llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp

676 lines
25 KiB
C++

//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "aarch64tti"
/// \brief Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
int AArch64TTIImpl::getIntImmCost(int64_t Val) {
// Check if the immediate can be encoded within an instruction.
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
return 0;
if (Val < 0)
Val = ~Val;
// Calculate how many moves we will need to materialize this constant.
unsigned LZ = countLeadingZeros((uint64_t)Val);
return (64 - LZ + 15) / 16;
}
/// \brief Calculate the cost of materializing the given constant.
int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
// Sign-extend all constants to a multiple of 64-bit.
APInt ImmVal = Imm;
if (BitSize & 0x3f)
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
return std::max(1, Cost);
}
int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
unsigned ImmIdx = ~0U;
switch (Opcode) {
default:
return TTI::TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr.
if (Idx == 0)
return 2 * TTI::TCC_Basic;
return TTI::TCC_Free;
case Instruction::Store:
ImmIdx = 0;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
ImmIdx = 1;
break;
// Always return TCC_Free for the shift value of a shift instruction.
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Idx == 1)
return TTI::TCC_Free;
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
if (Idx == ImmIdx) {
int NumConstants = (BitSize + 63) / 64;
int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}
int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
switch (IID) {
default:
return TTI::TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
if (Idx == 1) {
int NumConstants = (BitSize + 63) / 64;
int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}
TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (TyWidth == 32 || TyWidth == 64)
return TTI::PSK_FastHardware;
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
return TTI::PSK_Software;
}
int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
EVT SrcTy = TLI->getValueType(DL, Src);
EVT DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return BaseT::getCastInstrCost(Opcode, Dst, Src);
static const TypeConversionCostTblEntry
ConversionTbl[] = {
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
// The number of shll instructions for the extension.
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
// LowerVectorINT_TO_FP:
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
// Complex: to v2f32
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
// Complex: to v4f32
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
// Complex: to v8f32
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
// Complex: to v16f32
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
// Complex: to v2f64
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
// LowerVectorFP_TO_INT
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
};
if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return Entry->Cost;
return BaseT::getCastInstrCost(Opcode, Dst, Src);
}
int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) {
// Make sure we were given a valid extend opcode.
assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
"Invalid opcode");
// We are extending an element we extract from a vector, so the source type
// of the extend is the element type of the vector.
auto *Src = VecTy->getElementType();
// Sign- and zero-extends are for integer types only.
assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
// Get the cost for the extract. We compute the cost (if any) for the extend
// below.
auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
// Legalize the types.
auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
auto DstVT = TLI->getValueType(DL, Dst);
auto SrcVT = TLI->getValueType(DL, Src);
// If the resulting type is still a vector and the destination type is legal,
// we may get the extension for free. If not, get the default cost for the
// extend.
if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
return Cost + getCastInstrCost(Opcode, Dst, Src);
// The destination type should be larger than the element type. If not, get
// the default cost for the extend.
if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
return Cost + getCastInstrCost(Opcode, Dst, Src);
switch (Opcode) {
default:
llvm_unreachable("Opcode should be either SExt or ZExt");
// For sign-extends, we only need a smov, which performs the extension
// automatically.
case Instruction::SExt:
return Cost;
// For zero-extends, the extend is performed automatically by a umov unless
// the destination type is i64 and the element type is i8 or i16.
case Instruction::ZExt:
if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
return Cost;
}
// If we are unable to perform the extend for free, get the default cost.
return Cost + getCastInstrCost(Opcode, Dst, Src);
}
int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// The type may be split. Normalize the index to the new type.
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
// The element at index zero is already inside the vector.
if (Index == 0)
return 0;
}
// All other insert/extracts cost this much.
return ST->getVectorInsertExtractBaseCost();
}
int AArch64TTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
if (ISD == ISD::SDIV &&
Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP_None.
int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
return Cost;
}
switch (ISD) {
default:
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// These nodes are marked as 'custom' for combining purposes only.
// We know that they are legal. See LowerAdd in ISelLowering.
return 1 * LT.first;
}
}
int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
const SCEV *Ptr) {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
int MaxMergeDistance = 64;
if (Ty->isVectorTy() && SE &&
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// We don't lower some vector selects well that are wider than the register
// width.
if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
// We would need this many instructions to hide the scalarization happening.
const int AmortizationCost = 20;
static const TypeConversionCostTblEntry
VectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
};
EVT SelCondTy = TLI->getValueType(DL, CondTy);
EVT SelValTy = TLI->getValueType(DL, ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT()))
return Entry->Cost;
}
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
unsigned Alignment, unsigned AddressSpace) {
auto LT = TLI->getTypeLegalizationCost(DL, Ty);
if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
LT.second.is128BitVector() && Alignment < 16) {
// Unaligned stores are extremely inefficient. We don't split all
// unaligned 128-bit stores because the negative impact that has shown in
// practice on inlined block copy code.
