llvm-project/flang/lib/Lower/ConvertExpr.cpp

4192 lines
181 KiB
C++

//===-- ConvertExpr.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertExpr.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/CallInterface.h"
#include "flang/Lower/ComponentPath.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/DumpEvaluateExpr.h"
#include "flang/Lower/IntrinsicCall.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Lower/Todo.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/Factory.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-expr"
//===----------------------------------------------------------------------===//
// The composition and structure of Fortran::evaluate::Expr is defined in
// the various header files in include/flang/Evaluate. You are referred
// there for more information on these data structures. Generally speaking,
// these data structures are a strongly typed family of abstract data types
// that, composed as trees, describe the syntax of Fortran expressions.
//
// This part of the bridge can traverse these tree structures and lower them
// to the correct FIR representation in SSA form.
//===----------------------------------------------------------------------===//
// The default attempts to balance a modest allocation size with expected user
// input to minimize bounds checks and reallocations during dynamic array
// construction. Some user codes may have very large array constructors for
// which the default can be increased.
static llvm::cl::opt<unsigned> clInitialBufferSize(
"array-constructor-initial-buffer-size",
llvm::cl::desc(
"set the incremental array construction buffer size (default=32)"),
llvm::cl::init(32u));
/// The various semantics of a program constituent (or a part thereof) as it may
/// appear in an expression.
///
/// Given the following Fortran declarations.
/// ```fortran
/// REAL :: v1, v2, v3
/// REAL, POINTER :: vp1
/// REAL :: a1(c), a2(c)
/// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
/// FUNCTION f2(arg) ! array -> array
/// vp1 => v3 ! 1
/// v1 = v2 * vp1 ! 2
/// a1 = a1 + a2 ! 3
/// a1 = f1(a2) ! 4
/// a1 = f2(a2) ! 5
/// ```
///
/// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
/// constructed from the DataAddr of `v3`.
/// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
/// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
/// dereference in the `vp1` case.
/// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
/// is CopyInCopyOut as `a1` is replaced elementally by the additions.
/// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
/// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
/// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
/// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
/// `a1` on the lhs is again CopyInCopyOut.
enum class ConstituentSemantics {
// Scalar data reference semantics.
//
// For these let `v` be the location in memory of a variable with value `x`
DataValue, // refers to the value `x`
DataAddr, // refers to the address `v`
BoxValue, // refers to a box value containing `v`
BoxAddr, // refers to the address of a box value containing `v`
// Array data reference semantics.
//
// For these let `a` be the location in memory of a sequence of value `[xs]`.
// Let `x_i` be the `i`-th value in the sequence `[xs]`.
// Referentially transparent. Refers to the array's value, `[xs]`.
RefTransparent,
// Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
// note 2). (Passing a copy by reference to simulate pass-by-value.)
ByValueArg,
// Refers to the merge of array value `[xs]` with another array value `[ys]`.
// This merged array value will be written into memory location `a`.
CopyInCopyOut,
// Similar to CopyInCopyOut but `a` may be a transient projection (rather than
// a whole array).
ProjectedCopyInCopyOut,
// Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
// automatically by the framework. Instead, and address for `[xs]` is made
// accessible so that custom assignments to `[xs]` can be implemented.
CustomCopyInCopyOut,
// Referentially opaque. Refers to the address of `x_i`.
RefOpaque
};
/// Convert parser's INTEGER relational operators to MLIR. TODO: using
/// unordered, but we may want to cons ordered in certain situation.
static mlir::arith::CmpIPredicate
translateRelational(Fortran::common::RelationalOperator rop) {
switch (rop) {
case Fortran::common::RelationalOperator::LT:
return mlir::arith::CmpIPredicate::slt;
case Fortran::common::RelationalOperator::LE:
return mlir::arith::CmpIPredicate::sle;
case Fortran::common::RelationalOperator::EQ:
return mlir::arith::CmpIPredicate::eq;
case Fortran::common::RelationalOperator::NE:
return mlir::arith::CmpIPredicate::ne;
case Fortran::common::RelationalOperator::GT:
return mlir::arith::CmpIPredicate::sgt;
case Fortran::common::RelationalOperator::GE:
return mlir::arith::CmpIPredicate::sge;
}
llvm_unreachable("unhandled INTEGER relational operator");
}
/// Convert parser's REAL relational operators to MLIR.
/// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
/// requirements in the IEEE context (table 17.1 of F2018). This choice is
/// also applied in other contexts because it is easier and in line with
/// other Fortran compilers.
/// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
/// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
/// whether the comparison will signal or not in case of quiet NaN argument.
static mlir::arith::CmpFPredicate
translateFloatRelational(Fortran::common::RelationalOperator rop) {
switch (rop) {
case Fortran::common::RelationalOperator::LT:
return mlir::arith::CmpFPredicate::OLT;
case Fortran::common::RelationalOperator::LE:
return mlir::arith::CmpFPredicate::OLE;
case Fortran::common::RelationalOperator::EQ:
return mlir::arith::CmpFPredicate::OEQ;
case Fortran::common::RelationalOperator::NE:
return mlir::arith::CmpFPredicate::UNE;
case Fortran::common::RelationalOperator::GT:
return mlir::arith::CmpFPredicate::OGT;
case Fortran::common::RelationalOperator::GE:
return mlir::arith::CmpFPredicate::OGE;
}
llvm_unreachable("unhandled REAL relational operator");
}
static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
mlir::Location loc,
fir::ExtendedValue actual) {
if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
*ptrOrAlloc);
// Optional case (not that optional allocatable/pointer cannot be absent
// when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
// therefore possible to catch them in the `then` case above.
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
fir::getBase(actual));
}
/// Place \p exv in memory if it is not already a memory reference. If
/// \p forceValueType is provided, the value is first casted to the provided
/// type before being stored (this is mainly intended for logicals whose value
/// may be `i1` but needed to be stored as Fortran logicals).
static fir::ExtendedValue
placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::Type storageType) {
mlir::Value valBase = fir::getBase(exv);
if (fir::conformsWithPassByRef(valBase.getType()))
return exv;
assert(!fir::hasDynamicSize(storageType) &&
"only expect statically sized scalars to be by value");
// Since `a` is not itself a valid referent, determine its value and
// create a temporary location at the beginning of the function for
// referencing.
mlir::Value val = builder.createConvert(loc, storageType, valBase);
mlir::Value temp = builder.createTemporary(
loc, storageType,
llvm::ArrayRef<mlir::NamedAttribute>{
Fortran::lower::getAdaptToByRefAttr(builder)});
builder.create<fir::StoreOp>(loc, val, temp);
return fir::substBase(exv, temp);
}
// Copy a copy of scalar \p exv in a new temporary.
static fir::ExtendedValue
createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
const fir::ExtendedValue &exv) {
assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
if (exv.getCharBox() != nullptr)
return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
if (fir::isDerivedWithLengthParameters(exv))
TODO(loc, "copy derived type with length parameters");
mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
fir::ExtendedValue temp = builder.createTemporary(loc, type);
fir::factory::genScalarAssignment(builder, loc, temp, exv);
return temp;
}
/// Is this a variable wrapped in parentheses?
template <typename A>
static bool isParenthesizedVariable(const A &) {
return false;
}
template <typename T>
static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
using Parentheses = Fortran::evaluate::Parentheses<T>;
if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
return Fortran::evaluate::IsVariable(parentheses->left());
return false;
} else {
return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
expr.u);
}
}
/// Generate a load of a value from an address. Beware that this will lose
/// any dynamic type information for polymorphic entities (note that unlimited
/// polymorphic cannot be loaded and must not be provided here).
static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &addr) {
return addr.match(
[](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
[&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
if (fir::unwrapRefType(fir::getBase(v).getType())
.isa<fir::RecordType>())
return v;
return builder.create<fir::LoadOp>(loc, fir::getBase(v));
},
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
TODO(loc, "genLoad for MutableBoxValue");
},
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
TODO(loc, "genLoad for BoxValue");
},
[&](const auto &) -> fir::ExtendedValue {
fir::emitFatalError(
loc, "attempting to load whole array or procedure address");
});
}
/// Create an optional dummy argument value from entity \p exv that may be
/// absent. This can only be called with numerical or logical scalar \p exv.
/// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
/// value is zero (or false), otherwise it is the value of \p exv.
static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::Value isPresent) {
mlir::Type eleType = fir::getBaseTypeOf(exv);
assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
"must be a numerical or logical scalar");
return builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
builder.create<fir::ResultOp>(loc, val);
})
.genElse([&]() {
mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0];
}
/// Create an optional dummy argument address from entity \p exv that may be
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
/// returned value is a null pointer, otherwise it is the address of \p exv.
static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::Value isPresent) {
// If it is an exv pointer/allocatable, then it cannot be absent
// because it is passed to a non-pointer/non-allocatable.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
return fir::factory::genMutableBoxRead(builder, loc, *box);
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
// address and can be passed directly.
return exv;
}
/// Create an optional dummy argument address from entity \p exv that may be
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
/// returned value is an absent fir.box, otherwise it is a fir.box describing \p
/// exv.
static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::Value isPresent) {
// Non allocatable/pointer optional box -> simply forward
if (exv.getBoxOf<fir::BoxValue>())
return exv;
fir::ExtendedValue newExv = exv;
// Optional allocatable/pointer -> Cannot be absent, but need to translate
// unallocated/diassociated into absent fir.box.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, newExv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return fir::BoxValue(boxOrAbsent);
}
/// Is this a call to an elemental procedure with at least one array argument?
static bool
isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
template <typename T>
static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
return false;
}
template <>
bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
return isElementalProcWithArrayArgs(*procRef);
return false;
}
/// Some auxiliary data for processing initialization in ScalarExprLowering
/// below. This is currently used for generating dense attributed global
/// arrays.
struct InitializerData {
explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
mlir::Type rawType; // Type of elements processed for rawVals vector.
bool genRawVals; // generate the rawVals vector if set.
