llvm-project/llvm/test/Transforms/LICM/sinking.ll

744 lines
21 KiB
LLVM

; RUN: opt < %s -basic-aa -licm -S | FileCheck %s
; RUN: opt < %s -debugify -basic-aa -licm -S | FileCheck %s -check-prefix=DEBUGIFY
; RUN: opt < %s -basic-aa -licm -S -enable-mssa-loop-dependency=true -verify-memoryssa | FileCheck %s
declare i32 @strlen(i8*) readonly nounwind
declare void @foo()
; Sink readonly function.
define i32 @test1(i8* %P) {
br label %Loop
Loop: ; preds = %Loop, %0
%A = call i32 @strlen( i8* %P ) readonly
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
; CHECK-LABEL: @test1(
; CHECK: Out:
; CHECK-NEXT: call i32 @strlen
; CHECK-NEXT: ret i32 %A
}
declare double @sin(double) readnone nounwind
; Sink readnone function out of loop with unknown memory behavior.
define double @test2(double %X) {
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = call double @sin( double %X ) readnone
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
; CHECK-LABEL: @test2(
; CHECK: Out:
; CHECK-NEXT: call double @sin
; CHECK-NEXT: ret double %A
}
; FIXME: Should be able to sink this case
define i32 @test2b(i32 %X) {
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = sdiv i32 10, %X
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
; CHECK-LABEL: @test2b(
; CHECK: Out:
; CHECK-NEXT: sdiv
; CHECK-NEXT: ret i32 %A
}
define double @test2c(double* %P) {
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = load double, double* %P, !invariant.load !{}
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
; CHECK-LABEL: @test2c(
; CHECK: Out:
; CHECK-NEXT: load double
; CHECK-NEXT: ret double %A
}
; This testcase checks to make sure the sinker does not cause problems with
; critical edges.
define void @test3() {
Entry:
br i1 false, label %Loop, label %Exit
Loop:
%X = add i32 0, 1
br i1 false, label %Loop, label %Exit
Exit:
%Y = phi i32 [ 0, %Entry ], [ %X, %Loop ]
ret void
; CHECK-LABEL: @test3(
; CHECK: Exit.loopexit:
; CHECK-NEXT: %X.le = add i32 0, 1
; CHECK-NEXT: br label %Exit
}
; If the result of an instruction is only used outside of the loop, sink
; the instruction to the exit blocks instead of executing it on every
; iteration of the loop.
;
define i32 @test4(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.7
; CHECK-LABEL: @test4(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret i32
}
; To reduce register pressure, if a load is hoistable out of the loop, and the
; result of the load is only used outside of the loop, sink the load instead of
; hoisting it!
;
@X = global i32 5 ; <i32*> [#uses=1]
define i32 @test5(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = load i32, i32* @X ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test5(
; CHECK: Out:
; CHECK-NEXT: %tmp.6.le = load i32, i32* @X
; CHECK-NEXT: ret i32 %tmp.6.le
}
; The loop sinker was running from the bottom of the loop to the top, causing
; it to miss opportunities to sink instructions that depended on sinking other
; instructions from the loop. Instead they got hoisted, which is better than
; leaving them in the loop, but increases register pressure pointlessly.
%Ty = type { i32, i32 }
@X2 = external global %Ty
define i32 @test6() {
br label %Loop
Loop:
%dead = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
%sunk2 = load i32, i32* %dead
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %sunk2
; CHECK-LABEL: @test6(
; CHECK: Out:
; CHECK-NEXT: %dead.le = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
; CHECK-NEXT: %sunk2.le = load i32, i32* %dead.le
; CHECK-NEXT: ret i32 %sunk2.le
}
; This testcase ensures that we can sink instructions from loops with
; multiple exits.
