forked from OSchip/llvm-project
1372 lines
52 KiB
C++
1372 lines
52 KiB
C++
//===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//
|
|
// Loading constants inline is expensive on CSKY and it's in general better
|
|
// to place the constant nearby in code space and then it can be loaded with a
|
|
// simple 16/32 bit load instruction like lrw.
|
|
//
|
|
// The constants can be not just numbers but addresses of functions and labels.
|
|
// This can be particularly helpful in static relocation mode for embedded
|
|
// non-linux targets.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CSKY.h"
|
|
#include "CSKYConstantPoolValue.h"
|
|
#include "CSKYMachineFunctionInfo.h"
|
|
#include "CSKYSubtarget.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "CSKY-constant-islands"
|
|
|
|
STATISTIC(NumCPEs, "Number of constpool entries");
|
|
STATISTIC(NumSplit, "Number of uncond branches inserted");
|
|
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
|
|
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
|
|
|
|
namespace {
|
|
|
|
using Iter = MachineBasicBlock::iterator;
|
|
using ReverseIter = MachineBasicBlock::reverse_iterator;
|
|
|
|
/// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY
|
|
/// requires constant pool entries to be scattered among the instructions
|
|
/// inside a function. To do this, it completely ignores the normal LLVM
|
|
/// constant pool; instead, it places constants wherever it feels like with
|
|
/// special instructions.
|
|
///
|
|
/// The terminology used in this pass includes:
|
|
/// Islands - Clumps of constants placed in the function.
|
|
/// Water - Potential places where an island could be formed.
|
|
/// CPE - A constant pool entry that has been placed somewhere, which
|
|
/// tracks a list of users.
|
|
|
|
class CSKYConstantIslands : public MachineFunctionPass {
|
|
/// BasicBlockInfo - Information about the offset and size of a single
|
|
/// basic block.
|
|
struct BasicBlockInfo {
|
|
/// Offset - Distance from the beginning of the function to the beginning
|
|
/// of this basic block.
|
|
///
|
|
/// Offsets are computed assuming worst case padding before an aligned
|
|
/// block. This means that subtracting basic block offsets always gives a
|
|
/// conservative estimate of the real distance which may be smaller.
|
|
///
|
|
/// Because worst case padding is used, the computed offset of an aligned
|
|
/// block may not actually be aligned.
|
|
unsigned Offset = 0;
|
|
|
|
/// Size - Size of the basic block in bytes. If the block contains
|
|
/// inline assembly, this is a worst case estimate.
|
|
///
|
|
/// The size does not include any alignment padding whether from the
|
|
/// beginning of the block, or from an aligned jump table at the end.
|
|
unsigned Size = 0;
|
|
|
|
BasicBlockInfo() = default;
|
|
|
|
unsigned postOffset() const { return Offset + Size; }
|
|
};
|
|
|
|
std::vector<BasicBlockInfo> BBInfo;
|
|
|
|
/// WaterList - A sorted list of basic blocks where islands could be placed
|
|
/// (i.e. blocks that don't fall through to the following block, due
|
|
/// to a return, unreachable, or unconditional branch).
|
|
std::vector<MachineBasicBlock *> WaterList;
|
|
|
|
/// NewWaterList - The subset of WaterList that was created since the
|
|
/// previous iteration by inserting unconditional branches.
|
|
SmallSet<MachineBasicBlock *, 4> NewWaterList;
|
|
|
|
using water_iterator = std::vector<MachineBasicBlock *>::iterator;
|
|
|
|
/// CPUser - One user of a constant pool, keeping the machine instruction
|
|
/// pointer, the constant pool being referenced, and the max displacement
|
|
/// allowed from the instruction to the CP. The HighWaterMark records the
|
|
/// highest basic block where a new CPEntry can be placed. To ensure this
|
|
/// pass terminates, the CP entries are initially placed at the end of the
|
|
/// function and then move monotonically to lower addresses. The
|
|
/// exception to this rule is when the current CP entry for a particular
|
|
/// CPUser is out of range, but there is another CP entry for the same
|
|
/// constant value in range. We want to use the existing in-range CP
|
|
/// entry, but if it later moves out of range, the search for new water
|
|
/// should resume where it left off. The HighWaterMark is used to record
|
|
/// that point.
|
|
struct CPUser {
|
|
MachineInstr *MI;
|
|
MachineInstr *CPEMI;
|
|
MachineBasicBlock *HighWaterMark;
|
|
|
|
private:
|
|
unsigned MaxDisp;
|
|
|
|
public:
|
|
bool NegOk;
|
|
|
|
CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg)
|
|
: MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) {
|
|
HighWaterMark = CPEMI->getParent();
|
|
}
|
|
|
|
/// getMaxDisp - Returns the maximum displacement supported by MI.
|
|
unsigned getMaxDisp() const { return MaxDisp - 16; }
|
|
|
|
void setMaxDisp(unsigned Val) { MaxDisp = Val; }
|
|
};
|
|
|
|
/// CPUsers - Keep track of all of the machine instructions that use various
|
|
/// constant pools and their max displacement.
|
|
std::vector<CPUser> CPUsers;
|
|
|
|
/// CPEntry - One per constant pool entry, keeping the machine instruction
|
|
/// pointer, the constpool index, and the number of CPUser's which
|
|
/// reference this entry.
|
|
struct CPEntry {
|
|
MachineInstr *CPEMI;
|
|
unsigned CPI;
|
|
unsigned RefCount;
|
|
|
|
CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0)
|
|
: CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {}
|
|
};
|
|
|
|
/// CPEntries - Keep track of all of the constant pool entry machine
|
|
/// instructions. For each original constpool index (i.e. those that
|
|
/// existed upon entry to this pass), it keeps a vector of entries.
|
|
/// Original elements are cloned as we go along; the clones are
|
|
/// put in the vector of the original element, but have distinct CPIs.