};
/// If \p arg is the address of a function with a denoted host-association tuple
/// argument, then return the host-associations tuple value of the current
/// procedure. Otherwise, return nullptr.
static mlir::Value
argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
namespace {
/// Lowering of Fortran::evaluate::Expr<T> expressions
class ScalarExprLowering {
public:
using ExtValue = fir::ExtendedValue;
explicit ScalarExprLowering(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
InitializerData *initializer = nullptr)
: location{loc}, converter{converter},
builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
inInitializer{initializer} {}
ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
return gen(expr);
}
/// Lower `expr` to be passed as a fir.box argument. Do not create a temp
/// for the expr if it is a variable that can be described as a fir.box.
ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
bool saveUseBoxArg = useBoxArg;
useBoxArg = true;
ExtValue result = gen(expr);
useBoxArg = saveUseBoxArg;
return result;
}
ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
return genval(expr);
}
/// Lower an expression that is a pointer or an allocatable to a
/// MutableBoxValue.
fir::MutableBoxValue
genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
// Pointers and allocatables can only be:
// - a simple designator "x"
// - a component designator "a%b(i,j)%x"
// - a function reference "foo()"
// - result of NULL() or NULL(MOLD) intrinsic.
// NULL() requires some context to be lowered, so it is not handled
// here and must be lowered according to the context where it appears.
ExtValue exv = std::visit(
[&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
const fir::MutableBoxValue *mutableBox =
exv.getBoxOf<fir::MutableBoxValue>();
if (!mutableBox)
fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
return *mutableBox;
}
template <typename T>
ExtValue genMutableBoxValueImpl(const T &) {
// NULL() case should not be handled here.
fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
}
template <typename T>
ExtValue
genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
}
template <typename T>
ExtValue
genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
return std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
return symMap.lookupSymbol(*sym).toExtendedValue();
},
[&](const Fortran::evaluate::Component &comp) -> ExtValue {
return genComponent(comp);
},
[&](const auto &) -> ExtValue {
fir::emitFatalError(getLoc(),
"not an allocatable or pointer designator");
}},
designator.u);
}
template <typename T>
ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
expr.u);
}
mlir::Location getLoc() { return location; }
template <typename A>
mlir::Value genunbox(const A &expr) {
ExtValue e = genval(expr);
if (const fir::UnboxedValue *r = e.getUnboxed())
return *r;
fir::emitFatalError(getLoc(), "unboxed expression expected");
}
/// Generate an integral constant of `value`
template <int KIND>
mlir::Value genIntegerConstant(mlir::MLIRContext *context,
std::int64_t value) {
mlir::Type type =
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
return builder.createIntegerConstant(getLoc(), type, value);
}
/// Generate a logical/boolean constant of `value`
mlir::Value genBoolConstant(bool value) {
return builder.createBool(getLoc(), value);
}
/// Generate a real constant with a value `value`.
template <int KIND>
mlir::Value genRealConstant(mlir::MLIRContext *context,
const llvm::APFloat &value) {
mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
return builder.createRealConstant(getLoc(), fltTy, value);
}
template <typename OpTy>
mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
const ExtValue &left, const ExtValue &right) {
if (const fir::UnboxedValue *lhs = left.getUnboxed())
if (const fir::UnboxedValue *rhs = right.getUnboxed())
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
}
template <typename OpTy, typename A>
mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
ExtValue left = genval(ex.left());
return createCompareOp<OpTy>(pred, left, genval(ex.right()));
}
template <typename OpTy>
mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
const ExtValue &left, const ExtValue &right) {
if (const fir::UnboxedValue *lhs = left.getUnboxed())
if (const fir::UnboxedValue *rhs = right.getUnboxed())
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
}
template <typename OpTy, typename A>
mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
ExtValue left = genval(ex.left());
return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
}
/// Returns a reference to a symbol or its box/boxChar descriptor if it has
/// one.
ExtValue gen(Fortran::semantics::SymbolRef sym) {
if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
return val.match(
[&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
},
[&val](auto &) { return val.toExtendedValue(); });
LLVM_DEBUG(llvm::dbgs()
<< "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
}
ExtValue genLoad(const ExtValue &exv) {
return ::genLoad(builder, getLoc(), exv);
}
ExtValue genval(Fortran::semantics::SymbolRef sym) {
ExtValue var = gen(sym);
if (const fir::UnboxedValue *s = var.getUnboxed())
if (fir::isReferenceLike(s->getType()))
return genLoad(*s);
return var;
}
ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
TODO(getLoc(), "genval BOZ");
}
/// Return indirection to function designated in ProcedureDesignator.
/// The type of the function indirection is not guaranteed to match the one
/// of the ProcedureDesignator due to Fortran implicit typing rules.
ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
TODO(getLoc(), "genval ProcedureDesignator");
}
ExtValue genval(const Fortran::evaluate::NullPointer &) {
TODO(getLoc(), "genval NullPointer");
}
ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
TODO(getLoc(), "genval StructureConstructor");
}
/// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
return converter.impliedDoBinding(toStringRef(var.name));
}
ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
ExtValue exv = desc.base().IsSymbol() ? gen(desc.base().GetLastSymbol())
: gen(desc.base().GetComponent());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Location loc = getLoc();
auto castResult = [&](mlir::Value v) {
using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
return builder.createConvert(
loc, converter.genType(ResTy::category, ResTy::kind), v);
};
switch (desc.field()) {
case Fortran::evaluate::DescriptorInquiry::Field::Len:
return castResult(fir::factory::readCharLen(builder, loc, exv));
case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
return castResult(fir::factory::readLowerBound(
builder, loc, exv, desc.dimension(),
builder.createIntegerConstant(loc, idxTy, 1)));
case Fortran::evaluate::DescriptorInquiry::Field::Extent:
return castResult(
fir::factory::readExtent(builder, loc, exv, desc.dimension()));
case Fortran::evaluate::DescriptorInquiry::Field::Rank:
TODO(loc, "rank inquiry on assumed rank");
case Fortran::evaluate::DescriptorInquiry::Field::Stride:
// So far the front end does not generate this inquiry.
TODO(loc, "Stride inquiry");
}
llvm_unreachable("unknown descriptor inquiry");
}
ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
TODO(getLoc(), "genval TypeParamInquiry");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
TODO(getLoc(), "genval ComplexComponent");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Integer, KIND>> &op) {
mlir::Value input = genunbox(op.left());
// Like LLVM, integer negation is the binary op "0 - value"
mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Real, KIND>> &op) {
return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Complex, KIND>> &op) {
return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
}
template <typename OpTy>
mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
mlir::Value lhs = fir::getBase(left);
mlir::Value rhs = fir::getBase(right);
assert(lhs.getType() == rhs.getType() && "types must be the same");
return builder.create<OpTy>(getLoc(), lhs, rhs);
}
template <typename OpTy, typename A>
mlir::Value createBinaryOp(const A &ex) {
ExtValue left = genval(ex.left());
return createBinaryOp<OpTy>(left, genval(ex.right()));
}
#undef GENBIN
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
template <int KIND> \
ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
return createBinaryOp<GenBinFirOp>(x); \
}
GENBIN(Add, Integer, mlir::arith::AddIOp)
GENBIN(Add, Real, mlir::arith::AddFOp)
GENBIN(Add, Complex, fir::AddcOp)
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
GENBIN(Subtract, Real, mlir::arith::SubFOp)
GENBIN(Subtract, Complex, fir::SubcOp)
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
GENBIN(Multiply, Real, mlir::arith::MulFOp)
GENBIN(Multiply, Complex, fir::MulcOp)
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
GENBIN(Divide, Real, mlir::arith::DivFOp)
GENBIN(Divide, Complex, fir::DivcOp)
template <Fortran::common::TypeCategory TC, int KIND>
ExtValue genval(
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
mlir::Type ty = converter.genType(TC, KIND);
mlir::Value lhs = genunbox(op.left());
mlir::Value rhs = genunbox(op.right());
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
}
template <Fortran::common::TypeCategory TC, int KIND>
ExtValue genval(
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
&op) {
mlir::Type ty = converter.genType(TC, KIND);
mlir::Value lhs = genunbox(op.left());
mlir::Value rhs = genunbox(op.right());
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
mlir::Value realPartValue = genunbox(op.left());
return fir::factory::Complex{builder, getLoc()}.createComplex(
KIND, realPartValue, genunbox(op.right()));
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
TODO(getLoc(), "genval Concat<KIND>");
}
/// MIN and MAX operations
template <Fortran::common::TypeCategory TC, int KIND>
ExtValue
genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
&op) {
TODO(getLoc(), "genval Extremum<TC, KIND>");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
TODO(getLoc(), "genval SetLength<KIND>");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Integer, KIND>> &op) {
return createCompareOp<mlir::arith::CmpIOp>(op,
translateRelational(op.opr));
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Real, KIND>> &op) {
return createFltCmpOp<mlir::arith::CmpFOp>(
op, translateFloatRelational(op.opr));
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Complex, KIND>> &op) {
TODO(getLoc(), "genval complex comparison");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, KIND>> &op) {
TODO(getLoc(), "genval char comparison");
}
ExtValue
genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
return std::visit([&](const auto &x) { return genval(x); }, op.u);
}
template <Fortran::common::TypeCategory TC1, int KIND,
Fortran::common::TypeCategory TC2>
ExtValue
genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
TC2> &convert) {
mlir::Type ty = converter.genType(TC1, KIND);
mlir::Value operand = genunbox(convert.left());
return builder.convertWithSemantics(getLoc(), ty, operand);
}
template <typename A>
ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
TODO(getLoc(), "genval parentheses<A>");
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
mlir::Value logical = genunbox(op.left());
mlir::Value one = genBoolConstant(true);
mlir::Value val =
builder.createConvert(getLoc(), builder.getI1Type(), logical);
return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
mlir::IntegerType i1Type = builder.getI1Type();
mlir::Value slhs = genunbox(op.left());
mlir::Value srhs = genunbox(op.right());
mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
switch (op.logicalOperator) {
case Fortran::evaluate::LogicalOperator::And:
return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
case Fortran::evaluate::LogicalOperator::Or:
return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
case Fortran::evaluate::LogicalOperator::Eqv:
return createCompareOp<mlir::arith::CmpIOp>(
mlir::arith::CmpIPredicate::eq, lhs, rhs);
case Fortran::evaluate::LogicalOperator::Neqv:
return createCompareOp<mlir::arith::CmpIOp>(
mlir::arith::CmpIPredicate::ne, lhs, rhs);
case Fortran::evaluate::LogicalOperator::Not:
// lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
llvm_unreachable(".NOT. is not a binary operator");
}
llvm_unreachable("unhandled logical operation");
}
/// Convert a scalar literal constant to IR.