;
define i32 @test7(i32 %N, i1 %C) {
Entry:
br label %Loop
Loop: ; preds = %ContLoop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=2]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
br i1 %C, label %ContLoop, label %Out1
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out2
Out1: ; preds = %Loop
ret i32 %tmp.7
Out2: ; preds = %ContLoop
ret i32 %tmp.7
; CHECK-LABEL: @test7(
; CHECK: Out1:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret
; CHECK: Out2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le4, %N
; CHECK-NEXT: ret
}
; This testcase checks to make sure we can sink values which are only live on
; some exits out of the loop, and that we can do so without breaking dominator
; info.
define i32 @test8(i1 %C1, i1 %C2, i32* %P, i32* %Q) {
Entry:
br label %Loop
Loop: ; preds = %Cont, %Entry
br i1 %C1, label %Cont, label %exit1
Cont: ; preds = %Loop
%X = load i32, i32* %P ; <i32> [#uses=2]
store i32 %X, i32* %Q
%V = add i32 %X, 1 ; <i32> [#uses=1]
br i1 %C2, label %Loop, label %exit2
exit1: ; preds = %Loop
ret i32 0
exit2: ; preds = %Cont
ret i32 %V
; CHECK-LABEL: @test8(
; CHECK: exit1:
; CHECK-NEXT: ret i32 0
; CHECK: exit2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %X
; CHECK-NEXT: %V.le = add i32 %[[LCSSAPHI]], 1
; CHECK-NEXT: ret i32 %V.le
}
define void @test9() {
loopentry.2.i:
br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader
no_exit.1.i.preheader: ; preds = %loopentry.2.i
br label %no_exit.1.i
no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader
br i1 false, label %return.i, label %endif.8.i
endif.8.i: ; preds = %no_exit.1.i
%inc.1.i = add i32 0, 1 ; <i32> [#uses=1]
br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit
loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i
br label %loopentry.3.i.preheader
loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i
%arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; <i32> [#uses=0]
ret void
return.i: ; preds = %no_exit.1.i
ret void
; CHECK-LABEL: @test9(
; CHECK: loopentry.3.i.preheader.loopexit:
; CHECK-NEXT: %inc.1.i.le = add i32 0, 1
; CHECK-NEXT: br label %loopentry.3.i.preheader
}
; Potentially trapping instructions may be sunk as long as they are guaranteed
; to be executed.
define i32 @test10(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; <i32> [#uses=3]
%tmp.6 = sdiv i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test10(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: %tmp.6.le = sdiv i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: ret i32 %tmp.6.le
}
; Should delete, not sink, dead instructions.
define void @test11() {
br label %Loop
Loop:
%dead1 = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
%dead2 = getelementptr %Ty, %Ty* @X2, i64 0, i32 1
br i1 false, label %Loop, label %Out
Out:
ret void
; CHECK-LABEL: @test11(
; CHECK: Out:
; CHECK-NEXT: ret void
; The GEP in dead1 is adding a zero offset, so the DIExpression can be kept as
; a "register location".
; The GEP in dead2 is adding a 4 bytes to the pointer, so the DIExpression is
; turned into an "implicit location" using DW_OP_stack_value.
;
; DEBUGIFY-LABEL: @test11(
; DEBUGIFY: call void @llvm.dbg.value(metadata %Ty* @X2, metadata {{.*}}, metadata !DIExpression())
; DEBUGIFY: call void @llvm.dbg.value(metadata %Ty* @X2, metadata {{.*}}, metadata !DIExpression(DW_OP_plus_uconst, 4, DW_OP_stack_value))
}
@c = common global [1 x i32] zeroinitializer, align 4
; Test a *many* way nested loop with multiple exit blocks both of which exit
; multiple loop nests. This exercises LCSSA corner cases.
