llvm-project/flang/lib/Lower/ConvertVariable.cpp

1255 lines
56 KiB
C++

//===-- ConvertVariable.cpp -- bridge to lower to MLIR --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/BoxAnalyzer.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Lower/Todo.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Semantics/tools.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-variable"
/// Helper to retrieve a copy of a character literal string from a SomeExpr.
/// Required to build character global initializers.
template <int KIND>
static llvm::Optional<std::tuple<std::string, std::size_t>>
getCharacterLiteralCopy(
const Fortran::evaluate::Expr<
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, KIND>>
&x) {
if (const auto *con =
Fortran::evaluate::UnwrapConstantValue<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, KIND>>(x))
if (auto val = con->GetScalarValue())
return std::tuple<std::string, std::size_t>{
std::string{(const char *)val->c_str(),
KIND * (std::size_t)con->LEN()},
(std::size_t)con->LEN()};
return llvm::None;
}
static llvm::Optional<std::tuple<std::string, std::size_t>>
getCharacterLiteralCopy(
const Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter> &x) {
return std::visit([](const auto &e) { return getCharacterLiteralCopy(e); },
x.u);
}
static llvm::Optional<std::tuple<std::string, std::size_t>>
getCharacterLiteralCopy(const Fortran::lower::SomeExpr &x) {
if (const auto *e = Fortran::evaluate::UnwrapExpr<
Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>(x))
return getCharacterLiteralCopy(*e);
return llvm::None;
}
template <typename A>
static llvm::Optional<std::tuple<std::string, std::size_t>>
getCharacterLiteralCopy(const std::optional<A> &x) {
if (x)
return getCharacterLiteralCopy(*x);
return llvm::None;
}
/// Helper to lower a scalar expression using a specific symbol mapping.
static mlir::Value genScalarValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &context) {
// This does not use the AbstractConverter member function to override the
// symbol mapping to be used expression lowering.
return fir::getBase(Fortran::lower::createSomeExtendedExpression(
loc, converter, expr, symMap, context));
}
/// Does this variable have a default initialization?
static bool hasDefaultInitialization(const Fortran::semantics::Symbol &sym) {
if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size())
if (!Fortran::semantics::IsAllocatableOrPointer(sym))
if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec =
declTypeSpec->AsDerived())
return derivedTypeSpec->HasDefaultInitialization();
return false;
}
//===----------------------------------------------------------------===//
// Global variables instantiation (not for alias and common)
//===----------------------------------------------------------------===//
/// Helper to generate expression value inside global initializer.
static fir::ExtendedValue
genInitializerExprValue(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::StatementContext &stmtCtx) {
// Data initializer are constant value and should not depend on other symbols
// given the front-end fold parameter references. In any case, the "current"
// map of the converter should not be used since it holds mapping to
// mlir::Value from another mlir region. If these value are used by accident
// in the initializer, this will lead to segfaults in mlir code.
Fortran::lower::SymMap emptyMap;
return Fortran::lower::createSomeInitializerExpression(loc, converter, expr,
emptyMap, stmtCtx);
}
/// Can this symbol constant be placed in read-only memory?
static bool isConstant(const Fortran::semantics::Symbol &sym) {
return sym.attrs().test(Fortran::semantics::Attr::PARAMETER) ||
sym.test(Fortran::semantics::Symbol::Flag::ReadOnly);
}
/// Create the global op declaration without any initializer
static fir::GlobalOp declareGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
llvm::StringRef globalName,
mlir::StringAttr linkage) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (fir::GlobalOp global = builder.getNamedGlobal(globalName))
return global;
const Fortran::semantics::Symbol &sym = var.getSymbol();
mlir::Location loc = converter.genLocation(sym.name());
// Resolve potential host and module association before checking that this
// symbol is an object of a function pointer.
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
if (!ultimate.has<Fortran::semantics::ObjectEntityDetails>() &&
!ultimate.has<Fortran::semantics::ProcEntityDetails>())
mlir::emitError(loc, "lowering global declaration: symbol '")
<< toStringRef(sym.name()) << "' has unexpected details\n";
return builder.createGlobal(loc, converter.genType(var), globalName, linkage,
mlir::Attribute{}, isConstant(ultimate));
}
/// Temporary helper to catch todos in initial data target lowering.
static bool
hasDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) {
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
return Fortran::semantics::CountLenParameters(*derived) > 0;
return false;
}
static mlir::Type unwrapElementType(mlir::Type type) {
if (mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(type))
type = ty;
if (auto seqType = type.dyn_cast<fir::SequenceType>())
type = seqType.getEleTy();
return type;
}
/// create initial-data-target fir.box in a global initializer region.
mlir::Value Fortran::lower::genInitialDataTarget(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Type boxType, const Fortran::lower::SomeExpr &initialTarget) {
Fortran::lower::SymMap globalOpSymMap;
Fortran::lower::AggregateStoreMap storeMap;
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
initialTarget))
return fir::factory::createUnallocatedBox(builder, loc, boxType,
/*nonDeferredParams=*/llvm::None);
// Pointer initial data target, and NULL(mold).
if (const Fortran::semantics::Symbol *sym =
Fortran::evaluate::GetFirstSymbol(initialTarget)) {
// Length parameters processing will need care in global initializer
// context.
if (hasDerivedTypeWithLengthParameters(*sym))
TODO(loc, "initial-data-target with derived type length parameters");
auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true);
Fortran::lower::instantiateVariable(converter, var, globalOpSymMap,
storeMap);
}
mlir::Value box;
if (initialTarget.Rank() > 0) {
box = fir::getBase(Fortran::lower::createSomeArrayBox(
converter, initialTarget, globalOpSymMap, stmtCtx));
} else {
fir::ExtendedValue addr = Fortran::lower::createInitializerAddress(
loc, converter, initialTarget, globalOpSymMap, stmtCtx);
box = builder.createBox(loc, addr);
}
// box is a fir.box<T>, not a fir.box<fir.ptr<T>> as it should to be used
// for pointers. A fir.convert should not be used here, because it would
// not actually set the pointer attribute in the descriptor.