template <Fortran::common::TypeCategory TC, int KIND>
ExtValue genScalarLit(
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
&value) {
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
return genBoolConstant(value.IsTrue());
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
std::string str = value.DumpHexadecimal();
if constexpr (KIND == 2) {
llvm::APFloat floatVal{llvm::APFloatBase::IEEEhalf(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
} else if constexpr (KIND == 3) {
llvm::APFloat floatVal{llvm::APFloatBase::BFloat(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
} else if constexpr (KIND == 4) {
llvm::APFloat floatVal{llvm::APFloatBase::IEEEsingle(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
} else if constexpr (KIND == 10) {
llvm::APFloat floatVal{llvm::APFloatBase::x87DoubleExtended(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
} else if constexpr (KIND == 16) {
llvm::APFloat floatVal{llvm::APFloatBase::IEEEquad(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
} else {
// convert everything else to double
llvm::APFloat floatVal{llvm::APFloatBase::IEEEdouble(), str};
return genRealConstant<KIND>(builder.getContext(), floatVal);
}
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
using TR =
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
Fortran::evaluate::ComplexConstructor<KIND> ctor(
Fortran::evaluate::Expr<TR>{
Fortran::evaluate::Constant<TR>{value.REAL()}},
Fortran::evaluate::Expr<TR>{
Fortran::evaluate::Constant<TR>{value.AIMAG()}});
return genunbox(ctor);
} else /*constexpr*/ {
llvm_unreachable("unhandled constant");
}
}
/// Convert a ascii scalar literal CHARACTER to IR. (specialization)
ExtValue
genAsciiScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, 1>> &value,
int64_t len) {
assert(value.size() == static_cast<std::uint64_t>(len) &&
"value.size() doesn't match with len");
return fir::factory::createStringLiteral(builder, getLoc(), value);
}
template <Fortran::common::TypeCategory TC, int KIND>
ExtValue
genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
&con) {
if (con.Rank() > 0)
TODO(getLoc(), "genval array constant");
std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
opt = con.GetScalarValue();
assert(opt.has_value() && "constant has no value");
if constexpr (TC == Fortran::common::TypeCategory::Character) {
if constexpr (KIND == 1)
return genAsciiScalarLit(opt.value(), con.LEN());
TODO(getLoc(), "genval for Character with KIND != 1");
} else {
return genScalarLit<TC, KIND>(opt.value());
}
}
fir::ExtendedValue genval(
const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
TODO(getLoc(), "genval constant derived");
}
template <typename A>
ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
TODO(getLoc(), "genval ArrayConstructor<A>");
}
ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
TODO(getLoc(), "gen ComplexPart");
}
ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
TODO(getLoc(), "genval ComplexPart");
}
ExtValue gen(const Fortran::evaluate::Substring &s) {
TODO(getLoc(), "gen Substring");
}
ExtValue genval(const Fortran::evaluate::Substring &ss) {
TODO(getLoc(), "genval Substring");
}
ExtValue genval(const Fortran::evaluate::Subscript &subs) {
if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
&subs.u)) {
if (s->value().Rank() > 0)
fir::emitFatalError(getLoc(), "vector subscript is not scalar");
return {genval(s->value())};
}
fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
}
ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
return genval(subs);
}
ExtValue gen(const Fortran::evaluate::DataRef &dref) {
TODO(getLoc(), "gen DataRef");
}
ExtValue genval(const Fortran::evaluate::DataRef &dref) {
TODO(getLoc(), "genval DataRef");
}
// Helper function to turn the Component structure into a list of nested
// components, ordered from largest/leftmost to smallest/rightmost:
// - where only the smallest/rightmost item may be allocatable or a pointer
// (nested allocatable/pointer components require nested coordinate_of ops)
// - that does not contain any parent components
// (the front end places parent components directly in the object)
// Return the object used as the base coordinate for the component chain.
static Fortran::evaluate::DataRef const *
reverseComponents(const Fortran::evaluate::Component &cmpt,
std::list<const Fortran::evaluate::Component *> &list) {
if (!cmpt.GetLastSymbol().test(
Fortran::semantics::Symbol::Flag::ParentComp))
list.push_front(&cmpt);
return std::visit(
Fortran::common::visitors{
[&](const Fortran::evaluate::Component &x) {
if (Fortran::semantics::IsAllocatableOrPointer(x.GetLastSymbol()))
return &cmpt.base();
return reverseComponents(x, list);
},
[&](auto &) { return &cmpt.base(); },
},
cmpt.base().u);
}
// Return the coordinate of the component reference
ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
std::list<const Fortran::evaluate::Component *> list;
const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
llvm::SmallVector<mlir::Value> coorArgs;
ExtValue obj = gen(*base);
mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
mlir::Location loc = getLoc();
auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
// FIXME: need to thread the LEN type parameters here.
for (const Fortran::evaluate::Component *field : list) {
auto recTy = ty.cast<fir::RecordType>();
const Fortran::semantics::Symbol &sym = field->GetLastSymbol();
llvm::StringRef name = toStringRef(sym.name());
coorArgs.push_back(builder.create<fir::FieldIndexOp>(
loc, fldTy, name, recTy, fir::getTypeParams(obj)));
ty = recTy.getType(name);
}
ty = builder.getRefType(ty);
return fir::factory::componentToExtendedValue(
builder, loc,
builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
coorArgs));
}
ExtValue gen(const Fortran::evaluate::Component &cmpt) {
TODO(getLoc(), "gen Component");
}
ExtValue genval(const Fortran::evaluate::Component &cmpt) {
TODO(getLoc(), "genval Component");
}
ExtValue genval(const Fortran::semantics::Bound &bound) {
TODO(getLoc(), "genval Bound");
}
/// Return lower bounds of \p box in dimension \p dim. The returned value
/// has type \ty.
mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
assert(box.rank() > 0 && "must be an array");
mlir::Location loc = getLoc();
mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
return builder.createConvert(loc, ty, lb);
}
static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
for (const Fortran::evaluate::Subscript &sub : aref.subscript())
if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
return true;
return false;
}
/// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
ExtValue genCoordinateOp(const ExtValue &array,
const Fortran::evaluate::ArrayRef &aref) {
mlir::Location loc = getLoc();
// References to array of rank > 1 with non constant shape that are not
// fir.box must be collapsed into an offset computation in lowering already.
// The same is needed with dynamic length character arrays of all ranks.
mlir::Type baseType =
fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
if (!array.getBoxOf<fir::BoxValue>())
return genOffsetAndCoordinateOp(array, aref);
// Generate a fir.coordinate_of with zero based array indexes.
llvm::SmallVector<mlir::Value> args;
for (const auto &subsc : llvm::enumerate(aref.subscript())) {
ExtValue subVal = genSubscript(subsc.value());
assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
mlir::Value val = fir::getBase(subVal);
mlir::Type ty = val.getType();
mlir::Value lb = getLBound(array, subsc.index(), ty);
args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
}
mlir::Value base = fir::getBase(array);
auto seqTy =
fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
assert(args.size() == seqTy.getDimension());
mlir::Type ty = builder.getRefType(seqTy.getEleTy());
auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
}
/// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
/// of array indexes.
/// This generates offset computation from the indexes and length parameters,
/// and use the offset to access the element with a fir.coordinate_of. This
/// must only be used if it is not possible to generate a normal
/// fir.coordinate_of using array indexes (i.e. when the shape information is
/// unavailable in the IR).
ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
const Fortran::evaluate::ArrayRef &aref) {
mlir::Location loc = getLoc();
mlir::Value addr = fir::getBase(array);
mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
mlir::Type refTy = builder.getRefType(eleTy);
mlir::Value base = builder.createConvert(loc, seqTy, addr);
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
};
auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
mlir::Value total = zero;
assert(arr.getExtents().size() == aref.subscript().size());
delta = builder.createConvert(loc, idxTy, delta);
unsigned dim = 0;
for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
ExtValue subVal = genSubscript(sub);
assert(fir::isUnboxedValue(subVal));
mlir::Value val =
builder.createConvert(loc, idxTy, fir::getBase(subVal));
mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
mlir::Value prod =
builder.create<mlir::arith::MulIOp>(loc, delta, diff);
total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
if (ext)
delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
++dim;
}
mlir::Type origRefTy = refTy;
if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
fir::CharacterType chTy =
fir::factory::CharacterExprHelper::getCharacterType(refTy);
if (fir::characterWithDynamicLen(chTy)) {
mlir::MLIRContext *ctx = builder.getContext();
fir::KindTy kind =
fir::factory::CharacterExprHelper::getCharacterKind(chTy);
fir::CharacterType singleTy =
fir::CharacterType::getSingleton(ctx, kind);
refTy = builder.getRefType(singleTy);
mlir::Type seqRefTy =
builder.getRefType(builder.getVarLenSeqTy(singleTy));
base = builder.createConvert(loc, seqRefTy, base);
}
}
auto coor = builder.create<fir::CoordinateOp>(
loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
// Convert to expected, original type after address arithmetic.
return builder.createConvert(loc, origRefTy, coor);
};
return array.match(
[&](const fir::ArrayBoxValue &arr) -> ExtValue {
// FIXME: this check can be removed when slicing is implemented
if (isSlice(aref))
fir::emitFatalError(
getLoc(),
"slice should be handled in array expression context");
return genFullDim(arr, one);
},
[&](const fir::CharArrayBoxValue &arr) -> ExtValue {
mlir::Value delta = arr.getLen();
// If the length is known in the type, fir.coordinate_of will
// already take the length into account.
if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
delta = one;
return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
},
[&](const fir::BoxValue &arr) -> ExtValue {
// CoordinateOp for BoxValue is not generated here. The dimensions
// must be kept in the fir.coordinate_op so that potential fir.box
// strides can be applied by codegen.
fir::emitFatalError(
loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
},
[&](const auto &) -> ExtValue {
fir::emitFatalError(loc, "internal: array lowering failed");
});
}
ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
ExtValue base = aref.base().IsSymbol() ? gen(aref.base().GetFirstSymbol())
: gen(aref.base().GetComponent());
return genCoordinateOp(base, aref);
}
ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
return genLoad(gen(aref));
}
ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
TODO(getLoc(), "gen CoarrayRef");
}
ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
TODO(getLoc(), "genval CoarrayRef");
}
template <typename A>
ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
return std::visit([&](const auto &x) { return gen(x); }, des.u);
}
template <typename A>
ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
return std::visit([&](const auto &x) { return genval(x); }, des.u);
}
mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
if (dt.category() != Fortran::common::TypeCategory::Derived)
return converter.genType(dt.category(), dt.kind());
TODO(getLoc(), "genType Derived Type");
}
/// Lower a function reference
template <typename A>
ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
if (!funcRef.GetType().has_value())
fir::emitFatalError(getLoc(), "internal: a function must have a type");
mlir::Type resTy = genType(*funcRef.GetType());
return genProcedureRef(funcRef, {resTy});
}
/// Lower function call `funcRef` and return a reference to the resultant
/// value. This is required for lowering expressions such as `f1(f2(v))`.
template <typename A>
ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
ExtValue retVal = genFunctionRef(funcRef);
mlir::Value retValBase = fir::getBase(retVal);
if (fir::conformsWithPassByRef(retValBase.getType()))
return retVal;
auto mem = builder.create<fir::AllocaOp>(getLoc(), retValBase.getType());
builder.create<fir::StoreOp>(getLoc(), retValBase, mem);
return fir::substBase(retVal, mem.getResult());
}
/// helper to detect statement functions
static bool
isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
/// Helper to package a Value and its properties into an ExtendedValue.
static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (type.isa<fir::BoxType>())
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (type.isa<fir::BoxType>())
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (type.isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
/// Create a contiguous temporary array with the same shape,
/// length parameters and type as mold. It is up to the caller to deallocate
/// the temporary.
ExtValue genArrayTempFromMold(const ExtValue &mold,
llvm::StringRef tempName) {
mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
assert(type && "expected descriptor or memory type");
mlir::Location loc = getLoc();
llvm::SmallVector<mlir::Value> extents =
fir::factory::getExtents(builder, loc, mold);
llvm::SmallVector<mlir::Value> allocMemTypeParams =
fir::getTypeParams(mold);
mlir::Value charLen;
mlir::Type elementType = fir::unwrapSequenceType(type);
if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
charLen = allocMemTypeParams.empty()
? fir::factory::readCharLen(builder, loc, mold)
: allocMemTypeParams[0];
if (charType.hasDynamicLen() && allocMemTypeParams.empty())
allocMemTypeParams.push_back(charLen);
} else if (fir::hasDynamicSize(elementType)) {
TODO(loc, "Creating temporary for derived type with length parameters");
}
mlir::Value temp = builder.create<fir::AllocMemOp>(
loc, type, tempName, allocMemTypeParams, extents);
if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
return fir::CharArrayBoxValue{temp, charLen, extents};
return fir::ArrayBoxValue{temp, extents};
}
/// Copy \p source array into \p dest array. Both arrays must be
/// conforming, but neither array must be contiguous.
void genArrayCopy(ExtValue dest, ExtValue source) {
return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
}
/// Lower a non-elemental procedure reference and read allocatable and pointer
/// results into normal values.
ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> resultType) {
ExtValue res = genRawProcedureRef(procRef, resultType);
return res;
}
/// Given a call site for which the arguments were already lowered, generate
/// the call and return the result. This function deals with explicit result
/// allocation and lowering if needed. It also deals with passing the host
/// link to internal procedures.
ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType,
llvm::Optional<mlir::Type> resultType) {
mlir::Location loc = getLoc();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
// Handle cases where caller must allocate the result or a fir.box for it.
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbols()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::semantics::Symbol *sym =
caller.getIfIndirectCallSymbol()) {
funcPointer = symMap.lookupSymbol(*sym).getAddr();
if (!funcPointer)
fir::emitFatalError(loc, "failed to find indirect call symbol address");
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
/*acceptRawFunc=*/false))
std::tie(funcPointer, charFuncPointerLength) =
fir::factory::extractCharacterProcedureTuple(builder, loc,
funcPointer);
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
return builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (type.isa<fir::SequenceType>())
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!type.isa<fir::BoxType>()) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if (!extents.empty() || !lengths.empty()) {
auto *bldr = &converter.getFirOpBuilder();
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
mlir::Value sp =
bldr->create<fir::CallOp>(loc, stackSaveFn.getType().getResults(),
stackSaveSymbol, mlir::ValueRange{})
.getResult(0);
stmtCtx.attachCleanup([bldr, loc, sp]() {
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
auto stackRestoreSymbol =
bldr->getSymbolRefAttr(stackRestoreFn.getName());
bldr->create<fir::CallOp>(loc, stackRestoreFn.getType().getResults(),
stackRestoreSymbol, mlir::ValueRange{sp});
});
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
if (!addHostAssociations &&
(callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
funcPointer =
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
} else if (callSiteType.getResults() != funcOpType.getResults()) {
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
funcPointer =
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
} else {
funcSymbolAttr = symbolAttr;
}
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
funcPointer.getType().isa<fir::BoxProcType>()
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] :
llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called an implicit
// interface, allow character actual arguments to be passed to dummy
// arguments of any type and vice versa
mlir::Value cast;
auto *context = builder.getContext();
if (snd.isa<fir::BoxProcType>() &&
fst.getType().isa<mlir::FunctionType>()) {
auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface);
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
funcSymbolAttr, operands);
if (caller.mustSaveResult())
builder.create<fir::SaveResultOp>(
loc, call.getResult(0), fir::getBase(allocatedResult.getValue()),
arrayResultShape, resultLengths);
if (allocatedResult) {
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable()) {
// 9.7.3.2 point 4. Finalize allocatables.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFinalization(*bldr, loc, box);
});
}
},
[](const auto &) {});
return *allocatedResult;
}
if (!resultType.hasValue())
return mlir::Value{}; // subroutine call
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(call.getNumResults() == 1 &&
"Expected exactly one result in FUNCTION call");
return call.getResult(0);
}
/// Like genExtAddr, but ensure the address returned is a temporary even if \p
/// expr is variable inside parentheses.
ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
// In general, genExtAddr might not create a temp for variable inside
// parentheses to avoid creating array temporary in sub-expressions. It only
// ensures the sub-expression is not re-associated with other parts of the
// expression. In the call semantics, there is a difference between expr and
// variable (see R1524). For expressions, a variable storage must not be
// argument associated since it could be modified inside the call, or the
// variable could also be modified by other means during the call.
if (!isParenthesizedVariable(expr))
return genExtAddr(expr);
mlir::Location loc = getLoc();
if (expr.Rank() > 0)
TODO(loc, "genTempExtAddr array");
return genExtValue(expr).match(
[&](const fir::CharBoxValue &boxChar) -> ExtValue {
TODO(loc, "genTempExtAddr CharBoxValue");
},
[&](const fir::UnboxedValue &v) -> ExtValue {
mlir::Type type = v.getType();
mlir::Value value = v;
if (fir::isa_ref_type(type))
value = builder.create<fir::LoadOp>(loc, value);
mlir::Value temp = builder.createTemporary(loc, value.getType());
builder.create<fir::StoreOp>(loc, value, temp);
return temp;
},
[&](const fir::BoxValue &x) -> ExtValue {
// Derived type scalar that may be polymorphic.
assert(!x.hasRank() && x.isDerived());
if (x.isDerivedWithLengthParameters())
fir::emitFatalError(
loc, "making temps for derived type with length parameters");
// TODO: polymorphic aspects should be kept but for now the temp
// created always has the declared type.
mlir::Value var =
fir::getBase(fir::factory::readBoxValue(builder, loc, x));
auto value = builder.create<fir::LoadOp>(loc, var);
mlir::Value temp = builder.createTemporary(loc, value.getType());
builder.create<fir::StoreOp>(loc, value, temp);
return temp;
},
[&](const auto &) -> ExtValue {
fir::emitFatalError(loc, "expr is not a scalar value");
});
}
/// Helper structure to track potential copy-in of non contiguous variable
/// argument into a contiguous temp. It is used to deallocate the temp that
/// may have been created as well as to the copy-out from the temp to the
/// variable after the call.
struct CopyOutPair {
ExtValue var;
ExtValue temp;
// Flag to indicate if the argument may have been modified by the
// callee, in which case it must be copied-out to the variable.
bool argMayBeModifiedByCall;
// Optional boolean value that, if present and false, prevents
// the copy-out and temp deallocation.
llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
};
using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
/// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
/// not based on fir.box.