define i32 @PR18753(i1* %a, i1* %b, i1* %c, i1* %d) {
entry:
br label %l1.header
l1.header:
%iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ]
%arrayidx.i = getelementptr inbounds [1 x i32], [1 x i32]* @c, i64 0, i64 %iv
br label %l2.header
l2.header:
%x0 = load i1, i1* %c, align 4
br i1 %x0, label %l1.latch, label %l3.preheader
l3.preheader:
br label %l3.header
l3.header:
%x1 = load i1, i1* %d, align 4
br i1 %x1, label %l2.latch, label %l4.preheader
l4.preheader:
br label %l4.header
l4.header:
%x2 = load i1, i1* %a
br i1 %x2, label %l3.latch, label %l4.body
l4.body:
call void @f(i32* %arrayidx.i)
%x3 = load i1, i1* %b
%l = trunc i64 %iv to i32
br i1 %x3, label %l4.latch, label %exit
l4.latch:
call void @g()
%x4 = load i1, i1* %b, align 4
br i1 %x4, label %l4.header, label %exit
l3.latch:
br label %l3.header
l2.latch:
br label %l2.header
l1.latch:
%iv.next = add nsw i64 %iv, 1
br label %l1.header
exit:
%lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ]
; CHECK-LABEL: @PR18753(
; CHECK: exit:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i64 [ %iv, %l4.latch ], [ %iv, %l4.body ]
; CHECK-NEXT: %l.le = trunc i64 %[[LCSSAPHI]] to i32
; CHECK-NEXT: ret i32 %l.le
ret i32 %lcssa
}
; @test12 moved to sink-promote.ll, as it tests sinking and promotion.
; Test that we don't crash when trying to sink stores and there's no preheader
; available (which is used for creating loads that may be used by the SSA
; updater)
define void @test13() {
; CHECK-LABEL: @test13
br label %lab59
lab19:
br i1 undef, label %lab20, label %lab38
lab20:
br label %lab60
lab21:
br i1 undef, label %lab22, label %lab38
lab22:
br label %lab38
lab38:
ret void
lab59:
indirectbr i8* undef, [label %lab60, label %lab38]
lab60:
; CHECK: lab60:
; CHECK: store
; CHECK-NEXT: indirectbr
store i32 2145244101, i32* undef, align 4
indirectbr i8* undef, [label %lab21, label %lab19]
}
; Check if LICM can sink a sinkable instruction the exit blocks through
; a non-trivially replacable PHI node.
;
; CHECK-LABEL: @test14
; CHECK-LABEL: Loop:
; CHECK-NOT: mul
; CHECK-NOT: sub
;
; CHECK-LABEL: Out12.split.loop.exit:
; CHECK: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop ]
; CHECK: %[[MUL:.*]] = mul i32 %N, %[[LCSSAPHI]]
; CHECK: br label %Out12
;
; CHECK-LABEL: Out12.split.loop.exit1:
; CHECK: %[[LCSSAPHI2:.*]] = phi i32 [ %N_addr.0.pn, %Loop ]
; CHECK: %[[MUL2:.*]] = mul i32 %N, %[[LCSSAPHI2]]
; CHECK: %[[SUB:.*]] = sub i32 %[[MUL2]], %N
; CHECK: br label %Out12
;
; CHECK-LABEL: Out12:
; CHECK: phi i32 [ %[[MUL]], %Out12.split.loop.exit ], [ %[[SUB]], %Out12.split.loop.exit1 ]
define i32 @test14(i32 %N, i32 %N2, i1 %C) {
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%sink.sub = sub i32 %sink.mul, %N
%dec = add i32 %N_addr.0.pn, -1
br i1 %C, label %ContLoop, label %Out12
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out12
Out12:
%tmp = phi i32 [%sink.mul, %ContLoop], [%sink.sub, %Loop]
ret i32 %tmp
}
; In this test, splitting predecessors is not really required because the
; operations of sinkable instructions (sub and mul) are same. In this case, we
; can sink the same sinkable operations and modify the PHI to pass the operands
; to the shared operations. As of now, we split predecessors of non-trivially
; replicalbe PHIs by default in LICM because all incoming edges of a
; non-trivially replacable PHI in LCSSA is critical.