// In a normal context, fir.rebox would be used to set the pointer attribute
// while copying the projection from another fir.box. But fir.rebox cannot be
// used in initializer because its current codegen expects that the input
// fir.box is in memory, which is not the case in initializers.
// So, just replace the fir.embox that created addr with one with
// fir.box<fir.ptr<T>> result type.
// Note that the descriptor cannot have been created with fir.rebox because
// the initial-data-target cannot be a fir.box itself (it cannot be
// assumed-shape, deferred-shape, or polymorphic as per C765). However the
// case where the initial data target is a derived type with length parameters
// will most likely be a bit trickier, hence the TODO above.
mlir::Operation *op = box.getDefiningOp();
if (!op || !mlir::isa<fir::EmboxOp>(*op))
fir::emitFatalError(
loc, "fir.box must be created with embox in global initializers");
mlir::Type targetEleTy = unwrapElementType(box.getType());
if (!fir::isa_char(targetEleTy))
return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(),
op->getAttrs());
// Handle the character case length particularities: embox takes a length
// value argument when the result type has unknown length, but not when the
// result type has constant length. The type of the initial target must be
// constant length, but the one of the pointer may not be. In this case, a
// length operand must be added.
auto targetLen = targetEleTy.cast<fir::CharacterType>().getLen();
auto ptrLen = unwrapElementType(boxType).cast<fir::CharacterType>().getLen();
if (ptrLen == targetLen)
// Nothing to do
return builder.create<fir::EmboxOp>(loc, boxType, op->getOperands(),
op->getAttrs());
auto embox = mlir::cast<fir::EmboxOp>(*op);
auto ptrType = boxType.cast<fir::BoxType>().getEleTy();
mlir::Value memref = builder.createConvert(loc, ptrType, embox.getMemref());
if (targetLen == fir::CharacterType::unknownLen())
// Drop the length argument.
return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(),
embox.getSlice());
// targetLen is constant and ptrLen is unknown. Add a length argument.
mlir::Value targetLenValue =
builder.createIntegerConstant(loc, builder.getIndexType(), targetLen);
return builder.create<fir::EmboxOp>(loc, boxType, memref, embox.getShape(),
embox.getSlice(),
mlir::ValueRange{targetLenValue});
}
static mlir::Value genDefaultInitializerValue(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::semantics::Symbol &sym, mlir::Type symTy,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type scalarType = symTy;
fir::SequenceType sequenceType;
if (auto ty = symTy.dyn_cast<fir::SequenceType>()) {
sequenceType = ty;
scalarType = ty.getEleTy();
}
// Build a scalar default value of the symbol type, looping through the
// components to build each component initial value.
auto recTy = scalarType.cast<fir::RecordType>();
auto fieldTy = fir::FieldType::get(scalarType.getContext());
mlir::Value initialValue = builder.create<fir::UndefOp>(loc, scalarType);
const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType();
assert(declTy && "var with default initialization must have a type");
Fortran::semantics::OrderedComponentIterator components(
declTy->derivedTypeSpec());
for (const auto &component : components) {
// Skip parent components, the sub-components of parent types are part of
// components and will be looped through right after.
if (component.test(Fortran::semantics::Symbol::Flag::ParentComp))
continue;
mlir::Value componentValue;
llvm::StringRef name = toStringRef(component.name());
mlir::Type componentTy = recTy.getType(name);
assert(componentTy && "component not found in type");
if (const auto *object{
component.detailsIf<Fortran::semantics::ObjectEntityDetails>()}) {
if (const auto &init = object->init()) {
// Component has explicit initialization.
if (Fortran::semantics::IsPointer(component))
// Initial data target.
componentValue =
genInitialDataTarget(converter, loc, componentTy, *init);
else
// Initial value.
componentValue = fir::getBase(
genInitializerExprValue(converter, loc, *init, stmtCtx));
} else if (Fortran::semantics::IsAllocatableOrPointer(component)) {
// Pointer or allocatable without initialization.
// Create deallocated/disassociated value.
// From a standard point of view, pointer without initialization do not
// need to be disassociated, but for sanity and simplicity, do it in
// global constructor since this has no runtime cost.
componentValue = fir::factory::createUnallocatedBox(
builder, loc, componentTy, llvm::None);
} else if (hasDefaultInitialization(component)) {
// Component type has default initialization.
componentValue = genDefaultInitializerValue(converter, loc, component,
componentTy, stmtCtx);
} else {
// Component has no initial value.
componentValue = builder.create<fir::UndefOp>(loc, componentTy);
}
} else if (const auto *proc{
component
.detailsIf<Fortran::semantics::ProcEntityDetails>()}) {
if (proc->init().has_value())
TODO(loc, "procedure pointer component default initialization");
else
componentValue = builder.create<fir::UndefOp>(loc, componentTy);
}
assert(componentValue && "must have been computed");
componentValue = builder.createConvert(loc, componentTy, componentValue);
// FIXME: type parameters must come from the derived-type-spec
auto field = builder.create<fir::FieldIndexOp>(
loc, fieldTy, name, scalarType,
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
initialValue = builder.create<fir::InsertValueOp>(
loc, recTy, initialValue, componentValue,
builder.getArrayAttr(field.getAttributes()));
}
if (sequenceType) {
// For arrays, duplicate the scalar value to all elements with an
// fir.insert_range covering the whole array.