/// This will lose any non contiguous stride information and dynamic type and
/// should only be called if \p exv is known to be contiguous or if its base
/// address will be replaced by a contiguous one. If \p exv is not a
/// fir::BoxValue, this is a no-op.
ExtValue readIfBoxValue(const ExtValue &exv) {
if (const auto *box = exv.getBoxOf<fir::BoxValue>())
return fir::factory::readBoxValue(builder, getLoc(), *box);
return exv;
}
/// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
/// creation of the temp and copy-in can be made conditional at runtime by
/// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
/// the temp and copy will only be made if the value is true at runtime).
ExtValue genCopyIn(const ExtValue &actualArg,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CopyOutPairs &copyOutPairs,
llvm::Optional<mlir::Value> restrictCopyAtRuntime) {
if (!restrictCopyAtRuntime) {
ExtValue temp = genArrayTempFromMold(actualArg, ".copyinout");
if (arg.mayBeReadByCall())
genArrayCopy(temp, actualArg);
copyOutPairs.emplace_back(CopyOutPair{
actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime});
return temp;
}
// Otherwise, need to be careful to only copy-in if allowed at runtime.
mlir::Location loc = getLoc();
auto addrType = fir::HeapType::get(
fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
mlir::Value addr =
builder
.genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
/*withElseRegion=*/true)
.genThen([&]() {
auto temp = genArrayTempFromMold(actualArg, ".copyinout");
if (arg.mayBeReadByCall())
genArrayCopy(temp, actualArg);
builder.create<fir::ResultOp>(loc, fir::getBase(temp));
})
.genElse([&]() {
auto nullPtr = builder.createNullConstant(loc, addrType);
builder.create<fir::ResultOp>(loc, nullPtr);
})
.getResults()[0];
// Associate the temp address with actualArg lengths and extents.
fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
copyOutPairs.emplace_back(CopyOutPair{
actualArg, temp, arg.mayBeModifiedByCall(), restrictCopyAtRuntime});
return temp;
}
/// Lower a non-elemental procedure reference.
ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> resultType) {
mlir::Location loc = getLoc();
if (isElementalProcWithArrayArgs(procRef))
fir::emitFatalError(loc, "trying to lower elemental procedure with array "
"arguments as normal procedure");
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
procRef.proc().GetSpecificIntrinsic())
return genIntrinsicRef(procRef, *intrinsic, resultType);
if (isStatementFunctionCall(procRef))
TODO(loc, "Lower statement function call");
Fortran::lower::CallerInterface caller(procRef, converter);
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
// List of <var, temp> where temp must be copied into var after the call.
CopyOutPairs copyOutPairs;
mlir::FunctionType callSiteType = caller.genFunctionType();
// Lower the actual arguments and map the lowered values to the dummy
// arguments.
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments()) {
const auto *actual = arg.entity;
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!actual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
continue;
}
const auto *expr = actual->UnwrapExpr();
if (!expr)
TODO(loc, "assumed type actual argument lowering");
if (arg.passBy == PassBy::Value) {
ExtValue argVal = genval(*expr);
if (!fir::isUnboxedValue(argVal))
fir::emitFatalError(
loc, "internal error: passing non trivial value by value");
caller.placeInput(arg, fir::getBase(argVal));
continue;
}
if (arg.passBy == PassBy::MutableBox) {
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// If expr is NULL(), the mutableBox created must be a deallocated
// pointer with the dummy argument characteristics (see table 16.5
// in Fortran 2018 standard).
// No length parameters are set for the created box because any non
// deferred type parameters of the dummy will be evaluated on the
// callee side, and it is illegal to use NULL without a MOLD if any
// dummy length parameters are assumed.
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
assert(boxTy && boxTy.isa<fir::BoxType>() &&
"must be a fir.box type");
mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
mlir::Value nullBox = fir::factory::createUnallocatedBox(
builder, loc, boxTy, /*nonDeferredParams=*/{});
builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
caller.placeInput(arg, boxStorage);
continue;
}
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
mlir::Value irBox =
fir::factory::getMutableIRBox(builder, loc, mutableBox);
caller.placeInput(arg, irBox);
if (arg.mayBeModifiedByCall())
mutableModifiedByCall.emplace_back(std::move(mutableBox));
continue;
}
const bool actualArgIsVariable = Fortran::evaluate::IsVariable(*expr);
if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar) {
const bool actualIsSimplyContiguous =
!actualArgIsVariable || Fortran::evaluate::IsSimplyContiguous(
*expr, converter.getFoldingContext());
auto argAddr = [&]() -> ExtValue {
ExtValue baseAddr;
if (actualArgIsVariable && arg.isOptional()) {
if (Fortran::evaluate::IsAllocatableOrPointerObject(
*expr, converter.getFoldingContext())) {
TODO(loc, "Allocatable or pointer argument");
}
if (const Fortran::semantics::Symbol *wholeSymbol =
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(
*expr))
if (Fortran::semantics::IsOptional(*wholeSymbol)) {
TODO(loc, "procedureref optional arg");
}
// Fall through: The actual argument can safely be
// copied-in/copied-out without any care if needed.
}
if (actualArgIsVariable && expr->Rank() > 0) {
ExtValue box = genBoxArg(*expr);
if (!actualIsSimplyContiguous)
return genCopyIn(box, arg, copyOutPairs,
/*restrictCopyAtRuntime=*/llvm::None);
// Contiguous: just use the box we created above!
// This gets "unboxed" below, if needed.
return box;
}
// Actual argument is a non optional/non pointer/non allocatable
// scalar.
if (actualArgIsVariable)
return genExtAddr(*expr);
// Actual argument is not a variable. Make sure a variable address is
// not passed.
return genTempExtAddr(*expr);
}();
// Scalar and contiguous expressions may be lowered to a fir.box,
// either to account for potential polymorphism, or because lowering
// did not account for some contiguity hints.
// Here, polymorphism does not matter (an entity of the declared type
// is passed, not one of the dynamic type), and the expr is known to
// be simply contiguous, so it is safe to unbox it and pass the
// address without making a copy.
argAddr = readIfBoxValue(argAddr);
if (arg.passBy == PassBy::BaseAddress) {
caller.placeInput(arg, fir::getBase(argAddr));
} else {
assert(arg.passBy == PassBy::BoxChar);
auto helper = fir::factory::CharacterExprHelper{builder, loc};
auto boxChar = argAddr.match(
[&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
[&](const fir::CharArrayBoxValue &x) {
return helper.createEmbox(x);
},
[&](const auto &x) -> mlir::Value {
// Fortran allows an actual argument of a completely different
// type to be passed to a procedure expecting a CHARACTER in the
// dummy argument position. When this happens, the data pointer
// argument is simply assumed to point to CHARACTER data and the
// LEN argument used is garbage. Simulate this behavior by
// free-casting the base address to be a !fir.char reference and
// setting the LEN argument to undefined. What could go wrong?
auto dataPtr = fir::getBase(x);
assert(!dataPtr.getType().template isa<fir::BoxType>());
return builder.convertWithSemantics(
loc, argTy, dataPtr,
/*allowCharacterConversion=*/true);
});
caller.placeInput(arg, boxChar);
}
} else if (arg.passBy == PassBy::Box) {
// Before lowering to an address, handle the allocatable/pointer actual
// argument to optional fir.box dummy. It is legal to pass
// unallocated/disassociated entity to an optional. In this case, an
// absent fir.box must be created instead of a fir.box with a null value
// (Fortran 2018 15.5.2.12 point 1).
if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
*expr, converter.getFoldingContext())) {
TODO(loc, "optional allocatable or pointer argument");
} else {
// Make sure a variable address is only passed if the expression is
// actually a variable.
mlir::Value box =
actualArgIsVariable
? builder.createBox(loc, genBoxArg(*expr))
: builder.createBox(getLoc(), genTempExtAddr(*expr));
caller.placeInput(arg, box);
}
} else if (arg.passBy == PassBy::AddressAndLength) {
ExtValue argRef = genExtAddr(*expr);
caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
fir::getLen(argRef));
} else if (arg.passBy == PassBy::CharProcTuple) {
TODO(loc, "procedureref CharProcTuple");
} else {
TODO(loc, "pass by value in non elemental function call");
}
}
ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
// // Copy-out temps that were created for non contiguous variable arguments
// if
// // needed.
// for (const auto &copyOutPair : copyOutPairs)
// genCopyOut(copyOutPair);
return result;
}
template <typename A>
ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
ExtValue result = genFunctionRef(funcRef);
if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
return genLoad(result);
return result;
}
ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
llvm::Optional<mlir::Type> resTy;
if (procRef.hasAlternateReturns())
resTy = builder.getIndexType();
return genProcedureRef(procRef, resTy);
}
/// Helper to lower intrinsic arguments for inquiry intrinsic.
ExtValue
lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
if (Fortran::evaluate::IsAllocatableOrPointerObject(
expr, converter.getFoldingContext()))
return genMutableBoxValue(expr);
return gen(expr);
}
/// Helper to lower intrinsic arguments to a fir::BoxValue.
/// It preserves all the non default lower bounds/non deferred length
/// parameter information.
ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
mlir::Location loc = getLoc();
ExtValue exv = genBoxArg(expr);
mlir::Value box = builder.createBox(loc, exv);
return fir::BoxValue(
box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
fir::factory::getNonDeferredLengthParams(exv));
}
/// Generate a call to an intrinsic function.
ExtValue
genIntrinsicRef(const Fortran::evaluate::ProcedureRef &procRef,
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
llvm::Optional<mlir::Type> resultType) {
llvm::SmallVector<ExtValue> operands;
llvm::StringRef name = intrinsic.name;
mlir::Location loc = getLoc();
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
Fortran::lower::getIntrinsicArgumentLowering(name);
for (const auto &[arg, dummy] :
llvm::zip(procRef.arguments(),
intrinsic.characteristics.value().dummyArguments)) {
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg);
if (!expr) {
// Absent optional.
operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
continue;
}
if (!argLowering) {
// No argument lowering instruction, lower by value.
operands.emplace_back(genval(*expr));
continue;
}
// Ad-hoc argument lowering handling.
