pointer as the function return value may or may not count as capturing
|
|
// the pointer, depending on the context.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "capture-tracking"
|
|
|
|
STATISTIC(NumCaptured, "Number of pointers maybe captured");
|
|
STATISTIC(NumNotCaptured, "Number of pointers not captured");
|
|
STATISTIC(NumCapturedBefore, "Number of pointers maybe captured before");
|
|
STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before");
|
|
|
|
/// The default value for MaxUsesToExplore argument. It's relatively small to
|
|
/// keep the cost of analysis reasonable for clients like BasicAliasAnalysis,
|
|
/// where the results can't be cached.
|
|
/// TODO: we should probably introduce a caching CaptureTracking analysis and
|
|
/// use it where possible. The caching version can use much higher limit or
|
|
/// don't have this cap at all.
|
|
static cl::opt<unsigned>
|
|
DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden,
|
|
cl::desc("Maximal number of uses to explore."),
|
|
cl::init(100));
|
|
|
|
unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() {
|
|
return DefaultMaxUsesToExplore;
|
|
}
|
|
|
|
CaptureTracker::~CaptureTracker() = default;
|
|
|
|
bool CaptureTracker::shouldExplore(const Use *U) { return true; }
|
|
|
|
bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) {
|
|
// An inbounds GEP can either be a valid pointer (pointing into
|
|
// or to the end of an allocation), or be null in the default
|
|
// address space. So for an inbounds GEP there is no way to let
|
|
// the pointer escape using clever GEP hacking because doing so
|
|
// would make the pointer point outside of the allocated object
|
|
// and thus make the GEP result a poison value. Similarly, other
|
|
// dereferenceable pointers cannot be manipulated without producing
|
|
// poison.
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(O))
|
|
if (GEP->isInBounds())
|
|
return true;
|
|
bool CanBeNull, CanBeFreed;
|
|
return O->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
|
|
}
|
|
|
|
namespace {
|
|
struct SimpleCaptureTracker : public CaptureTracker {
|
|
explicit SimpleCaptureTracker(
|
|
|
|
const SmallPtrSetImpl<const Value *> &EphValues, bool ReturnCaptures)
|
|
: EphValues(EphValues), ReturnCaptures(ReturnCaptures) {}
|
|
|
|
void tooManyUses() override { Captured = true; }
|
|
|
|
bool captured(const Use *U) override {
|
|
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
|
|
return false;
|
|
|
|
if (EphValues.contains(U->getUser()))
|
|
return false;
|
|
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
const SmallPtrSetImpl<const Value *> &EphValues;
|
|
|
|
bool ReturnCaptures;
|
|
|
|
bool Captured = false;
|
|
};
|
|
|
|
/// Only find pointer captures which happen before the given instruction. Uses
|
|
/// the dominator tree to determine whether one instruction is before another.
|
|
/// Only support the case where the Value is defined in the same basic block
|
|
/// as the given instruction and the use.
|
|
struct CapturesBefore : public CaptureTracker {
|
|
|
|
CapturesBefore(bool ReturnCaptures, const Instruction *I,
|
|
const DominatorTree *DT, bool IncludeI, const LoopInfo *LI)
|
|
: BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures),
|
|
IncludeI(IncludeI), LI(LI) {}
|
|
|
|
void tooManyUses() override { Captured = true; }
|
|
|
|
bool isSafeToPrune(Instruction *I) {
|
|
if (BeforeHere == I)
|
|
return !IncludeI;
|
|
|
|
// We explore this usage only if the usage can reach "BeforeHere".
|
|
// If use is not reachable from entry, there is no need to explore.
|
|
if (!DT->isReachableFromEntry(I->getParent()))
|
|
return true;
|
|
|
|
// Check whether there is a path from I to BeforeHere.
|
|
return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI);
|
|
}
|
|
|
|
bool captured(const Use *U) override {
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
if (isa<ReturnInst>(I) && !ReturnCaptures)
|
|
return false;
|
|
|
|
// Check isSafeToPrune() here rather than in shouldExplore() to avoid
|
|
// an expensive reachability query for every instruction we look at.
|
|
// Instead we only do one for actual capturing candidates.
|
|
if (isSafeToPrune(I))
|
|
return false;
|
|
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
const Instruction *BeforeHere;
|
|
const DominatorTree *DT;
|
|
|
|
bool ReturnCaptures;
|
|
bool IncludeI;
|
|
|
|
bool Captured = false;
|
|
|
|
const LoopInfo *LI;
|
|
};
|
|
|
|
/// Find the 'earliest' instruction before which the pointer is known not to
|
|
/// be captured. Here an instruction A is considered earlier than instruction
|
|
/// B, if A dominates B. If 2 escapes do not dominate each other, the
|
|
/// terminator of the common dominator is chosen. If not all uses cannot be
|
|
/// analyzed, the earliest escape is set to the first instruction in the
|
|
/// function entry block.