auto arrayInitialValue = builder.create<fir::UndefOp>(loc, sequenceType);
llvm::SmallVector<int64_t> rangeBounds;
for (int64_t extent : sequenceType.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
TODO(loc,
"default initial value of array component with length parameters");
rangeBounds.push_back(0);
rangeBounds.push_back(extent - 1);
}
return builder.create<fir::InsertOnRangeOp>(
loc, sequenceType, arrayInitialValue, initialValue,
builder.getIndexVectorAttr(rangeBounds));
}
return initialValue;
}
/// Does this global already have an initializer ?
static bool globalIsInitialized(fir::GlobalOp global) {
return !global.getRegion().empty() || global.getInitVal();
}
/// Call \p genInit to generate code inside \p global initializer region.
static void
createGlobalInitialization(fir::FirOpBuilder &builder, fir::GlobalOp global,
std::function<void(fir::FirOpBuilder &)> genInit) {
mlir::Region &region = global.getRegion();
region.push_back(new mlir::Block);
mlir::Block &block = region.back();
auto insertPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(&block);
genInit(builder);
builder.restoreInsertionPoint(insertPt);
}
/// Create the global op and its init if it has one
static fir::GlobalOp defineGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
llvm::StringRef globalName,
mlir::StringAttr linkage) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const Fortran::semantics::Symbol &sym = var.getSymbol();
mlir::Location loc = converter.genLocation(sym.name());
bool isConst = isConstant(sym);
fir::GlobalOp global = builder.getNamedGlobal(globalName);
mlir::Type symTy = converter.genType(var);
if (global && globalIsInitialized(global))
return global;
// If this is an array, check to see if we can use a dense attribute
// with a tensor mlir type. This optimization currently only supports
// rank-1 Fortran arrays of integer, real, or logical. The tensor
// type does not support nested structures which are needed for
// complex numbers.
// To get multidimensional arrays to work, we will have to use column major
// array ordering with the tensor type (so it matches column major ordering
// with the Fortran fir.array). By default, tensor types assume row major
// ordering. How to create this tensor type is to be determined.
if (symTy.isa<fir::SequenceType>() && sym.Rank() == 1 &&
!Fortran::semantics::IsAllocatableOrPointer(sym)) {
mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
if (eleTy.isa<mlir::IntegerType, mlir::FloatType, fir::LogicalType>()) {
const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>();
if (details->init()) {
global = Fortran::lower::createDenseGlobal(
loc, symTy, globalName, linkage, isConst, details->init().value(),
converter);
if (global) {
global.setVisibility(mlir::SymbolTable::Visibility::Public);
return global;
}
}
}
}
if (!global)
global = builder.createGlobal(loc, symTy, globalName, linkage,
mlir::Attribute{}, isConst);
if (Fortran::semantics::IsAllocatableOrPointer(sym)) {
const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>();
if (details && details->init()) {
auto expr = *details->init();
createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) {
mlir::Value box =
Fortran::lower::genInitialDataTarget(converter, loc, symTy, expr);
b.create<fir::HasValueOp>(loc, box);
});
} else {
// Create unallocated/disassociated descriptor if no explicit init
createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) {
mlir::Value box =
fir::factory::createUnallocatedBox(b, loc, symTy, llvm::None);
b.create<fir::HasValueOp>(loc, box);
});
}
} else if (const auto *details =
sym.detailsIf<Fortran::semantics::ObjectEntityDetails>()) {
if (details->init()) {
if (fir::isa_char(symTy)) {
// CHARACTER literal
if (auto chLit = getCharacterLiteralCopy(details->init().value())) {
mlir::StringAttr init =
builder.getStringAttr(std::get<std::string>(*chLit));
global->setAttr(global.getInitValAttrName(), init);
} else {
fir::emitFatalError(loc, "CHARACTER has unexpected initial value");
}
} else {
createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx(
/*cleanupProhibited=*/true);
fir::ExtendedValue initVal = genInitializerExprValue(
converter, loc, details->init().value(), stmtCtx);
mlir::Value castTo =
builder.createConvert(loc, symTy, fir::getBase(initVal));
builder.create<fir::HasValueOp>(loc, castTo);
});
}
} else if (hasDefaultInitialization(sym)) {
createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
Fortran::lower::StatementContext stmtCtx(
/*cleanupProhibited=*/true);
mlir::Value initVal =
genDefaultInitializerValue(converter, loc, sym, symTy, stmtCtx);
mlir::Value castTo = builder.createConvert(loc, symTy, initVal);
builder.create<fir::HasValueOp>(loc, castTo);
});
}
} else if (sym.has<Fortran::semantics::CommonBlockDetails>()) {
mlir::emitError(loc, "COMMON symbol processed elsewhere");
} else {
TODO(loc, "global"); // Procedure pointer or something else
}
// Creates undefined initializer for globals without initializers
if (!globalIsInitialized(global))
createGlobalInitialization(
builder, global, [&](fir::FirOpBuilder &builder) {
builder.create<fir::HasValueOp>(
loc, builder.create<fir::UndefOp>(loc, symTy));
});
// Set public visibility to prevent global definition to be optimized out
// even if they have no initializer and are unused in this compilation unit.