Fortran::lower::ArgLoweringRule argRules =
Fortran::lower::lowerIntrinsicArgumentAs(loc, *argLowering,
dummy.name);
if (argRules.handleDynamicOptional &&
Fortran::evaluate::MayBePassedAsAbsentOptional(
*expr, converter.getFoldingContext())) {
ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
switch (argRules.lowerAs) {
case Fortran::lower::LowerIntrinsicArgAs::Value:
operands.emplace_back(
genOptionalValue(builder, loc, optional, isPresent));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Addr:
operands.emplace_back(
genOptionalAddr(builder, loc, optional, isPresent));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Box:
operands.emplace_back(
genOptionalBox(builder, loc, optional, isPresent));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
operands.emplace_back(optional);
continue;
}
llvm_unreachable("bad switch");
}
switch (argRules.lowerAs) {
case Fortran::lower::LowerIntrinsicArgAs::Value:
operands.emplace_back(genval(*expr));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Addr:
operands.emplace_back(gen(*expr));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Box:
operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
continue;
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
continue;
}
llvm_unreachable("bad switch");
}
// Let the intrinsic library lower the intrinsic procedure call
return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
operands, stmtCtx);
}
template <typename A>
ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
inInitializer)
return std::visit([&](const auto &e) { return genval(e); }, x.u);
return asArray(x);
}
/// Helper to detect Transformational function reference.
template <typename T>
bool isTransformationalRef(const T &) {
return false;
}
template <typename T>
bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
return !funcRef.IsElemental() && funcRef.Rank();
}
template <typename T>
bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
return std::visit([&](const auto &e) { return isTransformationalRef(e); },
expr.u);
}
template <typename A>
ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
// Whole array symbols or components, and results of transformational
// functions already have a storage and the scalar expression lowering path
// is used to not create a new temporary storage.
if (isScalar(x) ||
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
isTransformationalRef(x))
return std::visit([&](const auto &e) { return genref(e); }, x.u);
TODO(getLoc(), "gen Expr non-scalar");
}
template <typename A>
bool isScalar(const A &x) {
return x.Rank() == 0;
}
template <typename A>
ExtValue asArray(const A &x) {
return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
symMap, stmtCtx);
}
template <int KIND>
ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Logical, KIND>> &exp) {
return std::visit([&](const auto &e) { return genval(e); }, exp.u);
}
using RefSet =
std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
Fortran::evaluate::DataRef, Fortran::evaluate::Component,
Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
Fortran::semantics::SymbolRef>;
template <typename A>
static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
template <typename A, typename = std::enable_if_t<inRefSet<A>>>
ExtValue genref(const A &a) {
return gen(a);
}
template <typename A>
ExtValue genref(const A &a) {
mlir::Type storageType = converter.genType(toEvExpr(a));
return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
}
template <typename A, template <typename> typename T,
typename B = std::decay_t<T<A>>,
std::enable_if_t<
std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
bool> = true>
ExtValue genref(const T<A> &x) {
return gen(x);
}
private:
mlir::Location location;
Fortran::lower::AbstractConverter &converter;
fir::FirOpBuilder &builder;
Fortran::lower::StatementContext &stmtCtx;
Fortran::lower::SymMap &symMap;
InitializerData *inInitializer = nullptr;
bool useBoxArg = false; // expression lowered as argument
};
} // namespace
// Helper for changing the semantics in a given context. Preserves the current
// semantics which is resumed when the "push" goes out of scope.
#define PushSemantics(PushVal) \
[[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \
Fortran::common::ScopedSet(semant, PushVal);
static bool isAdjustedArrayElementType(mlir::Type t) {
return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
}
/// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
/// the actual extents and lengths. This is only to allow their propagation as
/// ExtendedValue without triggering verifier failures when propagating
/// character/arrays as unboxed values. Only the base of the resulting
/// ExtendedValue should be used, it is undefined to use the length or extents
/// of the extended value returned,
inline static fir::ExtendedValue
convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value val, mlir::Value len) {
mlir::Type ty = fir::unwrapRefType(val.getType());
mlir::IndexType idxTy = builder.getIndexType();
auto seqTy = ty.cast<fir::SequenceType>();
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
if (fir::isa_char(seqTy.getEleTy()))
return fir::CharArrayBoxValue(val, len ? len : undef, extents);
return fir::ArrayBoxValue(val, extents);
}
//===----------------------------------------------------------------------===//
//
// Lowering of scalar expressions in an explicit iteration space context.
//
//===----------------------------------------------------------------------===//
// Shared code for creating a copy of a derived type element. This function is
// called from a continuation.
inline static fir::ArrayAmendOp
createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
const fir::ExtendedValue &elementExv, mlir::Type eleTy,
mlir::Value innerArg) {
if (destLoad.getTypeparams().empty()) {
fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
} else {
auto boxTy = fir::BoxType::get(eleTy);
auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
mlir::Value{}, mlir::Value{},
destLoad.getTypeparams());
auto fromBox = builder.create<fir::EmboxOp>(
loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
destLoad.getTypeparams());
fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
fir::BoxValue(fromBox));
}
return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
destAcc);
}
inline static fir::ArrayAmendOp
createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
const fir::ExtendedValue &srcExv, mlir::Value innerArg,
llvm::ArrayRef<mlir::Value> bounds) {
fir::CharBoxValue dstChar(dstOp, dstLen);
fir::factory::CharacterExprHelper helper{builder, loc};
if (!bounds.empty()) {
dstChar = helper.createSubstring(dstChar, bounds);
fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
dstChar.getAddr(), dstChar.getLen(), builder,
loc);
// Update the LEN to the substring's LEN.
dstLen = dstChar.getLen();
}
// For a CHARACTER, we generate the element assignment loops inline.
helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
// Mark this array element as amended.
mlir::Type ty = innerArg.getType();
auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
return amend;
}
//===----------------------------------------------------------------------===//
//
// Lowering of array expressions.
//
//===----------------------------------------------------------------------===//
namespace {
class ArrayExprLowering {
using ExtValue = fir::ExtendedValue;
/// Structure to keep track of lowered array operands in the
/// array expression. Useful to later deduce the shape of the
/// array expression.
struct ArrayOperand {
/// Array base (can be a fir.box).
mlir::Value memref;
/// ShapeOp, ShapeShiftOp or ShiftOp
mlir::Value shape;
/// SliceOp
mlir::Value slice;
/// Can this operand be absent ?
bool mayBeAbsent = false;
};
using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
using PathComponent = Fortran::lower::PathComponent;
/// Active iteration space.
using IterationSpace = Fortran::lower::IterationSpace;
using IterSpace = const Fortran::lower::IterationSpace &;
/// Current continuation. Function that will generate IR for a single
/// iteration of the pending iterative loop structure.
using CC = Fortran::lower::GenerateElementalArrayFunc;
/// Projection continuation. Function that will project one iteration space
/// into another.
using PC = std::function<IterationSpace(IterSpace)>;
using ArrayBaseTy =
std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
const Fortran::evaluate::DataRef *>;
using ComponentPath = Fortran::lower::ComponentPath;
public:
//===--------------------------------------------------------------------===//
// Regular array assignment
//===--------------------------------------------------------------------===//
/// Entry point for array assignments. Both the left-hand and right-hand sides
/// can either be ExtendedValue or evaluate::Expr.
template <typename TL, typename TR>
static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const TL &lhs, const TR &rhs) {
ArrayExprLowering ael{converter, stmtCtx, symMap,
ConstituentSemantics::CopyInCopyOut};
ael.lowerArrayAssignment(lhs, rhs);
}
template <typename TL, typename TR>
void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
mlir::Location loc = getLoc();
/// Here the target subspace is not necessarily contiguous. The ArrayUpdate
/// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
/// in `destination`.
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
ccStoreToDest = genarr(lhs);
determineShapeOfDest(lhs);
semant = ConstituentSemantics::RefTransparent;
ExtValue exv = lowerArrayExpression(rhs);
if (explicitSpaceIsActive()) {
explicitSpace->finalizeContext();
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
} else {
builder.create<fir::ArrayMergeStoreOp>(
loc, destination, fir::getBase(exv), destination.getMemref(),
destination.getSlice(), destination.getTypeparams());
}
}
//===--------------------------------------------------------------------===//
// Array assignment to allocatable array
//===--------------------------------------------------------------------===//
/// Entry point for assignment to allocatable array.
static void lowerAllocatableArrayAssignment(
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
Fortran::lower::ExplicitIterSpace &explicitSpace,
Fortran::lower::ImplicitIterSpace &implicitSpace) {
ArrayExprLowering ael(converter, stmtCtx, symMap,
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
&implicitSpace);
ael.lowerAllocatableArrayAssignment(lhs, rhs);
}
/// Assignment to allocatable array.