;
; CHECK-LABEL: @test15
; CHECK-LABEL: Loop:
; CHECK-NOT: mul
; CHECK-NOT: sub
;
; CHECK-LABEL: Out12.split.loop.exit:
; CHECK: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop ]
; CHECK: %[[MUL:.*]] = mul i32 %N, %[[LCSSAPHI]]
; CHECK: %[[SUB:.*]] = sub i32 %[[MUL]], %N2
; CHECK: br label %Out12
;
; CHECK-LABEL: Out12.split.loop.exit1:
; CHECK: %[[LCSSAPHI2:.*]] = phi i32 [ %N_addr.0.pn, %Loop ]
; CHECK: %[[MUL2:.*]] = mul i32 %N, %[[LCSSAPHI2]]
; CHECK: %[[SUB2:.*]] = sub i32 %[[MUL2]], %N
; CHECK: br label %Out12
;
; CHECK-LABEL: Out12:
; CHECK: phi i32 [ %[[SUB]], %Out12.split.loop.exit ], [ %[[SUB2]], %Out12.split.loop.exit1 ]
define i32 @test15(i32 %N, i32 %N2, i1 %C) {
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%sink.sub = sub i32 %sink.mul, %N
%sink.sub2 = sub i32 %sink.mul, %N2
%dec = add i32 %N_addr.0.pn, -1
br i1 %C, label %ContLoop, label %Out12
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out12
Out12:
%tmp = phi i32 [%sink.sub2, %ContLoop], [%sink.sub, %Loop]
ret i32 %tmp
}
; Sink through a non-trivially replacable PHI node which use the same sinkable
; instruction multiple times.
;
; CHECK-LABEL: @test16
; CHECK-LABEL: Loop:
; CHECK-NOT: mul
;
; CHECK-LABEL: Out.split.loop.exit:
; CHECK: %[[PHI:.*]] = phi i32 [ %l2, %ContLoop ]
; CHECK: br label %Out
;
; CHECK-LABEL: Out.split.loop.exit1:
; CHECK: %[[SINKABLE:.*]] = mul i32 %l2.lcssa, %t.le
; CHECK: br label %Out
;
; CHECK-LABEL: Out:
; CHECK: %idx = phi i32 [ %[[PHI]], %Out.split.loop.exit ], [ %[[SINKABLE]], %Out.split.loop.exit1 ]
define i32 @test16(i1 %c, i8** %P, i32* %P2, i64 %V) {
entry:
br label %loop.ph
loop.ph:
br label %Loop
Loop:
%iv = phi i64 [ 0, %loop.ph ], [ %next, %ContLoop ]
%l2 = call i32 @getv()
%t = trunc i64 %iv to i32
%sinkable = mul i32 %l2, %t
switch i32 %l2, label %ContLoop [
i32 32, label %Out
i32 46, label %Out
i32 95, label %Out
]
ContLoop:
%next = add nuw i64 %iv, 1
%c1 = call i1 @getc()
br i1 %c1, label %Loop, label %Out
Out:
%idx = phi i32 [ %l2, %ContLoop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ]
ret i32 %idx
}
; Sink a sinkable instruction through multiple non-trivially replacable PHIs in
; differect exit blocks.