global.setVisibility(mlir::SymbolTable::Visibility::Public);
return global;
}
/// Return linkage attribute for \p var.
static mlir::StringAttr
getLinkageAttribute(fir::FirOpBuilder &builder,
const Fortran::lower::pft::Variable &var) {
if (var.isModuleVariable())
return {}; // external linkage
// Otherwise, the variable is owned by a procedure and must not be visible in
// other compilation units.
return builder.createInternalLinkage();
}
/// Instantiate a global variable. If it hasn't already been processed, add
/// the global to the ModuleOp as a new uniqued symbol and initialize it with
/// the correct value. It will be referenced on demand using `fir.addr_of`.
static void instantiateGlobal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
const Fortran::semantics::Symbol &sym = var.getSymbol();
assert(!var.isAlias() && "must be handled in instantiateAlias");
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string globalName = Fortran::lower::mangle::mangleName(sym);
mlir::Location loc = converter.genLocation(sym.name());
fir::GlobalOp global = builder.getNamedGlobal(globalName);
mlir::StringAttr linkage = getLinkageAttribute(builder, var);
if (var.isModuleVariable()) {
// A module global was or will be defined when lowering the module. Emit
// only a declaration if the global does not exist at that point.
global = declareGlobal(converter, var, globalName, linkage);
} else {
global = defineGlobal(converter, var, globalName, linkage);
}
auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx, addrOf);
}
//===----------------------------------------------------------------===//
// Local variables instantiation (not for alias)
//===----------------------------------------------------------------===//
/// Create a stack slot for a local variable. Precondition: the insertion
/// point of the builder must be in the entry block, which is currently being
/// constructed.
static mlir::Value createNewLocal(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::pft::Variable &var,
mlir::Value preAlloc,
llvm::ArrayRef<mlir::Value> shape = {},
llvm::ArrayRef<mlir::Value> lenParams = {}) {
if (preAlloc)
return preAlloc;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
std::string nm = Fortran::lower::mangle::mangleName(var.getSymbol());
mlir::Type ty = converter.genType(var);
const Fortran::semantics::Symbol &ultimateSymbol =
var.getSymbol().GetUltimate();
llvm::StringRef symNm = toStringRef(ultimateSymbol.name());
bool isTarg = var.isTarget();
// Let the builder do all the heavy lifting.
return builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg);
}
/// Instantiate a local variable. Precondition: Each variable will be visited
/// such that if its properties depend on other variables, the variables upon
/// which its properties depend will already have been visited.
static void instantiateLocal(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap) {
assert(!var.isAlias());
Fortran::lower::StatementContext stmtCtx;
mapSymbolAttributes(converter, var, symMap, stmtCtx);
}
/// Helper to decide if a dummy argument must be tracked in an BoxValue.
static bool lowerToBoxValue(const Fortran::semantics::Symbol &sym,
mlir::Value dummyArg) {
// Only dummy arguments coming as fir.box can be tracked in an BoxValue.
if (!dummyArg || !dummyArg.getType().isa<fir::BoxType>())
return false;
// Non contiguous arrays must be tracked in an BoxValue.
if (sym.Rank() > 0 && !sym.attrs().test(Fortran::semantics::Attr::CONTIGUOUS))
return true;
// Assumed rank and optional fir.box cannot yet be read while lowering the
// specifications.
if (Fortran::evaluate::IsAssumedRank(sym) ||
Fortran::semantics::IsOptional(sym))
return true;
// Polymorphic entity should be tracked through a fir.box that has the
// dynamic type info.
if (const Fortran::semantics::DeclTypeSpec *type = sym.GetType())
if (type->IsPolymorphic())
return true;
return false;
}
/// Compute extent from lower and upper bound.
static mlir::Value computeExtent(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value lb, mlir::Value ub) {
mlir::IndexType idxTy = builder.getIndexType();
// Let the folder deal with the common `ub - <const> + 1` case.
auto diff = builder.create<mlir::arith::SubIOp>(loc, idxTy, ub, lb);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
return builder.create<mlir::arith::AddIOp>(loc, idxTy, diff, one);
}
/// Lower explicit lower bounds into \p result. Does nothing if this is not an
/// array, or if the lower bounds are deferred, or all implicit or one.
static void lowerExplicitLowerBounds(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::BoxAnalyzer &box,
llvm::SmallVectorImpl<mlir::Value> &result, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isArray() || box.lboundIsAllOnes())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
if (box.isStaticArray()) {
for (int64_t lb : box.staticLBound())
result.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
return;
}
for (const Fortran::semantics::ShapeSpec *spec : box.dynamicBound()) {
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
mlir::Value lb = builder.createConvert(
loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx));
result.emplace_back(lb);
} else if (!spec->lbound().isColon()) {
// Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.)
result.emplace_back(builder.createIntegerConstant(loc, idxTy, 1));
}
}
assert(result.empty() || result.size() == box.dynamicBound().size());
}
/// Lower explicit extents into \p result if this is an explicit-shape or
/// assumed-size array. Does nothing if this is not an explicit-shape or
/// assumed-size array.
static void lowerExplicitExtents(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::BoxAnalyzer &box,
llvm::ArrayRef<mlir::Value> lowerBounds,
llvm::SmallVectorImpl<mlir::Value> &result,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isArray())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
if (box.isStaticArray()) {
for (int64_t extent : box.staticShape())
result.emplace_back(builder.createIntegerConstant(loc, idxTy, extent));
return;
}
for (const auto &spec : llvm::enumerate(box.dynamicBound())) {
if (auto up = spec.value()->ubound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*up};
mlir::Value ub = builder.createConvert(
loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx));
if (lowerBounds.empty())
result.emplace_back(ub);
else
result.emplace_back(
computeExtent(builder, loc, lowerBounds[spec.index()], ub));
} else if (spec.value()->ubound().isStar()) {
// Assumed extent is undefined. Must be provided by user's code.