|
|
std::vector<std::vector<CPEntry>> CPEntries;
|
|
|
|
/// ImmBranch - One per immediate branch, keeping the machine instruction
|
|
/// pointer, conditional or unconditional, the max displacement,
|
|
/// and (if isCond is true) the corresponding unconditional branch
|
|
/// opcode.
|
|
struct ImmBranch {
|
|
MachineInstr *MI;
|
|
unsigned MaxDisp : 31;
|
|
bool IsCond : 1;
|
|
int UncondBr;
|
|
|
|
ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr)
|
|
: MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {}
|
|
};
|
|
|
|
/// ImmBranches - Keep track of all the immediate branch instructions.
|
|
///
|
|
std::vector<ImmBranch> ImmBranches;
|
|
|
|
const CSKYSubtarget *STI = nullptr;
|
|
const CSKYInstrInfo *TII;
|
|
CSKYMachineFunctionInfo *MFI;
|
|
MachineFunction *MF = nullptr;
|
|
MachineConstantPool *MCP = nullptr;
|
|
|
|
unsigned PICLabelUId;
|
|
|
|
void initPICLabelUId(unsigned UId) { PICLabelUId = UId; }
|
|
|
|
unsigned createPICLabelUId() { return PICLabelUId++; }
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
CSKYConstantIslands() : MachineFunctionPass(ID) {}
|
|
|
|
StringRef getPassName() const override { return "CSKY Constant Islands"; }
|
|
|
|
bool runOnMachineFunction(MachineFunction &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs);
|
|
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
|
|
Align getCPEAlign(const MachineInstr &CPEMI);
|
|
void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs);
|
|
unsigned getOffsetOf(MachineInstr *MI) const;
|
|
unsigned getUserOffset(CPUser &) const;
|
|
void dumpBBs();
|
|
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp,
|
|
bool NegativeOK);
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
|
|
const CPUser &U);
|
|
|
|
void computeBlockSize(MachineBasicBlock *MBB);
|
|
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
|
|
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
|
|
void adjustBBOffsetsAfter(MachineBasicBlock *BB);
|
|
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI);
|
|
int findInRangeCPEntry(CPUser &U, unsigned UserOffset);
|
|
bool findAvailableWater(CPUser &U, unsigned UserOffset,
|
|
water_iterator &WaterIter);
|
|
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB);
|
|
bool handleConstantPoolUser(unsigned CPUserIndex);
|
|
void removeDeadCPEMI(MachineInstr *CPEMI);
|
|
bool removeUnusedCPEntries();
|
|
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
|
|
MachineInstr *CPEMI, unsigned Disp, bool NegOk,
|
|
bool DoDump = false);
|
|
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U,
|
|
unsigned &Growth);
|
|
bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
|
|
bool fixupImmediateBr(ImmBranch &Br);
|
|
bool fixupConditionalBr(ImmBranch &Br);
|
|
bool fixupUnconditionalBr(ImmBranch &Br);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char CSKYConstantIslands::ID = 0;
|
|
|
|
bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
|
|
unsigned TrialOffset,
|
|
const CPUser &U) {
|
|
return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// print block size and offset information - debugging
|
|
LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() {
|
|
for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) {
|
|
const BasicBlockInfo &BBI = BBInfo[J];
|
|
dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
|
|
<< format(" size=%#x\n", BBInfo[J].Size);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) {
|
|
MF = &Mf;
|
|
MCP = Mf.getConstantPool();
|
|
STI = &static_cast<const CSKYSubtarget &>(Mf.getSubtarget());
|
|
|
|
LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: "
|
|
<< MCP->getConstants().size() << " CP entries, aligned to "
|
|
<< MCP->getConstantPoolAlign().value() << " bytes *****\n");
|
|
|
|
TII = STI->getInstrInfo();
|
|
MFI = MF->getInfo<CSKYMachineFunctionInfo>();
|
|
|
|
// This pass invalidates liveness information when it splits basic blocks.
|
|
MF->getRegInfo().invalidateLiveness();
|
|
|
|
// Renumber all of the machine basic blocks in the function, guaranteeing that
|
|
// the numbers agree with the position of the block in the function.
|
|
MF->RenumberBlocks();
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Perform the initial placement of the constant pool entries. To start with,
|
|
// we put them all at the end of the function.
|
|
std::vector<MachineInstr *> CPEMIs;
|
|
if (!MCP->isEmpty())
|
|
doInitialPlacement(CPEMIs);
|
|
|
|
/// The next UID to take is the first unused one.
|
|
initPICLabelUId(CPEMIs.size());
|
|
|
|
// Do the initial scan of the function, building up information about the
|
|
// sizes of each block, the location of all the water, and finding all of the
|
|
// constant pool users.
|
|
initializeFunctionInfo(CPEMIs);
|
|
CPEMIs.clear();
|
|
LLVM_DEBUG(dumpBBs());
|
|
|
|
/// Remove dead constant pool entries.
|
|
MadeChange |= removeUnusedCPEntries();
|
|
|
|
// Iteratively place constant pool entries and fix up branches until there
|
|
// is no change.
|
|
unsigned NoCPIters = 0, NoBRIters = 0;
|
|
(void)NoBRIters;
|
|
while (true) {
|
|
LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
|
|
bool CPChange = false;
|
|
for (unsigned I = 0, E = CPUsers.size(); I != E; ++I)
|
|
CPChange |= handleConstantPoolUser(I);
|
|
if (CPChange && ++NoCPIters > 30)
|
|
report_fatal_error("Constant Island pass failed to converge!");
|
|
LLVM_DEBUG(dumpBBs());
|
|
|
|
// Clear NewWaterList now. If we split a block for branches, it should
|
|
// appear as "new water" for the next iteration of constant pool placement.