;
; CHECK-LABEL: @test17
; CHECK-LABEL: Loop:
; CHECK-NOT: mul
;
; CHECK-LABEL:OutA.split.loop.exit{{.*}}:
; CHECK: %[[OP1:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop1 ]
; CHECK: %[[SINKABLE:.*]] = mul i32 %N, %[[OP1]]
; CHECK: br label %OutA
;
; CHECK-LABEL:OutA:
; CHECK: phi i32{{.*}}[ %[[SINKABLE]], %OutA.split.loop.exit{{.*}} ]
;
; CHECK-LABEL:OutB.split.loop.exit{{.*}}:
; CHECK: %[[OP2:.*]] = phi i32 [ %N_addr.0.pn, %ContLoop2 ]
; CHECK: %[[SINKABLE2:.*]] = mul i32 %N, %[[OP2]]
; CHECK: br label %OutB
;
; CHECK-LABEL:OutB:
; CHECK: phi i32 {{.*}}[ %[[SINKABLE2]], %OutB.split.loop.exit{{.*}} ]
define i32 @test17(i32 %N, i32 %N2) {
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop3 ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%c0 = call i1 @getc()
br i1 %c0 , label %ContLoop1, label %OutA
ContLoop1:
%c1 = call i1 @getc()
br i1 %c1, label %ContLoop2, label %OutA
ContLoop2:
%c2 = call i1 @getc()
br i1 %c2, label %ContLoop3, label %OutB
ContLoop3:
%c3 = call i1 @getc()
%dec = add i32 %N_addr.0.pn, -1
br i1 %c3, label %Loop, label %OutB
OutA:
%tmp1 = phi i32 [%sink.mul, %ContLoop1], [%N2, %Loop]
br label %Out12
OutB:
%tmp2 = phi i32 [%sink.mul, %ContLoop2], [%dec, %ContLoop3]
br label %Out12
Out12:
%tmp = phi i32 [%tmp1, %OutA], [%tmp2, %OutB]
ret i32 %tmp
}
; Sink a sinkable instruction through both trivially and non-trivially replacable PHIs.
;
; CHECK-LABEL: @test18
; CHECK-LABEL: Loop:
; CHECK-NOT: mul
; CHECK-NOT: sub
;
; CHECK-LABEL:Out12.split.loop.exit:
; CHECK: %[[OP:.*]] = phi i32 [ %iv, %ContLoop ]
; CHECK: %[[DEC:.*]] = phi i32 [ %dec, %ContLoop ]
; CHECK: %[[SINKMUL:.*]] = mul i32 %N, %[[OP]]
; CHECK: %[[SINKSUB:.*]] = sub i32 %[[SINKMUL]], %N2
; CHECK: br label %Out12
;
; CHECK-LABEL:Out12.split.loop.exit1:
; CHECK: %[[OP2:.*]] = phi i32 [ %iv, %Loop ]
; CHECK: %[[SINKMUL2:.*]] = mul i32 %N, %[[OP2]]
; CHECK: %[[SINKSUB2:.*]] = sub i32 %[[SINKMUL2]], %N2
; CHECK: br label %Out12
;
; CHECK-LABEL:Out12:
; CHECK: %tmp1 = phi i32 [ %[[SINKSUB]], %Out12.split.loop.exit ], [ %[[SINKSUB2]], %Out12.split.loop.exit1 ]
; CHECK: %tmp2 = phi i32 [ %[[DEC]], %Out12.split.loop.exit ], [ %[[SINKSUB2]], %Out12.split.loop.exit1 ]
; CHECK: %add = add i32 %tmp1, %tmp2
define i32 @test18(i32 %N, i32 %N2) {
Entry:
br label %Loop
Loop:
%iv = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %iv
%sink.sub = sub i32 %sink.mul, %N2
%c0 = call i1 @getc()
br i1 %c0, label %ContLoop, label %Out12
ContLoop:
%dec = add i32 %iv, -1
%c1 = call i1 @getc()
br i1 %c1, label %Loop, label %Out12
Out12:
%tmp1 = phi i32 [%sink.sub, %ContLoop], [%sink.sub, %Loop]
%tmp2 = phi i32 [%dec, %ContLoop], [%sink.sub, %Loop]
%add = add i32 %tmp1, %tmp2
ret i32 %add
}
; Do not sink an instruction through a non-trivially replacable PHI, to avoid
; assert while splitting predecessors, if the terminator of predecessor is an
; indirectbr.