result.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
}
}
assert(result.empty() || result.size() == box.dynamicBound().size());
}
/// Lower explicit character length if any. Return empty mlir::Value if no
/// explicit length.
static mlir::Value
lowerExplicitCharLen(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const Fortran::lower::BoxAnalyzer &box,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
if (!box.isChar())
return mlir::Value{};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type lenTy = builder.getCharacterLengthType();
if (llvm::Optional<int64_t> len = box.getCharLenConst())
return builder.createIntegerConstant(loc, lenTy, *len);
if (llvm::Optional<Fortran::lower::SomeExpr> lenExpr = box.getCharLenExpr())
return genScalarValue(converter, loc, *lenExpr, symMap, stmtCtx);
return mlir::Value{};
}
/// Treat negative values as undefined. Assumed size arrays will return -1 from
/// the front end for example. Using negative values can produce hard to find
/// bugs much further along in the compilation.
static mlir::Value genExtentValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type idxTy,
long frontEndExtent) {
if (frontEndExtent >= 0)
return builder.createIntegerConstant(loc, idxTy, frontEndExtent);
return builder.create<fir::UndefOp>(loc, idxTy);
}
/// Lower specification expressions and attributes of variable \p var and
/// add it to the symbol map.
/// For global and aliases, the address must be pre-computed and provided
/// in \p preAlloc.
/// Dummy arguments must have already been mapped to mlir block arguments
/// their mapping may be updated here.
void Fortran::lower::mapSymbolAttributes(
AbstractConverter &converter, const Fortran::lower::pft::Variable &var,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::Value preAlloc) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const Fortran::semantics::Symbol &sym = var.getSymbol();
const mlir::Location loc = converter.genLocation(sym.name());
mlir::IndexType idxTy = builder.getIndexType();
const bool isDummy = Fortran::semantics::IsDummy(sym);
const bool isResult = Fortran::semantics::IsFunctionResult(sym);
const bool replace = isDummy || isResult;
fir::factory::CharacterExprHelper charHelp{builder, loc};
Fortran::lower::BoxAnalyzer ba;
ba.analyze(sym);
// First deal with pointers an allocatables, because their handling here
// is the same regardless of their rank.
if (Fortran::semantics::IsAllocatableOrPointer(sym)) {
// Get address of fir.box describing the entity.
// global
mlir::Value boxAlloc = preAlloc;
// dummy or passed result
if (!boxAlloc)
if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym))
boxAlloc = symbox.getAddr();
// local
if (!boxAlloc)
boxAlloc = createNewLocal(converter, loc, var, preAlloc);
// Lower non deferred parameters.
llvm::SmallVector<mlir::Value> nonDeferredLenParams;
if (ba.isChar()) {
if (mlir::Value len =
lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx))
nonDeferredLenParams.push_back(len);
else if (Fortran::semantics::IsAssumedLengthCharacter(sym))
TODO(loc, "assumed length character allocatable");
} else if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) {
if (const Fortran::semantics::DerivedTypeSpec *derived =
declTy->AsDerived())
if (Fortran::semantics::CountLenParameters(*derived) != 0)
TODO(loc,
"derived type allocatable or pointer with length parameters");
}
fir::MutableBoxValue box = Fortran::lower::createMutableBox(
converter, loc, var, boxAlloc, nonDeferredLenParams);
symMap.addAllocatableOrPointer(var.getSymbol(), box, replace);
return;
}
if (isDummy) {
mlir::Value dummyArg = symMap.lookupSymbol(sym).getAddr();
if (lowerToBoxValue(sym, dummyArg)) {
llvm::SmallVector<mlir::Value> lbounds;
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> explicitParams;
// Lower lower bounds, explicit type parameters and explicit
// extents if any.
if (ba.isChar())
TODO(loc, "lowerToBoxValue character");
// TODO: derived type length parameters.
lowerExplicitLowerBounds(converter, loc, ba, lbounds, symMap, stmtCtx);
lowerExplicitExtents(converter, loc, ba, lbounds, extents, symMap,
stmtCtx);
symMap.addBoxSymbol(sym, dummyArg, lbounds, explicitParams, extents,
replace);
return;
}
}
// Helper to generate scalars for the symbol properties.
auto genValue = [&](const Fortran::lower::SomeExpr &expr) {
return genScalarValue(converter, loc, expr, symMap, stmtCtx);
};
// For symbols reaching this point, all properties are constant and can be
// read/computed already into ssa values.