///
/// The semantics are reverse that of a "regular" array assignment. The rhs
/// defines the iteration space of the computation and the lhs is
/// resized/reallocated to fit if necessary.
void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
const Fortran::lower::SomeExpr &rhs) {
// With assignment to allocatable, we want to lower the rhs first and use
// its shape to determine if we need to reallocate, etc.
mlir::Location loc = getLoc();
// FIXME: If the lhs is in an explicit iteration space, the assignment may
// be to an array of allocatable arrays rather than a single allocatable
// array.
fir::MutableBoxValue mutableBox =
createMutableBox(loc, converter, lhs, symMap);
mlir::Type resultTy = converter.genType(rhs);
if (rhs.Rank() > 0)
determineShapeOfDest(rhs);
auto rhsCC = [&]() {
PushSemantics(ConstituentSemantics::RefTransparent);
return genarr(rhs);
}();
llvm::SmallVector<mlir::Value> lengthParams;
// Currently no safe way to gather length from rhs (at least for
// character, it cannot be taken from array_loads since it may be
// changed by concatenations).
if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
mutableBox.isDerivedWithLengthParameters())
TODO(loc, "gather rhs length parameters in assignment to allocatable");
// The allocatable must take lower bounds from the expr if it is
// reallocated and the right hand side is not a scalar.
const bool takeLboundsIfRealloc = rhs.Rank() > 0;
llvm::SmallVector<mlir::Value> lbounds;
// When the reallocated LHS takes its lower bounds from the RHS,
// they will be non default only if the RHS is a whole array
// variable. Otherwise, lbounds is left empty and default lower bounds
// will be used.
if (takeLboundsIfRealloc &&
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
assert(arrayOperands.size() == 1 &&
"lbounds can only come from one array");
std::vector<mlir::Value> lbs =
fir::factory::getOrigins(arrayOperands[0].shape);
lbounds.append(lbs.begin(), lbs.end());
}
fir::factory::MutableBoxReallocation realloc =
fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
lengthParams);
// Create ArrayLoad for the mutable box and save it into `destination`.
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
ccStoreToDest = genarr(realloc.newValue);
// If the rhs is scalar, get shape from the allocatable ArrayLoad.
if (destShape.empty())
destShape = getShape(destination);
// Finish lowering the loop nest.
assert(destination && "destination must have been set");
ExtValue exv = lowerArrayExpression(rhsCC, resultTy);
if (explicitSpaceIsActive()) {
explicitSpace->finalizeContext();
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
} else {
builder.create<fir::ArrayMergeStoreOp>(
loc, destination, fir::getBase(exv), destination.getMemref(),
destination.getSlice(), destination.getTypeparams());
}
fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
takeLboundsIfRealloc, realloc);
}
/// Entry point for when an array expression appears in a context where the
/// result must be boxed. (BoxValue semantics.)
static ExtValue
lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::lower::SomeExpr &expr) {
ArrayExprLowering ael{converter, stmtCtx, symMap,
ConstituentSemantics::BoxValue};
return ael.lowerBoxedArrayExpr(expr);
}
ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
return std::visit(
[&](const auto &e) {
auto f = genarr(e);
ExtValue exv = f(IterationSpace{});
if (fir::getBase(exv).getType().template isa<fir::BoxType>())
return exv;
fir::emitFatalError(getLoc(), "array must be emboxed");
},
exp.u);
}
/// Entry point into lowering an expression with rank. This entry point is for
/// lowering a rhs expression, for example. (RefTransparent semantics.)
static ExtValue
lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::lower::SomeExpr &expr) {
ArrayExprLowering ael{converter, stmtCtx, symMap};
ael.determineShapeOfDest(expr);
ExtValue loopRes = ael.lowerArrayExpression(expr);
fir::ArrayLoadOp dest = ael.destination;
mlir::Value tempRes = dest.getMemref();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
tempRes, dest.getSlice(),
dest.getTypeparams());
auto arrTy =
fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
if (auto charTy =
arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
if (fir::characterWithDynamicLen(charTy))
TODO(loc, "CHARACTER does not have constant LEN");
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
}
return fir::ArrayBoxValue(tempRes, dest.getExtents());
}
// FIXME: should take multiple inner arguments.
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
mlir::Location loc = getLoc();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
llvm::SmallVector<mlir::Value> loopUppers;
// Convert any implied shape to closed interval form. The fir.do_loop will
// run from 0 to `extent - 1` inclusive.
for (auto extent : shape)
loopUppers.push_back(
builder.create<mlir::arith::SubIOp>(loc, extent, one));
// Iteration space is created with outermost columns, innermost rows
llvm::SmallVector<fir::DoLoopOp> loops;
const std::size_t loopDepth = loopUppers.size();
llvm::SmallVector<mlir::Value> ivars;
for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
if (i.index() > 0) {
assert(!loops.empty());
builder.setInsertionPointToStart(loops.back().getBody());
}
fir::DoLoopOp loop;
if (innerArg) {
loop = builder.create<fir::DoLoopOp>(
loc, zero, i.value(), one, isUnordered(),
/*finalCount=*/false, mlir::ValueRange{innerArg});
innerArg = loop.getRegionIterArgs().front();
if (explicitSpaceIsActive())
explicitSpace->setInnerArg(0, innerArg);
} else {
loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
isUnordered(),
/*finalCount=*/false);
}
ivars.push_back(loop.getInductionVar());
loops.push_back(loop);
}
if (innerArg)
for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
++i) {
builder.setInsertionPointToEnd(loops[i].getBody());
builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
}
// Move insertion point to the start of the innermost loop in the nest.
builder.setInsertionPointToStart(loops.back().getBody());
// Set `afterLoopNest` to just after the entire loop nest.
auto currPt = builder.saveInsertionPoint();
builder.setInsertionPointAfter(loops[0]);
auto afterLoopNest = builder.saveInsertionPoint();
builder.restoreInsertionPoint(currPt);
// Put the implicit loop variables in row to column order to match FIR's
// Ops. (The loops were constructed from outermost column to innermost
// row.)
mlir::Value outerRes = loops[0].getResult(0);
return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
afterLoopNest};
}
/// Build the iteration space into which the array expression will be
/// lowered. The resultType is used to create a temporary, if needed.
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
genIterSpace(mlir::Type resultType) {
mlir::Location loc = getLoc();
llvm::SmallVector<mlir::Value> shape = genIterationShape();
if (!destination) {
// Allocate storage for the result if it is not already provided.
destination = createAndLoadSomeArrayTemp(resultType, shape);
}
// Generate the lazy mask allocation, if one was given.
if (ccPrelude.hasValue())
ccPrelude.getValue()(shape);
// Now handle the implicit loops.
mlir::Value inner = explicitSpaceIsActive()
? explicitSpace->getInnerArgs().front()
: destination.getResult();
auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
mlir::Value innerArg = iters.innerArgument();
// Generate the mask conditional structure, if there are masks. Unlike the
// explicit masks, which are interleaved, these mask expression appear in
// the innermost loop.
if (implicitSpaceHasMasks()) {
// Recover the cached condition from the mask buffer.
auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
return implicitSpace->getBoundClosure(e)(iters);
};
// Handle the negated conditions in topological order of the WHERE
// clauses. See 10.2.3.2p4 as to why this control structure is produced.
for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
implicitSpace->getMasks()) {
const std::size_t size = maskExprs.size() - 1;
auto genFalseBlock = [&](const auto *e, auto &&cond) {
auto ifOp = builder.create<fir::IfOp>(
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
/*withElseRegion=*/true);
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<fir::ResultOp>(loc, innerArg);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
};
auto genTrueBlock = [&](const auto *e, auto &&cond) {
auto ifOp = builder.create<fir::IfOp>(
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
/*withElseRegion=*/true);
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, innerArg);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
};
for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
if (const auto *e = maskExprs[i])
genFalseBlock(e, genCond(e, iters));
// The last condition is either non-negated or unconditionally negated.
if (const auto *e = maskExprs[size])
genTrueBlock(e, genCond(e, iters));
}
}
// We're ready to lower the body (an assignment statement) for this context
// of loop nests at this point.
return {iters, afterLoopNest};
}
fir::ArrayLoadOp
createAndLoadSomeArrayTemp(mlir::Type type,
llvm::ArrayRef<mlir::Value> shape) {
if (ccLoadDest.hasValue())
return ccLoadDest.getValue()(shape);
auto seqTy = type.dyn_cast<fir::SequenceType>();
assert(seqTy && "must be an array");
mlir::Location loc = getLoc();
// TODO: Need to thread the length parameters here. For character, they may
// differ from the operands length (e.g concatenation). So the array loads
// type parameters are not enough.
if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
if (charTy.hasDynamicLen())
TODO(loc, "character array expression temp with dynamic length");
if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
if (recTy.getNumLenParams() > 0)
TODO(loc, "derived type array expression temp with length parameters");
mlir::Value temp = seqTy.hasConstantShape()
? builder.create<fir::AllocMemOp>(loc, type)
: builder.create<fir::AllocMemOp>(
loc, type, ".array.expr", llvm::None, shape);
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup(
[bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
mlir::Value shapeOp = genShapeOp(shape);
return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
/*slice=*/mlir::Value{},
llvm::None);
}
static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
llvm::ArrayRef<mlir::Value> shape) {
mlir::IndexType idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> idxShape;
for (auto s : shape)
idxShape.push_back(builder.createConvert(loc, idxTy, s));
auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
}
fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
return genShapeOp(getLoc(), builder, shape);
}
//===--------------------------------------------------------------------===//
// Expression traversal and lowering.
//===--------------------------------------------------------------------===//
/// Lower the expression, \p x, in a scalar context.
template <typename A>
ExtValue asScalar(const A &x) {
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
}
/// Lower the expression in a scalar context to a memory reference.
template <typename A>
ExtValue asScalarRef(const A &x) {
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
}
/// Lower an expression without dereferencing any indirection that may be
/// a nullptr (because this is an absent optional or unallocated/disassociated
/// descriptor). The returned expression cannot be addressed directly, it is
/// meant to inquire about its status before addressing the related entity.
template <typename A>
ExtValue asInquired(const A &x) {
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
.lowerIntrinsicArgumentAsInquired(x);
}
// An expression with non-zero rank is an array expression.
template <typename A>
bool isArray(const A &x) const {
return x.Rank() != 0;
}
/// Some temporaries are allocated on an element-by-element basis during the
/// array expression evaluation. Collect the cleanups here so the resources
/// can be freed before the next loop iteration, avoiding memory leaks. etc.