|
|
NewWaterList.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
|
|
bool BRChange = false;
|
|
for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I)
|
|
BRChange |= fixupImmediateBr(ImmBranches[I]);
|
|
if (BRChange && ++NoBRIters > 30)
|
|
report_fatal_error("Branch Fix Up pass failed to converge!");
|
|
LLVM_DEBUG(dumpBBs());
|
|
if (!CPChange && !BRChange)
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
|
|
|
|
BBInfo.clear();
|
|
WaterList.clear();
|
|
CPUsers.clear();
|
|
CPEntries.clear();
|
|
ImmBranches.clear();
|
|
return MadeChange;
|
|
}
|
|
|
|
/// doInitialPlacement - Perform the initial placement of the constant pool
|
|
/// entries. To start with, we put them all at the end of the function.
|
|
void CSKYConstantIslands::doInitialPlacement(
|
|
std::vector<MachineInstr *> &CPEMIs) {
|
|
// Create the basic block to hold the CPE's.
|
|
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
|
|
MF->push_back(BB);
|
|
|
|
// MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
|
|
const Align MaxAlign = MCP->getConstantPoolAlign();
|
|
|
|
// Mark the basic block as required by the const-pool.
|
|
BB->setAlignment(Align(2));
|
|
|
|
// The function needs to be as aligned as the basic blocks. The linker may
|
|
// move functions around based on their alignment.
|
|
MF->ensureAlignment(BB->getAlignment());
|
|
|
|
// Order the entries in BB by descending alignment. That ensures correct
|
|
// alignment of all entries as long as BB is sufficiently aligned. Keep
|
|
// track of the insertion point for each alignment. We are going to bucket
|
|
// sort the entries as they are created.
|
|
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
|
|
BB->end());
|
|
|
|
// Add all of the constants from the constant pool to the end block, use an
|
|
// identity mapping of CPI's to CPE's.
|
|
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
|
|
|
|
const DataLayout &TD = MF->getDataLayout();
|
|
for (unsigned I = 0, E = CPs.size(); I != E; ++I) {
|
|
unsigned Size = CPs[I].getSizeInBytes(TD);
|
|
assert(Size >= 4 && "Too small constant pool entry");
|
|
Align Alignment = CPs[I].getAlign();
|
|
// Verify that all constant pool entries are a multiple of their alignment.
|
|
// If not, we would have to pad them out so that instructions stay aligned.
|
|
assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
|
|
|
|
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
|
|
unsigned LogAlign = Log2(Alignment);
|
|
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
|
|
|
|
MachineInstr *CPEMI =
|
|
BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
|
|
.addImm(I)
|
|
.addConstantPoolIndex(I)
|
|
.addImm(Size);
|
|
|
|
CPEMIs.push_back(CPEMI);
|
|
|
|
// Ensure that future entries with higher alignment get inserted before
|
|
// CPEMI. This is bucket sort with iterators.
|
|
for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A)
|
|
if (InsPoint[A] == InsAt)
|
|
InsPoint[A] = CPEMI;
|
|
// Add a new CPEntry, but no corresponding CPUser yet.
|
|
CPEntries.emplace_back(1, CPEntry(CPEMI, I));
|
|
++NumCPEs;
|
|
LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = "
|
|
<< Size << ", align = " << Alignment.value() << '\n');
|
|
}
|
|
LLVM_DEBUG(BB->dump());
|
|
}
|
|
|
|
/// BBHasFallthrough - Return true if the specified basic block can fallthrough
|
|
/// into the block immediately after it.
|
|
static bool bbHasFallthrough(MachineBasicBlock *MBB) {
|
|
// Get the next machine basic block in the function.
|
|
MachineFunction::iterator MBBI = MBB->getIterator();
|
|
// Can't fall off end of function.
|
|
if (std::next(MBBI) == MBB->getParent()->end())
|
|
return false;
|
|
|
|
MachineBasicBlock *NextBB = &*std::next(MBBI);
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end();
|
|
I != E; ++I)
|
|
if (*I == NextBB)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
|
|
/// look up the corresponding CPEntry.
|
|
CSKYConstantIslands::CPEntry *
|
|
CSKYConstantIslands::findConstPoolEntry(unsigned CPI,
|
|
const MachineInstr *CPEMI) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
// Number of entries per constpool index should be small, just do a
|
|
// linear search.
|
|
for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
|
|
if (CPEs[I].CPEMI == CPEMI)
|
|
return &CPEs[I];
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// getCPEAlign - Returns the required alignment of the constant pool entry
|
|
/// represented by CPEMI. Alignment is measured in log2(bytes) units.
|
|
Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
|
|
assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY);
|
|
|
|
unsigned CPI = CPEMI.getOperand(1).getIndex();
|
|
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
|
|
return MCP->getConstants()[CPI].getAlign();
|
|
}
|
|
|
|
/// initializeFunctionInfo - Do the initial scan of the function, building up
|
|
/// information about the sizes of each block, the location of all the water,
|
|
/// and finding all of the constant pool users.
|
|
void CSKYConstantIslands::initializeFunctionInfo(
|
|
const std::vector<MachineInstr *> &CPEMIs) {
|
|
BBInfo.clear();
|
|
BBInfo.resize(MF->getNumBlockIDs());
|
|
|
|
// First thing, compute the size of all basic blocks, and see if the function
|
|
// has any inline assembly in it. If so, we have to be conservative about
|
|
// alignment assumptions, as we don't know for sure the size of any
|
|
// instructions in the inline assembly.
|
|
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
|
|
computeBlockSize(&*I);
|
|
|
|
// Compute block offsets.
|
|
adjustBBOffsetsAfter(&MF->front());
|
|
|
|
// Now go back through the instructions and build up our data structures.