// The origin must be \vec{1}.
auto populateShape = [&](auto &shapes, const auto &bounds, mlir::Value box) {
for (auto iter : llvm::enumerate(bounds)) {
auto *spec = iter.value();
assert(spec->lbound().GetExplicit() &&
"lbound must be explicit with constant value 1");
if (auto high = spec->ubound().GetExplicit()) {
Fortran::lower::SomeExpr highEx{*high};
mlir::Value ub = genValue(highEx);
shapes.emplace_back(builder.createConvert(loc, idxTy, ub));
} else if (spec->ubound().isColon()) {
assert(box && "assumed bounds require a descriptor");
mlir::Value dim =
builder.createIntegerConstant(loc, idxTy, iter.index());
auto dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim);
shapes.emplace_back(dimInfo.getResult(1));
} else if (spec->ubound().isStar()) {
shapes.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
} else {
llvm::report_fatal_error("unknown bound category");
}
}
};
// The origin is not \vec{1}.
auto populateLBoundsExtents = [&](auto &lbounds, auto &extents,
const auto &bounds, mlir::Value box) {
for (auto iter : llvm::enumerate(bounds)) {
auto *spec = iter.value();
fir::BoxDimsOp dimInfo;
mlir::Value ub, lb;
if (spec->lbound().isColon() || spec->ubound().isColon()) {
// This is an assumed shape because allocatables and pointers extents
// are not constant in the scope and are not read here.
assert(box && "deferred bounds require a descriptor");
mlir::Value dim =
builder.createIntegerConstant(loc, idxTy, iter.index());
dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim);
extents.emplace_back(dimInfo.getResult(1));
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
mlir::Value lb = builder.createConvert(loc, idxTy, genValue(expr));
lbounds.emplace_back(lb);
} else {
// Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.)
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, 1));
}
} else {
if (auto low = spec->lbound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*low};
lb = builder.createConvert(loc, idxTy, genValue(expr));
} else {
TODO(loc, "assumed rank lowering");
}
if (auto high = spec->ubound().GetExplicit()) {
auto expr = Fortran::lower::SomeExpr{*high};
ub = builder.createConvert(loc, idxTy, genValue(expr));
lbounds.emplace_back(lb);
extents.emplace_back(computeExtent(builder, loc, lb, ub));
} else {
// An assumed size array. The extent is not computed.
assert(spec->ubound().isStar() && "expected assumed size");
lbounds.emplace_back(lb);
extents.emplace_back(builder.create<fir::UndefOp>(loc, idxTy));
}
}
}
};
// Lower length expression for non deferred and non dummy assumed length
// characters.
auto genExplicitCharLen =
[&](llvm::Optional<Fortran::lower::SomeExpr> charLen) -> mlir::Value {
if (!charLen)
fir::emitFatalError(loc, "expected explicit character length");
mlir::Value rawLen = genValue(*charLen);
// If the length expression is negative, the length is zero. See
// F2018 7.4.4.2 point 5.
return genMaxWithZero(builder, loc, rawLen);
};
ba.match(
//===--------------------------------------------------------------===//
// Trivial case.
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::ScalarSym &) {
if (isDummy) {
// This is an argument.
if (!symMap.lookupSymbol(sym))
mlir::emitError(loc, "symbol \"")
<< toStringRef(sym.name()) << "\" must already be in map";
return;
} else if (isResult) {
// Some Fortran results may be passed by argument (e.g. derived
// types)
if (symMap.lookupSymbol(sym))
return;
}
// Otherwise, it's a local variable or function result.
mlir::Value local = createNewLocal(converter, loc, var, preAlloc);
symMap.addSymbol(sym, local);
},
//===--------------------------------------------------------------===//
// The non-trivial cases are when we have an argument or local that has
// a repetition value. Arguments might be passed as simple pointers and
// need to be cast to a multi-dimensional array with constant bounds
// (possibly with a missing column), bounds computed in the callee
// (here), or with bounds from the caller (boxed somewhere else). Locals
// have the same properties except they are never boxed arguments from
// the caller and never having a missing column size.
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::ScalarStaticChar &x) {
// type is a CHARACTER, determine the LEN value
auto charLen = x.charLen();
if (replace) {
Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym);
std::pair<mlir::Value, mlir::Value> unboxchar =
charHelp.createUnboxChar(symBox.getAddr());
mlir::Value boxAddr = unboxchar.first;
// Set/override LEN with a constant
mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen);
symMap.addCharSymbol(sym, boxAddr, len, true);
return;
}
mlir::Value len = builder.createIntegerConstant(loc, idxTy, charLen);
if (preAlloc) {
symMap.addCharSymbol(sym, preAlloc, len);
return;
}
mlir::Value local = createNewLocal(converter, loc, var, preAlloc);
symMap.addCharSymbol(sym, local, len);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::ScalarDynamicChar &x) {
// type is a CHARACTER, determine the LEN value
auto charLen = x.charLen();
if (replace) {
Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym);
mlir::Value boxAddr = symBox.getAddr();
mlir::Value len;
mlir::Type addrTy = boxAddr.getType();
if (addrTy.isa<fir::BoxCharType>() || addrTy.isa<fir::BoxType>()) {
std::tie(boxAddr, len) = charHelp.createUnboxChar(symBox.getAddr());
} else {
// dummy from an other entry case: we cannot get a dynamic length
// for it, it's illegal for the user program to use it. However,
// since we are lowering all function unit statements regardless
// of whether the execution will reach them or not, we need to
// fill a value for the length here.
len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), 1);
}
// Override LEN with an expression
if (charLen)
len = genExplicitCharLen(charLen);
symMap.addCharSymbol(sym, boxAddr, len, true);
return;
}
// local CHARACTER variable
mlir::Value len = genExplicitCharLen(charLen);
if (preAlloc) {
symMap.addCharSymbol(sym, preAlloc, len);
return;
}
llvm::SmallVector<mlir::Value> lengths = {len};
mlir::Value local =
createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths);
symMap.addCharSymbol(sym, local, len);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::StaticArray &x) {
// object shape is constant, not a character
mlir::Type castTy = builder.getRefType(converter.genType(var));
mlir::Value addr = symMap.lookupSymbol(sym).getAddr();
if (addr)
addr = builder.createConvert(loc, castTy, addr);
if (x.lboundAllOnes()) {
// if lower bounds are all ones, build simple shaped object
llvm::SmallVector<mlir::Value> shape;
for (int64_t i : x.shapes)
shape.push_back(genExtentValue(builder, loc, idxTy, i));
mlir::Value local =
isDummy ? addr : createNewLocal(converter, loc, var, preAlloc);
symMap.addSymbolWithShape(sym, local, shape, isDummy);
return;
}
// If object is an array process the lower bound and extent values by
// constructing constants and populating the lbounds and extents.