; CHECK-LABEL: @test19
; CHECK-LABEL: L0:
; CHECK: %sinkable = mul
; CHECK: %sinkable2 = add
define i32 @test19(i1 %cond, i1 %cond2, i8* %address, i32 %v1) nounwind {
entry:
br label %L0
L0:
%indirect.goto.dest = select i1 %cond, i8* blockaddress(@test19, %exit), i8* %address
%v2 = call i32 @getv()
%sinkable = mul i32 %v1, %v2
%sinkable2 = add i32 %v1, %v2
indirectbr i8* %indirect.goto.dest, [label %L1, label %exit]
L1:
%indirect.goto.dest2 = select i1 %cond2, i8* blockaddress(@test19, %exit), i8* %address
indirectbr i8* %indirect.goto.dest2, [label %L0, label %exit]
exit:
%r = phi i32 [%sinkable, %L0], [%sinkable2, %L1]
ret i32 %r
}
; Do not sink through a non-trivially replacable PHI if splitting predecessors
; not allowed in SplitBlockPredecessors().
;
; CHECK-LABEL: @test20
; CHECK-LABEL: while.cond
; CHECK: %sinkable = mul
; CHECK: %sinkable2 = add
define void @test20(i32* %s, i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 {
entry:
br label %while.cond
while.cond:
%v = call i32 @getv()
%sinkable = mul i32 %v, %v2
%sinkable2 = add i32 %v, %v2
br i1 %b, label %try.cont, label %while.body
while.body:
invoke void @may_throw()
to label %while.body2 unwind label %catch.dispatch
while.body2:
invoke void @may_throw2()
to label %while.cond unwind label %catch.dispatch
catch.dispatch:
%.lcssa1 = phi i32 [ %sinkable, %while.body ], [ %sinkable2, %while.body2 ]
%cp = cleanuppad within none []
store i32 %.lcssa1, i32* %s
cleanupret from %cp unwind to caller
try.cont:
ret void
}
; The sinkable call should be sunk into an exit block split. After splitting
; the exit block, BlockColor for new blocks should be added properly so
; that we should be able to access valid ColorVector.
;
; CHECK-LABEL:@test21_pr36184
; CHECK-LABEL: Loop
; CHECK-NOT: %sinkableCall
; CHECK-LABEL:Out.split.loop.exit
; CHECK: %sinkableCall
define i32 @test21_pr36184(i8* %P) personality i32 (...)* @__CxxFrameHandler3 {
entry:
br label %loop.ph
loop.ph:
br label %Loop
Loop:
%sinkableCall = call i32 @strlen( i8* %P ) readonly
br i1 undef, label %ContLoop, label %Out
ContLoop:
br i1 undef, label %Loop, label %Out
Out:
%idx = phi i32 [ %sinkableCall, %Loop ], [0, %ContLoop ]
ret i32 %idx
}
; We do not support splitting a landingpad block if BlockColors is not empty.
; CHECK-LABEL: @test22
; CHECK-LABEL: while.body2
; CHECK-LABEL: %mul
; CHECK-NOT: lpadBB.split{{.*}}
define void @test22(i1 %b, i32 %v1, i32 %v2) personality i32 (...)* @__CxxFrameHandler3 {
entry:
br label %while.cond
while.cond:
br i1 %b, label %try.cont, label %while.body
while.body:
invoke void @may_throw()
to label %while.body2 unwind label %lpadBB
while.body2:
%v = call i32 @getv()
%mul = mul i32 %v, %v2
invoke void @may_throw2()
to label %while.cond unwind label %lpadBB
lpadBB:
%.lcssa1 = phi i32 [ 0, %while.body ], [ %mul, %while.body2 ]
landingpad { i8*, i32 }
catch i8* null
br label %lpadBBSucc1
lpadBBSucc1:
ret void
try.cont:
ret void
}
declare void @may_throw()
declare void @may_throw2()
declare i32 @__CxxFrameHandler3(...)
declare i32 @getv()
declare i1 @getc()
declare void @f(i32*)
declare void @g()