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
// If this block doesn't fall through into the next MBB, then this is
|
|
// 'water' that a constant pool island could be placed.
|
|
if (!bbHasFallthrough(&MBB))
|
|
WaterList.push_back(&MBB);
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
int Opc = MI.getOpcode();
|
|
if (MI.isBranch() && !MI.isIndirectBranch()) {
|
|
bool IsCond = MI.isConditionalBranch();
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
int UOpc = CSKY::BR32;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case CSKY::BR16:
|
|
case CSKY::BF16:
|
|
case CSKY::BT16:
|
|
Bits = 10;
|
|
Scale = 2;
|
|
break;
|
|
default:
|
|
Bits = 16;
|
|
Scale = 2;
|
|
break;
|
|
}
|
|
|
|
// Record this immediate branch.
|
|
unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
|
|
ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc));
|
|
}
|
|
|
|
if (Opc == CSKY::CONSTPOOL_ENTRY)
|
|
continue;
|
|
|
|
// Scan the instructions for constant pool operands.
|
|
for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op)
|
|
if (MI.getOperand(Op).isCPI()) {
|
|
// We found one. The addressing mode tells us the max displacement
|
|
// from the PC that this instruction permits.
|
|
|
|
// Basic size info comes from the TSFlags field.
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
bool NegOk = false;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unknown addressing mode for CP reference!");
|
|
case CSKY::MOVIH32:
|
|
case CSKY::ORI32:
|
|
continue;
|
|
case CSKY::PseudoTLSLA32:
|
|
case CSKY::JSRI32:
|
|
case CSKY::JMPI32:
|
|
case CSKY::LRW32:
|
|
case CSKY::LRW32_Gen:
|
|
Bits = 16;
|
|
Scale = 4;
|
|
break;
|
|
case CSKY::GRS32:
|
|
Bits = 17;
|
|
Scale = 2;
|
|
NegOk = true;
|
|
break;
|
|
}
|
|
// Remember that this is a user of a CP entry.
|
|
unsigned CPI = MI.getOperand(Op).getIndex();
|
|
MachineInstr *CPEMI = CPEMIs[CPI];
|
|
unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
|
|
CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk));
|
|
|
|
// Increment corresponding CPEntry reference count.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Cannot find a corresponding CPEntry!");
|
|
CPE->RefCount++;
|
|
|
|
// Instructions can only use one CP entry, don't bother scanning the
|
|
// rest of the operands.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// computeBlockSize - Compute the size and some alignment information for MBB.
|
|
/// This function updates BBInfo directly.
|
|
void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
|
|
BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
|
|
BBI.Size = 0;
|
|
|
|
for (const MachineInstr &MI : *MBB)
|
|
BBI.Size += TII->getInstSizeInBytes(MI);
|
|
}
|
|
|
|
/// getOffsetOf - Return the current offset of the specified machine instruction
|
|
/// from the start of the function. This offset changes as stuff is moved
|
|
/// around inside the function.
|
|
unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
// The offset is composed of two things: the sum of the sizes of all MBB's
|
|
// before this instruction's block, and the offset from the start of the block
|
|
// it is in.
|
|
unsigned Offset = BBInfo[MBB->getNumber()].Offset;
|
|
|
|
// Sum instructions before MI in MBB.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
|
|
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
|
|
Offset += TII->getInstSizeInBytes(*I);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
|
|
/// ID.
|
|
static bool compareMbbNumbers(const MachineBasicBlock *LHS,
|
|
const MachineBasicBlock *RHS) {
|
|
return LHS->getNumber() < RHS->getNumber();
|
|
}
|
|
|
|
/// updateForInsertedWaterBlock - When a block is newly inserted into the
|
|
/// machine function, it upsets all of the block numbers. Renumber the blocks
|
|
/// and update the arrays that parallel this numbering.
|
|
void CSKYConstantIslands::updateForInsertedWaterBlock(
|
|
MachineBasicBlock *NewBB) {
|
|
// Renumber the MBB's to keep them consecutive.
|
|
NewBB->getParent()->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add NewMBB as having
|
|
// available water after it.
|
|
water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers);
|
|
WaterList.insert(IP, NewBB);
|
|
}
|
|
|
|
unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const {
|
|
unsigned UserOffset = getOffsetOf(U.MI);
|
|
|
|
UserOffset &= ~3u;
|
|
|
|
return UserOffset;
|
|
}
|
|
|
|
/// Split the basic block containing MI into two blocks, which are joined by
|
|
/// an unconditional branch. Update data structures and renumber blocks to
|
|
/// account for this change and returns the newly created block.
|
|
MachineBasicBlock *
|
|
CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
|
|
MachineBasicBlock *OrigBB = MI.getParent();
|
|
|
|
// Create a new MBB for the code after the OrigBB.
|
|
MachineBasicBlock *NewBB =
|
|
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = ++OrigBB->getIterator();
|
|
MF->insert(MBBI, NewBB);
|
|
|
|
// Splice the instructions starting with MI over to NewBB.
|
|
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
|
|
|
|
// Add an unconditional branch from OrigBB to NewBB.
|
|
// Note the new unconditional branch is not being recorded.
|
|
// There doesn't seem to be meaningful DebugInfo available; this doesn't
|
|
// correspond to anything in the source.
|
|
|
|
// TODO: Add support for 16bit instr.
|
|
BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB);
|
|
++NumSplit;
|
|
|
|
// Update the CFG. All succs of OrigBB are now succs of NewBB.
|
|
NewBB->transferSuccessors(OrigBB);
|
|
|
|
// OrigBB branches to NewBB.
|
|
OrigBB->addSuccessor(NewBB);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
// This is almost the same as updateForInsertedWaterBlock, except that
|
|
// the Water goes after OrigBB, not NewBB.
|
|
MF->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add OrigMBB as having
|
|
// available water after it (but not if it's already there, which happens
|
|
// when splitting before a conditional branch that is followed by an
|
|
// unconditional branch - in that case we want to insert NewBB).
|
|
water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers);
|
|
MachineBasicBlock *WaterBB = *IP;
|
|
if (WaterBB == OrigBB)
|
|
WaterList.insert(std::next(IP), NewBB);
|
|
else
|
|
WaterList.insert(IP, OrigBB);
|
|
NewWaterList.insert(OrigBB);
|
|
|
|
// Figure out how large the OrigBB is. As the first half of the original
|
|
// block, it cannot contain a tablejump. The size includes
|
|
// the new jump we added. (It should be possible to do this without
|
|
// recounting everything, but it's very confusing, and this is rarely
|
|
// executed.)