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lbounds;
for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) {
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst));
extents.emplace_back(genExtentValue(builder, loc, idxTy, snd));
}
mlir::Value local =
isDummy ? addr
: createNewLocal(converter, loc, var, preAlloc, extents);
assert(isDummy || Fortran::lower::isExplicitShape(sym));
symMap.addSymbolWithBounds(sym, local, extents, lbounds, isDummy);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::DynamicArray &x) {
// cast to the known constant parts from the declaration
mlir::Type varType = converter.genType(var);
mlir::Value addr = symMap.lookupSymbol(sym).getAddr();
mlir::Value argBox;
mlir::Type castTy = builder.getRefType(varType);
if (addr) {
if (auto boxTy = addr.getType().dyn_cast<fir::BoxType>()) {
argBox = addr;
mlir::Type refTy = builder.getRefType(boxTy.getEleTy());
addr = builder.create<fir::BoxAddrOp>(loc, refTy, argBox);
}
addr = builder.createConvert(loc, castTy, addr);
}
if (x.lboundAllOnes()) {
// if lower bounds are all ones, build simple shaped object
llvm::SmallVector<mlir::Value> shapes;
populateShape(shapes, x.bounds, argBox);
if (isDummy) {
symMap.addSymbolWithShape(sym, addr, shapes, true);
return;
}
// local array with computed bounds
assert(Fortran::lower::isExplicitShape(sym) ||
Fortran::semantics::IsAllocatableOrPointer(sym));
mlir::Value local =
createNewLocal(converter, loc, var, preAlloc, shapes);
symMap.addSymbolWithShape(sym, local, shapes);
return;
}
// if object is an array process the lower bound and extent values
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lbounds;
populateLBoundsExtents(lbounds, extents, x.bounds, argBox);
if (isDummy) {
symMap.addSymbolWithBounds(sym, addr, extents, lbounds, true);
return;
}
// local array with computed bounds
assert(Fortran::lower::isExplicitShape(sym));
mlir::Value local =
createNewLocal(converter, loc, var, preAlloc, extents);
symMap.addSymbolWithBounds(sym, local, extents, lbounds);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::StaticArrayStaticChar &x) {
// if element type is a CHARACTER, determine the LEN value
auto charLen = x.charLen();
mlir::Value addr;
mlir::Value len;
if (isDummy) {
Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym);
std::pair<mlir::Value, mlir::Value> unboxchar =
charHelp.createUnboxChar(symBox.getAddr());
addr = unboxchar.first;
// Set/override LEN with a constant
len = builder.createIntegerConstant(loc, idxTy, charLen);
} else {
// local CHARACTER variable
len = builder.createIntegerConstant(loc, idxTy, charLen);
}
// object shape is constant
mlir::Type castTy = builder.getRefType(converter.genType(var));
if (addr)
addr = builder.createConvert(loc, castTy, addr);
if (x.lboundAllOnes()) {
// if lower bounds are all ones, build simple shaped object
llvm::SmallVector<mlir::Value> shape;
for (int64_t i : x.shapes)
shape.push_back(genExtentValue(builder, loc, idxTy, i));
mlir::Value local =
isDummy ? addr : createNewLocal(converter, loc, var, preAlloc);
symMap.addCharSymbolWithShape(sym, local, len, shape, isDummy);
return;
}
// if object is an array process the lower bound and extent values
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lbounds;
// construct constants and populate `bounds`
for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) {
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst));
extents.emplace_back(genExtentValue(builder, loc, idxTy, snd));
}
if (isDummy) {
symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds,
true);
return;
}
// local CHARACTER array with computed bounds
assert(Fortran::lower::isExplicitShape(sym));
mlir::Value local =
createNewLocal(converter, loc, var, preAlloc, extents);
symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::StaticArrayDynamicChar &x) {
mlir::Value addr;
mlir::Value len;
[[maybe_unused]] bool mustBeDummy = false;
auto charLen = x.charLen();
// if element type is a CHARACTER, determine the LEN value
if (isDummy) {
Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(sym);
std::pair<mlir::Value, mlir::Value> unboxchar =
charHelp.createUnboxChar(symBox.getAddr());
addr = unboxchar.first;
if (charLen) {
// Set/override LEN with an expression
len = genExplicitCharLen(charLen);
} else {
// LEN is from the boxchar
len = unboxchar.second;
mustBeDummy = true;
}
} else {
// local CHARACTER variable
len = genExplicitCharLen(charLen);
}
llvm::SmallVector<mlir::Value> lengths = {len};
// cast to the known constant parts from the declaration
mlir::Type castTy = builder.getRefType(converter.genType(var));
if (addr)
addr = builder.createConvert(loc, castTy, addr);
if (x.lboundAllOnes()) {
// if lower bounds are all ones, build simple shaped object
llvm::SmallVector<mlir::Value> shape;
for (int64_t i : x.shapes)
shape.push_back(genExtentValue(builder, loc, idxTy, i));
if (isDummy) {
symMap.addCharSymbolWithShape(sym, addr, len, shape, true);
return;
}
// local CHARACTER array with constant size
mlir::Value local = createNewLocal(converter, loc, var, preAlloc,
llvm::None, lengths);
symMap.addCharSymbolWithShape(sym, local, len, shape);
return;
}
// if object is an array process the lower bound and extent values
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lbounds;
// construct constants and populate `bounds`
for (auto [fst, snd] : llvm::zip(x.lbounds, x.shapes)) {
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, fst));
extents.emplace_back(genExtentValue(builder, loc, idxTy, snd));
}
if (isDummy) {
symMap.addCharSymbolWithBounds(sym, addr, len, extents, lbounds,
true);
return;
}
// local CHARACTER array with computed bounds
assert((!mustBeDummy) && (Fortran::lower::isExplicitShape(sym)));
mlir::Value local =
createNewLocal(converter, loc, var, preAlloc, llvm::None, lengths);
symMap.addCharSymbolWithBounds(sym, local, len, extents, lbounds);
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::DynamicArrayStaticChar &x) {
TODO(loc, "DynamicArrayStaticChar variable lowering");
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::details::DynamicArrayDynamicChar &x) {
TODO(loc, "DynamicArrayDynamicChar variable lowering");
},
//===--------------------------------------------------------------===//
[&](const Fortran::lower::BoxAnalyzer::None &) {
mlir::emitError(loc, "symbol analysis failed on ")
<< toStringRef(sym.name());
});
}
void Fortran::lower::defineModuleVariable(
AbstractConverter &converter, const Fortran::lower::pft::Variable &var) {
// Use empty linkage for module variables, which makes them available
// for use in another unit.