|
|
// NOTE: Users have to make sure instructions compared against the earliest
|
|
// escape are not in a cycle.
|
|
struct EarliestCaptures : public CaptureTracker {
|
|
|
|
EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT,
|
|
const SmallPtrSetImpl<const Value *> &EphValues)
|
|
: EphValues(EphValues), DT(DT), ReturnCaptures(ReturnCaptures), F(F) {}
|
|
|
|
void tooManyUses() override {
|
|
Captured = true;
|
|
EarliestCapture = &*F.getEntryBlock().begin();
|
|
}
|
|
|
|
bool captured(const Use *U) override {
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
if (isa<ReturnInst>(I) && !ReturnCaptures)
|
|
return false;
|
|
|
|
if (EphValues.contains(I))
|
|
return false;
|
|
|
|
if (!EarliestCapture) {
|
|
EarliestCapture = I;
|
|
} else if (EarliestCapture->getParent() == I->getParent()) {
|
|
if (I->comesBefore(EarliestCapture))
|
|
EarliestCapture = I;
|
|
} else {
|
|
BasicBlock *CurrentBB = I->getParent();
|
|
BasicBlock *EarliestBB = EarliestCapture->getParent();
|
|
if (DT.dominates(EarliestBB, CurrentBB)) {
|
|
// EarliestCapture already comes before the current use.
|
|
} else if (DT.dominates(CurrentBB, EarliestBB)) {
|
|
EarliestCapture = I;
|
|
} else {
|
|
// Otherwise find the nearest common dominator and use its terminator.
|
|
auto *NearestCommonDom =
|
|
DT.findNearestCommonDominator(CurrentBB, EarliestBB);
|
|
EarliestCapture = NearestCommonDom->getTerminator();
|
|
}
|
|
}
|
|
Captured = true;
|
|
|
|
// Return false to continue analysis; we need to see all potential
|
|
// captures.
|
|
return false;
|
|
}
|
|
|
|
const SmallPtrSetImpl<const Value *> &EphValues;
|
|
|
|
Instruction *EarliestCapture = nullptr;
|
|
|
|
const DominatorTree &DT;
|
|
|
|
bool ReturnCaptures;
|
|
|
|
bool Captured = false;
|
|
|
|
Function &F;
|
|
};
|
|
}
|
|
|
|
/// PointerMayBeCaptured - Return true if this pointer value may be captured
|
|
/// by the enclosing function (which is required to exist). This routine can
|
|
/// be expensive, so consider caching the results. The boolean ReturnCaptures
|
|
/// specifies whether returning the value (or part of it) from the function
|
|
/// counts as capturing it or not. The boolean StoreCaptures specified whether
|
|
/// storing the value (or part of it) into memory anywhere automatically
|
|
/// counts as capturing it or not.
|
|
bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
|
|
bool StoreCaptures, unsigned MaxUsesToExplore) {
|
|
SmallPtrSet<const Value *, 1> Empty;
|
|
return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, Empty,
|
|
MaxUsesToExplore);
|
|
}
|
|
|
|
/// Variant of the above function which accepts a set of Values that are
|
|
/// ephemeral and cannot cause pointers to escape.
|
|
bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
|
|
bool StoreCaptures,
|
|
const SmallPtrSetImpl<const Value *> &EphValues,
|
|
unsigned MaxUsesToExplore) {
|
|
assert(!isa<GlobalValue>(V) &&
|
|
"It doesn't make sense to ask whether a global is captured.");
|
|
|
|
// TODO: If StoreCaptures is not true, we could do Fancy analysis
|
|
// to determine whether this store is not actually an escape point.
|
|
// In that case, BasicAliasAnalysis should be updated as well to
|
|
// take advantage of this.
|
|
(void)StoreCaptures;
|
|
|
|
SimpleCaptureTracker SCT(EphValues, ReturnCaptures);
|
|
PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
|
|
if (SCT.Captured)
|
|
++NumCaptured;
|
|
else
|
|
++NumNotCaptured;
|
|
return SCT.Captured;
|
|
}
|
|
|
|
/// PointerMayBeCapturedBefore - Return true if this pointer value may be
|
|
/// captured by the enclosing function (which is required to exist). If a
|
|
/// DominatorTree is provided, only captures which happen before the given
|
|
/// instruction are considered. This routine can be expensive, so consider
|
|
/// caching the results. The boolean ReturnCaptures specifies whether
|
|
/// returning the value (or part of it) from the function counts as capturing
|
|
/// it or not. The boolean StoreCaptures specified whether storing the value
|
|
/// (or part of it) into memory anywhere automatically counts as capturing it
|
|
/// or not.