|
|
computeBlockSize(OrigBB);
|
|
|
|
// Figure out how large the NewMBB is. As the second half of the original
|
|
// block, it may contain a tablejump.
|
|
computeBlockSize(NewBB);
|
|
|
|
// All BBOffsets following these blocks must be modified.
|
|
adjustBBOffsetsAfter(OrigBB);
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
|
|
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
|
|
/// constant pool entry).
|
|
bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
|
|
unsigned TrialOffset,
|
|
unsigned MaxDisp, bool NegativeOK) {
|
|
if (UserOffset <= TrialOffset) {
|
|
// User before the Trial.
|
|
if (TrialOffset - UserOffset <= MaxDisp)
|
|
return true;
|
|
} else if (NegativeOK) {
|
|
if (UserOffset - TrialOffset <= MaxDisp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isWaterInRange - Returns true if a CPE placed after the specified
|
|
/// Water (a basic block) will be in range for the specific MI.
|
|
///
|
|
/// Compute how much the function will grow by inserting a CPE after Water.
|
|
bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset,
|
|
MachineBasicBlock *Water, CPUser &U,
|
|
unsigned &Growth) {
|
|
unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
|
|
unsigned NextBlockOffset;
|
|
Align NextBlockAlignment;
|
|
MachineFunction::const_iterator NextBlock = ++Water->getIterator();
|
|
if (NextBlock == MF->end()) {
|
|
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
|
|
NextBlockAlignment = Align(4);
|
|
} else {
|
|
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
|
|
NextBlockAlignment = NextBlock->getAlignment();
|
|
}
|
|
unsigned Size = U.CPEMI->getOperand(2).getImm();
|
|
unsigned CPEEnd = CPEOffset + Size;
|
|
|
|
// The CPE may be able to hide in the alignment padding before the next
|
|
// block. It may also cause more padding to be required if it is more aligned
|
|
// that the next block.
|
|
if (CPEEnd > NextBlockOffset) {
|
|
Growth = CPEEnd - NextBlockOffset;
|
|
// Compute the padding that would go at the end of the CPE to align the next
|
|
// block.
|
|
Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
|
|
|
|
// If the CPE is to be inserted before the instruction, that will raise
|
|
// the offset of the instruction. Also account for unknown alignment padding
|
|
// in blocks between CPE and the user.
|
|
if (CPEOffset < UserOffset)
|
|
UserOffset += Growth;
|
|
} else
|
|
// CPE fits in existing padding.
|
|
Growth = 0;
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, U);
|
|
}
|
|
|
|
/// isCPEntryInRange - Returns true if the distance between specific MI and
|
|
/// specific ConstPool entry instruction can fit in MI's displacement field.
|
|
bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI,
|
|
unsigned UserOffset,
|
|
MachineInstr *CPEMI,
|
|
unsigned MaxDisp, bool NegOk,
|
|
bool DoDump) {
|
|
unsigned CPEOffset = getOffsetOf(CPEMI);
|
|
|
|
if (DoDump) {
|
|
LLVM_DEBUG({
|
|
unsigned Block = MI->getParent()->getNumber();
|
|
const BasicBlockInfo &BBI = BBInfo[Block];
|
|
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
|
|
<< " max delta=" << MaxDisp
|
|
<< format(" insn address=%#x", UserOffset) << " in "
|
|
<< printMBBReference(*MI->getParent()) << ": "
|
|
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
|
|
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
|
|
int(CPEOffset - UserOffset));
|
|
});
|
|
}
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
|
|
/// unconditionally branches to its only successor.
|
|
static bool bbIsJumpedOver(MachineBasicBlock *MBB) {
|
|
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
|
|
return false;
|
|
MachineBasicBlock *Succ = *MBB->succ_begin();
|
|
MachineBasicBlock *Pred = *MBB->pred_begin();
|
|
MachineInstr *PredMI = &Pred->back();
|
|
if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */)
|
|
return PredMI->getOperand(0).getMBB() == Succ;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
|
|
unsigned BBNum = BB->getNumber();
|
|
for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) {
|
|
// Get the offset and known bits at the end of the layout predecessor.
|
|
// Include the alignment of the current block.
|
|
unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size;
|
|
BBInfo[I].Offset = Offset;
|
|
}
|
|
}
|
|
|
|
/// decrementCPEReferenceCount - find the constant pool entry with index CPI
|
|
/// and instruction CPEMI, and decrement its refcount. If the refcount
|
|
/// becomes 0 remove the entry and instruction. Returns true if we removed
|
|
/// the entry, false if we didn't.
|
|
bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI,
|
|
MachineInstr *CPEMI) {
|
|
// Find the old entry. Eliminate it if it is no longer used.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Unexpected!");
|
|
if (--CPE->RefCount == 0) {
|
|
removeDeadCPEMI(CPEMI);
|
|
CPE->CPEMI = nullptr;
|
|
--NumCPEs;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
|
|
/// if not, see if an in-range clone of the CPE is in range, and if so,
|
|
/// change the data structures so the user references the clone. Returns:
|
|
/// 0 = no existing entry found
|
|
/// 1 = entry found, and there were no code insertions or deletions
|
|
/// 2 = entry found, and there were code insertions or deletions
|
|
int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) {
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
|
|
// Check to see if the CPE is already in-range.