mlir::StringAttr externalLinkage;
if (!var.isGlobal())
fir::emitFatalError(converter.getCurrentLocation(),
"attempting to lower module variable as local");
// Define aggregate storages for equivalenced objects.
if (var.isAggregateStore()) {
const mlir::Location loc = converter.genLocation(var.getSymbol().name());
TODO(loc, "defineModuleVariable aggregateStore");
}
const Fortran::semantics::Symbol &sym = var.getSymbol();
if (Fortran::semantics::FindCommonBlockContaining(var.getSymbol())) {
const mlir::Location loc = converter.genLocation(sym.name());
TODO(loc, "defineModuleVariable common block");
} else if (var.isAlias()) {
// Do nothing. Mapping will be done on user side.
} else {
std::string globalName = Fortran::lower::mangle::mangleName(sym);
defineGlobal(converter, var, globalName, externalLinkage);
}
}
void Fortran::lower::instantiateVariable(AbstractConverter &converter,
const pft::Variable &var,
SymMap &symMap,
AggregateStoreMap &storeMap) {
const Fortran::semantics::Symbol &sym = var.getSymbol();
const mlir::Location loc = converter.genLocation(sym.name());
if (var.isAggregateStore()) {
TODO(loc, "instantiateVariable AggregateStore");
} else if (Fortran::semantics::FindCommonBlockContaining(
var.getSymbol().GetUltimate())) {
TODO(loc, "instantiateVariable Common");
} else if (var.isAlias()) {
TODO(loc, "instantiateVariable Alias");
} else if (var.isGlobal()) {
instantiateGlobal(converter, var, symMap);
} else {
instantiateLocal(converter, var, symMap);
}
}
void Fortran::lower::mapCallInterfaceSymbols(
AbstractConverter &converter, const Fortran::lower::CallerInterface &caller,
SymMap &symMap) {
Fortran::lower::AggregateStoreMap storeMap;
const Fortran::semantics::Symbol &result = caller.getResultSymbol();
for (Fortran::lower::pft::Variable var :
Fortran::lower::pft::buildFuncResultDependencyList(result)) {
if (var.isAggregateStore()) {
instantiateVariable(converter, var, symMap, storeMap);
} else {
const Fortran::semantics::Symbol &sym = var.getSymbol();
const auto *hostDetails =
sym.detailsIf<Fortran::semantics::HostAssocDetails>();
if (hostDetails && !var.isModuleVariable()) {
// The callee is an internal procedure `A` whose result properties
// depend on host variables. The caller may be the host, or another
// internal procedure `B` contained in the same host. In the first
// case, the host symbol is obviously mapped, in the second case, it
// must also be mapped because
// HostAssociations::internalProcedureBindings that was called when
// lowering `B` will have mapped all host symbols of captured variables
// to the tuple argument containing the composite of all host associated
// variables, whether or not the host symbol is actually referred to in
// `B`. Hence it is possible to simply lookup the variable associated to
// the host symbol without having to go back to the tuple argument.
Fortran::lower::SymbolBox hostValue =
symMap.lookupSymbol(hostDetails->symbol());
assert(hostValue && "callee host symbol must be mapped on caller side");
symMap.addSymbol(sym, hostValue.toExtendedValue());
// The SymbolBox associated to the host symbols is complete, skip
// instantiateVariable that would try to allocate a new storage.
continue;
}
if (Fortran::semantics::IsDummy(sym) && sym.owner() == result.owner()) {
// Get the argument for the dummy argument symbols of the current call.
symMap.addSymbol(sym, caller.getArgumentValue(sym));
// All the properties of the dummy variable may not come from the actual
// argument, let instantiateVariable handle this.
}
// If this is neither a host associated or dummy symbol, it must be a
// module or common block variable to satisfy specification expression
// requirements in 10.1.11, instantiateVariable will get its address and
// properties.
instantiateVariable(converter, var, symMap, storeMap);
}
}
}