// We make such stores expensive so that we will only vectorize if there
// are 6 other instructions getting vectorized.
const int AmortizationCost = 6;
return LT.first * 2 * AmortizationCost;
}
if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8) &&
Ty->getVectorNumElements() < 8) {
// We scalarize the loads/stores because there is not v.4b register and we
// have to promote the elements to v.4h.
unsigned NumVecElts = Ty->getVectorNumElements();
unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
// We generate 2 instructions per vector element.
return NumVectorizableInstsToAmortize * NumVecElts * 2;
}
return LT.first;
}
int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
assert(Factor >= 2 && "Invalid interleave factor");
assert(isa<VectorType>(VecTy) && "Expect a vector type");
if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
unsigned NumElts = VecTy->getVectorNumElements();
Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
// ldN/stN only support legal vector types of size 64 or 128 in bits.
// Accesses having vector types that are a multiple of 128 bits can be
// matched to more than one ldN/stN instruction.
if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize % 128 == 0))
return Factor * ((SubVecSize + 127) / 128);
}
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
}
int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
int Cost = 0;
for (auto *I : Tys) {
if (!I->isVectorTy())
continue;
if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
getMemoryOpCost(Instruction::Load, I, 128, 0);
}
return Cost;
}
unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
return ST->getMaxInterleaveFactor();
}
void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
TTI::UnrollingPreferences &UP) {
// Enable partial unrolling and runtime unrolling.
BaseT::getUnrollingPreferences(L, UP);
// For inner loop, it is more likely to be a hot one, and the runtime check
// can be promoted out from LICM pass, so the overhead is less, let's try
// a larger threshold to unroll more loops.
if (L->getLoopDepth() > 1)
UP.PartialThreshold *= 2;
// Disable partial & runtime unrolling on -Os.
UP.PartialOptSizeThreshold = 0;
}
Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) {
switch (Inst->getIntrinsicID()) {
default:
return nullptr;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4: {
// Create a struct type
StructType *ST = dyn_cast<StructType>(ExpectedType);
if (!ST)
return nullptr;
unsigned NumElts = Inst->getNumArgOperands() - 1;
if (ST->getNumElements() != NumElts)
return nullptr;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
return nullptr;
}
Value *Res = UndefValue::get(ExpectedType);
IRBuilder<> Builder(Inst);
for (unsigned i = 0, e = NumElts; i != e; ++i) {
Value *L = Inst->getArgOperand(i);
Res = Builder.CreateInsertValue(Res, L, i);
}
return Res;
}
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
if (Inst->getType() == ExpectedType)
return Inst;
return nullptr;
}
}
bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) {
switch (Inst->getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
Info.ReadMem = true;
Info.WriteMem = false;
Info.PtrVal = Inst->getArgOperand(0);
break;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
Info.ReadMem = false;
Info.WriteMem = true;
Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
break;
}
switch (Inst->getIntrinsicID()) {
default:
return false;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_st2:
Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_st3:
Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_st4:
Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
break;
}
return true;
}
/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
bool Considerable = false;
AllowPromotionWithoutCommonHeader = false;
if (!isa<SExtInst>(&I))
return false;
Type *ConsideredSExtType =
Type::getInt64Ty(I.getParent()->getParent()->getContext());
if (I.getType() != ConsideredSExtType)
return false;
// See if the sext is the one with the right type and used in at least one
// GetElementPtrInst.
for (const User *U : I.users()) {
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
Considerable = true;
// A getelementptr is considered as "complex" if it has more than 2
// operands. We will promote a SExt used in such complex GEP as we
// expect some computation to be merged if they are done on 64 bits.
if (GEPInst->getNumOperands() > 2) {
AllowPromotionWithoutCommonHeader = true;
break;
}
}
}
return Considerable;
}
unsigned AArch64TTIImpl::getCacheLineSize() {
return ST->getCacheLineSize();
}
unsigned AArch64TTIImpl::getPrefetchDistance() {
return ST->getPrefetchDistance();
}
unsigned AArch64TTIImpl::getMinPrefetchStride() {
return ST->getMinPrefetchStride();
}
unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
return ST->getMaxPrefetchIterationsAhead();
}