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
|
|
true)) {
|
|
LLVM_DEBUG(dbgs() << "In range\n");
|
|
return 1;
|
|
}
|
|
|
|
// No. Look for previously created clones of the CPE that are in range.
|
|
unsigned CPI = CPEMI->getOperand(1).getIndex();
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
|
|
// We already tried this one
|
|
if (CPEs[I].CPEMI == CPEMI)
|
|
continue;
|
|
// Removing CPEs can leave empty entries, skip
|
|
if (CPEs[I].CPEMI == nullptr)
|
|
continue;
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(),
|
|
U.NegOk)) {
|
|
LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
|
|
<< CPEs[I].CPI << "\n");
|
|
// Point the CPUser node to the replacement
|
|
U.CPEMI = CPEs[I].CPEMI;
|
|
// Change the CPI in the instruction operand to refer to the clone.
|
|
for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J)
|
|
if (UserMI->getOperand(J).isCPI()) {
|
|
UserMI->getOperand(J).setIndex(CPEs[I].CPI);
|
|
break;
|
|
}
|
|
// Adjust the refcount of the clone...
|
|
CPEs[I].RefCount++;
|
|
// ...and the original. If we didn't remove the old entry, none of the
|
|
// addresses changed, so we don't need another pass.
|
|
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
|
|
/// the specific unconditional branch instruction.
|
|
static inline unsigned getUnconditionalBrDisp(int Opc) {
|
|
unsigned Bits, Scale;
|
|
|
|
switch (Opc) {
|
|
case CSKY::BR16:
|
|
Bits = 10;
|
|
Scale = 2;
|
|
break;
|
|
case CSKY::BR32:
|
|
Bits = 16;
|
|
Scale = 2;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
|
|
return MaxOffs;
|
|
}
|
|
|
|
/// findAvailableWater - Look for an existing entry in the WaterList in which
|
|
/// we can place the CPE referenced from U so it's within range of U's MI.
|
|
/// Returns true if found, false if not. If it returns true, WaterIter
|
|
/// is set to the WaterList entry.
|
|
/// To ensure that this pass
|
|
/// terminates, the CPE location for a particular CPUser is only allowed to
|
|
/// move to a lower address, so search backward from the end of the list and
|
|
/// prefer the first water that is in range.
|
|
bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
|
|
water_iterator &WaterIter) {
|
|
if (WaterList.empty())
|
|
return false;
|
|
|
|
unsigned BestGrowth = ~0u;
|
|
for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
|
|
--IP) {
|
|
MachineBasicBlock *WaterBB = *IP;
|
|
// Check if water is in range and is either at a lower address than the
|
|
// current "high water mark" or a new water block that was created since
|
|
// the previous iteration by inserting an unconditional branch. In the
|
|
// latter case, we want to allow resetting the high water mark back to
|
|
// this new water since we haven't seen it before. Inserting branches
|
|
// should be relatively uncommon and when it does happen, we want to be
|
|
// sure to take advantage of it for all the CPEs near that block, so that
|
|
// we don't insert more branches than necessary.
|
|
unsigned Growth;
|
|
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
|
|
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
|
|
NewWaterList.count(WaterBB)) &&
|
|
Growth < BestGrowth) {
|
|
// This is the least amount of required padding seen so far.
|
|
BestGrowth = Growth;
|
|
WaterIter = IP;
|
|
LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
|
|
<< " Growth=" << Growth << '\n');
|
|
|
|
// Keep looking unless it is perfect.
|
|
if (BestGrowth == 0)
|
|
return true;
|
|
}
|
|
if (IP == B)
|
|
break;
|
|
}
|
|
return BestGrowth != ~0u;
|
|
}
|
|
|
|
/// createNewWater - No existing WaterList entry will work for
|
|
/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
|
|
/// block is used if in range, and the conditional branch munged so control
|
|
/// flow is correct. Otherwise the block is split to create a hole with an
|
|
/// unconditional branch around it. In either case NewMBB is set to a
|
|
/// block following which the new island can be inserted (the WaterList
|
|
/// is not adjusted).
|
|
void CSKYConstantIslands::createNewWater(unsigned CPUserIndex,
|
|
unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
MachineBasicBlock *UserMBB = UserMI->getParent();
|
|
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
|
|
|
|
// If the block does not end in an unconditional branch already, and if the
|
|
// end of the block is within range, make new water there.
|
|
if (bbHasFallthrough(UserMBB)) {
|
|
// Size of branch to insert.
|
|
unsigned Delta = 4;
|
|
// Compute the offset where the CPE will begin.
|
|
unsigned CPEOffset = UserBBI.postOffset() + Delta;
|
|
|
|
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
|
|
LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
|
|
<< format(", expected CPE offset %#x\n", CPEOffset));
|
|
NewMBB = &*++UserMBB->getIterator();
|
|
// Add an unconditional branch from UserMBB to fallthrough block. Record
|
|
// it for branch lengthening; this new branch will not get out of range,
|
|
// but if the preceding conditional branch is out of range, the targets
|
|
// will be exchanged, and the altered branch may be out of range, so the
|
|
// machinery has to know about it.
|
|
|
|
// TODO: Add support for 16bit instr.
|
|
int UncondBr = CSKY::BR32;
|
|
auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
|
|
.addMBB(NewMBB)
|
|
.getInstr();
|
|
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
|
|
ImmBranches.push_back(
|
|
ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr));
|
|
BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI);
|
|
adjustBBOffsetsAfter(UserMBB);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// What a big block. Find a place within the block to split it.
|
|
|
|
// Try to split the block so it's fully aligned. Compute the latest split
|
|
// point where we can add a 4-byte branch instruction, and then align to
|
|
// Align which is the largest possible alignment in the function.
|
|
const Align Align = MF->getAlignment();
|
|
unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
|
|
LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
|
|
BaseInsertOffset));
|
|
|
|
// The 4 in the following is for the unconditional branch we'll be inserting
|
|
// Alignment of the island is handled
|
|
// inside isOffsetInRange.
|
|
BaseInsertOffset -= 4;
|
|
|
|
LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
|
|
<< " la=" << Log2(Align) << '\n');
|
|
|
|
// This could point off the end of the block if we've already got constant
|
|
// pool entries following this block; only the last one is in the water list.
|
|
// Back past any possible branches (allow for a conditional and a maximally
|
|
// long unconditional).