|
|
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
|
|
bool StoreCaptures, const Instruction *I,
|
|
const DominatorTree *DT, bool IncludeI,
|
|
unsigned MaxUsesToExplore,
|
|
const LoopInfo *LI) {
|
|
assert(!isa<GlobalValue>(V) &&
|
|
"It doesn't make sense to ask whether a global is captured.");
|
|
|
|
if (!DT)
|
|
return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures,
|
|
MaxUsesToExplore);
|
|
|
|
// TODO: See comment in PointerMayBeCaptured regarding what could be done
|
|
// with StoreCaptures.
|
|
|
|
CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI);
|
|
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
|
|
if (CB.Captured)
|
|
++NumCapturedBefore;
|
|
else
|
|
++NumNotCapturedBefore;
|
|
return CB.Captured;
|
|
}
|
|
|
|
Instruction *
|
|
llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures,
|
|
bool StoreCaptures, const DominatorTree &DT,
|
|
|
|
const SmallPtrSetImpl<const Value *> &EphValues,
|
|
unsigned MaxUsesToExplore) {
|
|
assert(!isa<GlobalValue>(V) &&
|
|
"It doesn't make sense to ask whether a global is captured.");
|
|
|
|
EarliestCaptures CB(ReturnCaptures, F, DT, EphValues);
|
|
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
|
|
if (CB.Captured)
|
|
++NumCapturedBefore;
|
|
else
|
|
++NumNotCapturedBefore;
|
|
return CB.EarliestCapture;
|
|
}
|
|
|
|
UseCaptureKind llvm::DetermineUseCaptureKind(
|
|
const Use &U,
|
|
function_ref<bool(Value *, const DataLayout &)> IsDereferenceableOrNull) {
|
|
Instruction *I = cast<Instruction>(U.getUser());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
auto *Call = cast<CallBase>(I);
|
|
// Not captured if the callee is readonly, doesn't return a copy through
|
|
// its return value and doesn't unwind (a readonly function can leak bits
|
|
// by throwing an exception or not depending on the input value).
|
|
if (Call->onlyReadsMemory() && Call->doesNotThrow() &&
|
|
Call->getType()->isVoidTy())
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
|
|
// The pointer is not captured if returned pointer is not captured.
|
|
// NOTE: CaptureTracking users should not assume that only functions
|
|
// marked with nocapture do not capture. This means that places like
|
|
// getUnderlyingObject in ValueTracking or DecomposeGEPExpression
|
|
// in BasicAA also need to know about this property.
|
|
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true))
|
|
return UseCaptureKind::PASSTHROUGH;
|
|
|
|
// Volatile operations effectively capture the memory location that they
|
|
// load and store to.
|
|
if (auto *MI = dyn_cast<MemIntrinsic>(Call))
|
|
if (MI->isVolatile())
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
|
|
// Calling a function pointer does not in itself cause the pointer to
|
|
// be captured. This is a subtle point considering that (for example)
|
|
// the callee might return its own address. It is analogous to saying
|
|
// that loading a value from a pointer does not cause the pointer to be
|
|
// captured, even though the loaded value might be the pointer itself
|
|
// (think of self-referential objects).
|
|
if (Call->isCallee(&U))
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
|
|
// Not captured if only passed via 'nocapture' arguments.
|
|
if (Call->isDataOperand(&U) &&
|
|
!Call->doesNotCapture(Call->getDataOperandNo(&U))) {
|
|
// The parameter is not marked 'nocapture' - captured.
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
}
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
}
|
|
case Instruction::Load:
|
|
// Volatile loads make the address observable.
|
|
if (cast<LoadInst>(I)->isVolatile())
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
case Instruction::VAArg:
|
|
// "va-arg" from a pointer does not cause it to be captured.
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
case Instruction::Store:
|
|
// Stored the pointer - conservatively assume it may be captured.
|
|
// Volatile stores make the address observable.
|
|
if (U.getOperandNo() == 0 || cast<StoreInst>(I)->isVolatile())
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
case Instruction::AtomicRMW: {
|
|
// atomicrmw conceptually includes both a load and store from
|
|
// the same location.
|
|
// As with a store, the location being accessed is not captured,
|
|
// but the value being stored is.
|
|
// Volatile stores make the address observable.
|
|
auto *ARMWI = cast<AtomicRMWInst>(I);
|
|
if (U.getOperandNo() == 1 || ARMWI->isVolatile())
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
}
|
|
case Instruction::AtomicCmpXchg: {
|
|
// cmpxchg conceptually includes both a load and store from
|
|
// the same location.