|
|
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
|
|
BaseInsertOffset = UserBBI.postOffset() - 8;
|
|
LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
|
|
}
|
|
unsigned EndInsertOffset =
|
|
BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm();
|
|
MachineBasicBlock::iterator MI = UserMI;
|
|
++MI;
|
|
unsigned CPUIndex = CPUserIndex + 1;
|
|
unsigned NumCPUsers = CPUsers.size();
|
|
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
|
|
Offset < BaseInsertOffset;
|
|
Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
|
|
assert(MI != UserMBB->end() && "Fell off end of block");
|
|
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
|
|
CPUser &U = CPUsers[CPUIndex];
|
|
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
|
|
// Shift intertion point by one unit of alignment so it is within reach.
|
|
BaseInsertOffset -= Align.value();
|
|
EndInsertOffset -= Align.value();
|
|
}
|
|
// This is overly conservative, as we don't account for CPEMIs being
|
|
// reused within the block, but it doesn't matter much. Also assume CPEs
|
|
// are added in order with alignment padding. We may eventually be able
|
|
// to pack the aligned CPEs better.
|
|
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
|
|
CPUIndex++;
|
|
}
|
|
}
|
|
|
|
NewMBB = splitBlockBeforeInstr(*--MI);
|
|
}
|
|
|
|
/// handleConstantPoolUser - Analyze the specified user, checking to see if it
|
|
/// is out-of-range. If so, pick up the constant pool value and move it some
|
|
/// place in-range. Return true if we changed any addresses (thus must run
|
|
/// another pass of branch lengthening), false otherwise.
|
|
bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
unsigned CPI = CPEMI->getOperand(1).getIndex();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
// Compute this only once, it's expensive.
|
|
unsigned UserOffset = getUserOffset(U);
|
|
|
|
// See if the current entry is within range, or there is a clone of it
|
|
// in range.
|
|
int result = findInRangeCPEntry(U, UserOffset);
|
|
if (result == 1)
|
|
return false;
|
|
if (result == 2)
|
|
return true;
|
|
|
|
// Look for water where we can place this CPE.
|
|
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
|
|
MachineBasicBlock *NewMBB;
|
|
water_iterator IP;
|
|
if (findAvailableWater(U, UserOffset, IP)) {
|
|
LLVM_DEBUG(dbgs() << "Found water in range\n");
|
|
MachineBasicBlock *WaterBB = *IP;
|
|
|
|
// If the original WaterList entry was "new water" on this iteration,
|
|
// propagate that to the new island. This is just keeping NewWaterList
|
|
// updated to match the WaterList, which will be updated below.
|
|
if (NewWaterList.erase(WaterBB))
|
|
NewWaterList.insert(NewIsland);
|
|
|
|
// The new CPE goes before the following block (NewMBB).
|
|
NewMBB = &*++WaterBB->getIterator();
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "No water found\n");
|
|
createNewWater(CPUserIndex, UserOffset, NewMBB);
|
|
|
|
// splitBlockBeforeInstr adds to WaterList, which is important when it is
|
|
// called while handling branches so that the water will be seen on the
|
|
// next iteration for constant pools, but in this context, we don't want
|
|
// it. Check for this so it will be removed from the WaterList.
|
|
// Also remove any entry from NewWaterList.
|
|
MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
|
|
IP = llvm::find(WaterList, WaterBB);
|
|
if (IP != WaterList.end())
|
|
NewWaterList.erase(WaterBB);
|
|
|
|
// We are adding new water. Update NewWaterList.
|
|
NewWaterList.insert(NewIsland);
|
|
}
|
|
|
|
// Remove the original WaterList entry; we want subsequent insertions in
|
|
// this vicinity to go after the one we're about to insert. This
|
|
// considerably reduces the number of times we have to move the same CPE
|
|
// more than once and is also important to ensure the algorithm terminates.
|
|
if (IP != WaterList.end())
|
|
WaterList.erase(IP);
|
|
|
|
// Okay, we know we can put an island before NewMBB now, do it!
|
|
MF->insert(NewMBB->getIterator(), NewIsland);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
updateForInsertedWaterBlock(NewIsland);
|
|
|
|
// Decrement the old entry, and remove it if refcount becomes 0.
|
|
decrementCPEReferenceCount(CPI, CPEMI);
|
|
|
|
// No existing clone of this CPE is within range.
|
|
// We will be generating a new clone. Get a UID for it.
|
|
unsigned ID = createPICLabelUId();
|
|
|
|
// Now that we have an island to add the CPE to, clone the original CPE and
|
|
// add it to the island.
|
|
U.HighWaterMark = NewIsland;
|
|
U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
|
|
.addImm(ID)
|
|
.addConstantPoolIndex(CPI)
|
|
.addImm(Size);
|
|
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
|
|
++NumCPEs;
|
|
|
|
// Mark the basic block as aligned as required by the const-pool entry.
|
|
NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
|
|
|
|
// Increase the size of the island block to account for the new entry.
|
|
BBInfo[NewIsland->getNumber()].Size += Size;
|
|
adjustBBOffsetsAfter(&*--NewIsland->getIterator());
|
|
|
|
// Finally, change the CPI in the instruction operand to be ID.
|
|
for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I)
|
|
if (UserMI->getOperand(I).isCPI()) {
|
|
UserMI->getOperand(I).setIndex(ID);
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
|
|
<< format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
|
|
/// sizes and offsets of impacted basic blocks.
|
|
void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
|
|
MachineBasicBlock *CPEBB = CPEMI->getParent();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
CPEMI->eraseFromParent();
|
|
BBInfo[CPEBB->getNumber()].Size -= Size;
|
|
// All succeeding offsets have the current size value added in, fix this.
|
|
if (CPEBB->empty()) {
|
|
BBInfo[CPEBB->getNumber()].Size = 0;
|
|
|
|
// This block no longer needs to be aligned.
|
|
CPEBB->setAlignment(Align(4));
|
|
} else {
|
|
// Entries are sorted by descending alignment, so realign from the front.
|
|
CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
|
|
}
|
|
|
|
adjustBBOffsetsAfter(CPEBB);
|
|
// An island has only one predecessor BB and one successor BB. Check if
|
|
// this BB's predecessor jumps directly to this BB's successor. This
|
|
// shouldn't happen currently.
|
|
assert(!bbIsJumpedOver(CPEBB) && "How did this happen?");
|
|
// FIXME: remove the empty blocks after all the work is done?
|
|
}
|
|
|
|
/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
|
|
/// are zero.
|
|
bool CSKYConstantIslands::removeUnusedCPEntries() {
|
|
unsigned MadeChange = false;
|
|
for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[I];
|
|
for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) {
|
|
if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) {
|
|
removeDeadCPEMI(CPEs[J].CPEMI);
|
|
CPEs[J].CPEMI = nullptr;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
/// isBBInRange - Returns true if the distance between specific MI and
|
|
/// specific BB can fit in MI's displacement field.
|
|
bool CSKYConstantIslands::isBBInRange(MachineInstr *MI,
|
|
MachineBasicBlock *DestBB,
|
|
unsigned MaxDisp) {
|
|
unsigned BrOffset = getOffsetOf(MI);
|
|
unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
|
|
|
|
LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
|
|
<< " from " << printMBBReference(*MI->getParent())
|
|
<< " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
|
|
<< " to " << DestOffset << " offset "
|
|
<< int(DestOffset - BrOffset) << "\t" << *MI);
|
|
|
|
if (BrOffset <= DestOffset) {
|
|
// Branch before the Dest.
|
|
if (DestOffset - BrOffset <= MaxDisp)
|
|
return true;
|
|
} else {
|
|
if (BrOffset - DestOffset <= MaxDisp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
|
|
/// away to fit in its displacement field.
|
|
bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
|
|
|
|
// Check to see if the DestBB is already in-range.
|
|
if (isBBInRange(MI, DestBB, Br.MaxDisp))
|
|
return false;
|
|
|
|
if (!Br.IsCond)
|
|
return fixupUnconditionalBr(Br);
|
|
return fixupConditionalBr(Br);
|
|
}
|
|
|
|
/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
|
|
/// too far away to fit in its displacement field. If the LR register has been
|
|
/// spilled in the epilogue, then we can use BSR to implement a far jump.
|
|
/// Otherwise, add an intermediate branch instruction to a branch.
|
|
bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
if (!MFI->isLRSpilled())
|
|
report_fatal_error("underestimated function size");
|
|
|
|
// Use BSR to implement far jump.
|
|
Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2;
|
|
MI->setDesc(TII->get(CSKY::BSR32_BR));
|
|
BBInfo[MBB->getNumber()].Size += 4;
|
|
adjustBBOffsetsAfter(MBB);
|
|
++NumUBrFixed;
|
|
|
|
LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// fixupConditionalBr - Fix up a conditional branch whose destination is too
|
|
/// far away to fit in its displacement field. It is converted to an inverse
|
|
/// conditional branch + an unconditional branch to the destination.
|
|
bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
|
|
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
Cond.push_back(MachineOperand::CreateImm(MI->getOpcode()));
|
|
Cond.push_back(MI->getOperand(0));
|
|
TII->reverseBranchCondition(Cond);
|
|
|
|
// Add an unconditional branch to the destination and invert the branch
|
|
// condition to jump over it:
|
|
// bteqz L1
|
|
// =>
|
|
// bnez L2
|
|
// b L1
|
|
// L2:
|
|
|
|
// If the branch is at the end of its MBB and that has a fall-through block,
|
|
// direct the updated conditional branch to the fall-through block. Otherwise,
|
|
// split the MBB before the next instruction.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *BMI = &MBB->back();
|
|
bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB);
|
|
|
|
++NumCBrFixed;
|
|
if (BMI != MI) {
|
|
if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
|
|
BMI->isUnconditionalBranch()) {
|
|
// Last MI in the BB is an unconditional branch. Can we simply invert the
|
|
// condition and swap destinations:
|
|
// beqz L1
|
|
// b L2
|
|
// =>
|
|
// bnez L2
|
|
// b L1
|
|
MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI);
|
|
if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << " Invert Bcc condition and swap its destination with "
|
|
<< *BMI);
|
|
BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB);
|
|
MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest);
|
|
|
|
MI->setDesc(TII->get(Cond[0].getImm()));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NeedSplit) {
|
|
splitBlockBeforeInstr(*MI);
|
|
// No need for the branch to the next block. We're adding an unconditional
|
|
// branch to the destination.
|
|
int Delta = TII->getInstSizeInBytes(MBB->back());
|
|
BBInfo[MBB->getNumber()].Size -= Delta;
|
|
MBB->back().eraseFromParent();
|
|
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
|
|
|
|
// The conditional successor will be swapped between the BBs after this, so
|
|
// update CFG.
|
|
MBB->addSuccessor(DestBB);
|
|
std::next(MBB->getIterator())->removeSuccessor(DestBB);
|
|
}
|
|
MachineBasicBlock *NextBB = &*++MBB->getIterator();
|
|
|
|
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
|
|
<< " also invert condition and change dest. to "
|
|
<< printMBBReference(*NextBB) << "\n");
|
|
|
|
// Insert a new conditional branch and a new unconditional branch.
|
|
// Also update the ImmBranch as well as adding a new entry for the new branch.
|
|
|
|
BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm()))
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addMBB(NextBB);
|
|
|
|
Br.MI = &MBB->back();
|
|
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
|
|
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
|
|
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
|
|
unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
|
|
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
|
|
|
|
// Remove the old conditional branch. It may or may not still be in MBB.
|
|
BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
|
|
MI->eraseFromParent();
|
|
adjustBBOffsetsAfter(MBB);
|
|
return true;
|
|
}
|
|
|
|
/// Returns a pass that converts branches to long branches.
|
|
FunctionPass *llvm::createCSKYConstantIslandPass() {
|
|
return new CSKYConstantIslands();
|
|
}
|
|
|
|
INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE,
|
|
"CSKY constant island placement and branch shortening pass",
|
|
false, false)
|