|
|
// As with a store, the location being accessed is not captured,
|
|
// but the value being stored is.
|
|
// Volatile stores make the address observable.
|
|
auto *ACXI = cast<AtomicCmpXchgInst>(I);
|
|
if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile())
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
}
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
case Instruction::AddrSpaceCast:
|
|
// The original value is not captured via this if the new value isn't.
|
|
return UseCaptureKind::PASSTHROUGH;
|
|
case Instruction::ICmp: {
|
|
unsigned Idx = U.getOperandNo();
|
|
unsigned OtherIdx = 1 - Idx;
|
|
if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) {
|
|
// Don't count comparisons of a no-alias return value against null as
|
|
// captures. This allows us to ignore comparisons of malloc results
|
|
// with null, for example.
|
|
if (CPN->getType()->getAddressSpace() == 0)
|
|
if (isNoAliasCall(U.get()->stripPointerCasts()))
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
if (!I->getFunction()->nullPointerIsDefined()) {
|
|
auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation();
|
|
// Comparing a dereferenceable_or_null pointer against null cannot
|
|
// lead to pointer escapes, because if it is not null it must be a
|
|
// valid (in-bounds) pointer.
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
if (IsDereferenceableOrNull && IsDereferenceableOrNull(O, DL))
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
}
|
|
}
|
|
// Comparison against value stored in global variable. Given the pointer
|
|
// does not escape, its value cannot be guessed and stored separately in a
|
|
// global variable.
|
|
auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIdx));
|
|
if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
|
|
return UseCaptureKind::NO_CAPTURE;
|
|
// Otherwise, be conservative. There are crazy ways to capture pointers
|
|
// using comparisons.
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
}
|
|
default:
|
|
// Something else - be conservative and say it is captured.
|
|
return UseCaptureKind::MAY_CAPTURE;
|
|
}
|
|
}
|
|
|
|
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
|
|
unsigned MaxUsesToExplore) {
|
|
assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
|
|
if (MaxUsesToExplore == 0)
|
|
MaxUsesToExplore = DefaultMaxUsesToExplore;
|
|
|
|
SmallVector<const Use *, 20> Worklist;
|
|
Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking());
|
|
SmallSet<const Use *, 20> Visited;
|
|
|
|
auto AddUses = [&](const Value *V) {
|
|
for (const Use &U : V->uses()) {
|
|
// If there are lots of uses, conservatively say that the value
|
|
// is captured to avoid taking too much compile time.
|
|
if (Visited.size() >= MaxUsesToExplore) {
|
|
Tracker->tooManyUses();
|
|
return false;
|
|
}
|
|
if (!Visited.insert(&U).second)
|
|
continue;
|
|
if (!Tracker->shouldExplore(&U))
|
|
continue;
|
|
Worklist.push_back(&U);
|
|
}
|
|
return true;
|
|
};
|
|
if (!AddUses(V))
|
|
return;
|
|
|
|
auto IsDereferenceableOrNull = [Tracker](Value *V, const DataLayout &DL) {
|
|
return Tracker->isDereferenceableOrNull(V, DL);
|
|
};
|
|
while (!Worklist.empty()) {
|
|
const Use *U = Worklist.pop_back_val();
|
|
switch (DetermineUseCaptureKind(*U, IsDereferenceableOrNull)) {
|
|
case UseCaptureKind::NO_CAPTURE:
|
|
continue;
|
|
case UseCaptureKind::MAY_CAPTURE:
|
|
if (Tracker->captured(U))
|
|
return;
|
|
continue;
|
|
case UseCaptureKind::PASSTHROUGH:
|
|
if (!AddUses(U->getUser()))
|
|
return;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// All uses examined.
|
|
}
|
|
|
|
bool llvm::isNonEscapingLocalObject(
|
|
const Value *V, SmallDenseMap<const Value *, bool, 8> *IsCapturedCache) {
|
|
SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
|
|
if (IsCapturedCache) {
|
|
bool Inserted;
|
|
std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
|
|
if (!Inserted)
|
|
// Found cached result, return it!
|
|
return CacheIt->second;
|
|
}
|
|
|
|
// If this is an identified function-local object, check to see if it escapes.
|
|
if (isIdentifiedFunctionLocal(V)) {
|
|
// Set StoreCaptures to True so that we can assume in our callers that the
|
|
// pointer is not the result of a load instruction. Currently
|
|
// PointerMayBeCaptured doesn't have any special analysis for the
|
|
// StoreCaptures=false case; if it did, our callers could be refined to be
|
|
// more precise.
|
|
auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
|
|
if (IsCapturedCache)
|
|
CacheIt->second = Ret;
|
|
return Ret;
|
|
}
|
|
|
|
return false;
|
|
}
|