Fortran::lower::StatementContext &getElementCtx() {
if (!elementCtx) {
stmtCtx.pushScope();
elementCtx = true;
}
return stmtCtx;
}
/// If there were temporaries created for this element evaluation, finalize
/// and deallocate the resources now. This should be done just prior the the
/// fir::ResultOp at the end of the innermost loop.
void finalizeElementCtx() {
if (elementCtx) {
stmtCtx.finalize(/*popScope=*/true);
elementCtx = false;
}
}
/// Lower an elemental function array argument. This ensures array
/// sub-expressions that are not variables and must be passed by address
/// are lowered by value and placed in memory.
template <typename A>
CC genElementalArgument(const A &x) {
// Ensure the returned element is in memory if this is what was requested.
if ((semant == ConstituentSemantics::RefOpaque ||
semant == ConstituentSemantics::DataAddr ||
semant == ConstituentSemantics::ByValueArg)) {
if (!Fortran::evaluate::IsVariable(x)) {
PushSemantics(ConstituentSemantics::DataValue);
CC cc = genarr(x);
mlir::Location loc = getLoc();
if (isParenthesizedVariable(x)) {
// Parenthesised variables are lowered to a reference to the variable
// storage. When passing it as an argument, a copy must be passed.
return [=](IterSpace iters) -> ExtValue {
return createInMemoryScalarCopy(builder, loc, cc(iters));
};
}
mlir::Type storageType =
fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
return [=](IterSpace iters) -> ExtValue {
return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
};
}
}
return genarr(x);
}
// A procedure reference to a Fortran elemental intrinsic procedure.
CC genElementalIntrinsicProcRef(
const Fortran::evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> retTy,
const Fortran::evaluate::SpecificIntrinsic &intrinsic) {
llvm::SmallVector<CC> operands;
llvm::StringRef name = intrinsic.name;
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
Fortran::lower::getIntrinsicArgumentLowering(name);
mlir::Location loc = getLoc();
if (Fortran::lower::intrinsicRequiresCustomOptionalHandling(
procRef, intrinsic, converter)) {
using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
llvm::SmallVector<CcPairT> operands;
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
if (expr.Rank() == 0) {
ExtValue optionalArg = this->asInquired(expr);
mlir::Value isPresent =
genActualIsPresentTest(builder, loc, optionalArg);
operands.emplace_back(
[=](IterSpace iters) -> ExtValue {
return genLoad(builder, loc, optionalArg);
},
isPresent);
} else {
auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
operands.emplace_back(cc, isPresent);
}
};
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
PushSemantics(ConstituentSemantics::RefTransparent);
operands.emplace_back(genElementalArgument(expr), llvm::None);
};
Fortran::lower::prepareCustomIntrinsicArgument(
procRef, intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
converter);
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
llvm::StringRef name = intrinsic.name;
return [=](IterSpace iters) -> ExtValue {
auto getArgument = [&](std::size_t i) -> ExtValue {
return operands[i].first(iters);
};
auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
return operands[i].second;
};
return Fortran::lower::lowerCustomIntrinsic(
*bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
getElementCtx());
};
}
/// Otherwise, pre-lower arguments and use intrinsic lowering utility.
for (const auto &[arg, dummy] :
llvm::zip(procRef.arguments(),
intrinsic.characteristics.value().dummyArguments)) {
const auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg);
if (!expr) {
// Absent optional.
operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
} else if (!argLowering) {
// No argument lowering instruction, lower by value.
PushSemantics(ConstituentSemantics::RefTransparent);
operands.emplace_back(genElementalArgument(*expr));
} else {
// Ad-hoc argument lowering handling.
Fortran::lower::ArgLoweringRule argRules =
Fortran::lower::lowerIntrinsicArgumentAs(getLoc(), *argLowering,
dummy.name);
if (argRules.handleDynamicOptional &&
Fortran::evaluate::MayBePassedAsAbsentOptional(
*expr, converter.getFoldingContext())) {
// Currently, there is not elemental intrinsic that requires lowering
// a potentially absent argument to something else than a value (apart
// from character MAX/MIN that are handled elsewhere.)
if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
TODO(loc, "lowering non trivial optional elemental intrinsic array "
"argument");
PushSemantics(ConstituentSemantics::RefTransparent);
operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
continue;
}
switch (argRules.lowerAs) {
case Fortran::lower::LowerIntrinsicArgAs::Value: {
PushSemantics(ConstituentSemantics::RefTransparent);
operands.emplace_back(genElementalArgument(*expr));
} break;
case Fortran::lower::LowerIntrinsicArgAs::Addr: {
// Note: assume does not have Fortran VALUE attribute semantics.
PushSemantics(ConstituentSemantics::RefOpaque);
operands.emplace_back(genElementalArgument(*expr));
} break;
case Fortran::lower::LowerIntrinsicArgAs::Box: {
PushSemantics(ConstituentSemantics::RefOpaque);
auto lambda = genElementalArgument(*expr);
operands.emplace_back([=](IterSpace iters) {
return builder.createBox(loc, lambda(iters));
});
} break;
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
TODO(loc, "intrinsic function with inquired argument");
break;
}
}
}
// Let the intrinsic library lower the intrinsic procedure call
return [=](IterSpace iters) {
llvm::SmallVector<ExtValue> args;
for (const auto &cc : operands)
args.push_back(cc(iters));
return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
getElementCtx());
};
}
/// Generate a procedure reference. This code is shared for both functions and
/// subroutines, the difference being reflected by `retTy`.
CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> retTy) {
mlir::Location loc = getLoc();
if (procRef.IsElemental()) {
if (const Fortran::evaluate::SpecificIntrinsic *intrin =
procRef.proc().GetSpecificIntrinsic()) {
// All elemental intrinsic functions are pure and cannot modify their
// arguments. The only elemental subroutine, MVBITS has an Intent(inout)
// argument. So for this last one, loops must be in element order
// according to 15.8.3 p1.
if (!retTy)
setUnordered(false);
// Elemental intrinsic call.
// The intrinsic procedure is called once per element of the array.
return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
}
if (ScalarExprLowering::isStatementFunctionCall(procRef))
fir::emitFatalError(loc, "statement function cannot be elemental");
TODO(loc, "elemental user defined proc ref");
}
// Transformational call.
// The procedure is called once and produces a value of rank > 0.
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
procRef.proc().GetSpecificIntrinsic()) {
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
// Elide any implicit loop iters.
return [=, &procRef](IterSpace) {
return ScalarExprLowering{loc, converter, symMap, stmtCtx}
.genIntrinsicRef(procRef, *intrinsic, retTy);
};
}
return genarr(
ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
procRef, *intrinsic, retTy));
}
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
// Elide any implicit loop iters.
return [=, &procRef](IterSpace) {
return ScalarExprLowering{loc, converter, symMap, stmtCtx}
.genProcedureRef(procRef, retTy);
};
}
// In the default case, the call can be hoisted out of the loop nest. Apply
// the iterations to the result, which may be an array value.
return genarr(
ScalarExprLowering{loc, converter, symMap, stmtCtx}.genProcedureRef(
procRef, retTy));
}
template <typename A>
CC genScalarAndForwardValue(const A &x) {
ExtValue result = asScalar(x);
return [=](IterSpace) { return result; };
}
template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
A, Fortran::evaluate::TypelessExpression>>>
CC genarr(const A &x) {
return genScalarAndForwardValue(x);
}
template <typename A>
CC genarr(const Fortran::evaluate::Expr<A> &x) {
LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
if (isArray(x) || explicitSpaceIsActive() ||
isElementalProcWithArrayArgs(x))
return std::visit([&](const auto &e) { return genarr(e); }, x.u);
return genScalarAndForwardValue(x);
}
template <Fortran::common::TypeCategory TC1, int KIND,
Fortran::common::TypeCategory TC2>
CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
TC2> &x) {
TODO(getLoc(), "");
}
template <int KIND>
CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
TODO(getLoc(), "");
}
template <typename T>
CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
TODO(getLoc(), "");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Integer, KIND>> &x) {
TODO(getLoc(), "");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Real, KIND>> &x) {
TODO(getLoc(), "");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Complex, KIND>> &x) {
TODO(getLoc(), "");
}
//===--------------------------------------------------------------------===//
// Binary elemental ops
//===--------------------------------------------------------------------===//
template <typename OP, typename A>
CC createBinaryOp(const A &evEx) {
mlir::Location loc = getLoc();
auto lambda = genarr(evEx.left());
auto rf = genarr(evEx.right());
return [=](IterSpace iters) -> ExtValue {
mlir::Value left = fir::getBase(lambda(iters));
mlir::Value right = fir::getBase(rf(iters));
return builder.create<OP>(loc, left, right);
};
}
#undef GENBIN
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
template <int KIND> \
CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
return createBinaryOp<GenBinFirOp>(x); \
}
GENBIN(Add, Integer, mlir::arith::AddIOp)
GENBIN(Add, Real, mlir::arith::AddFOp)
GENBIN(Add, Complex, fir::AddcOp)
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
GENBIN(Subtract, Real, mlir::arith::SubFOp)
GENBIN(Subtract, Complex, fir::SubcOp)
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
GENBIN(Multiply, Real, mlir::arith::MulFOp)
GENBIN(Multiply, Complex, fir::MulcOp)
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
GENBIN(Divide, Real, mlir::arith::DivFOp)
GENBIN(Divide, Complex, fir::DivcOp)
template <Fortran::common::TypeCategory TC, int KIND>
CC genarr(
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
TODO(getLoc(), "genarr ");
}
template <Fortran::common::TypeCategory TC, int KIND>
CC genarr(
const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
TODO(getLoc(), "genarr ");
}
template <Fortran::common::TypeCategory TC, int KIND>
CC genarr(
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
&x) {
TODO(getLoc(), "genarr ");
}
template <int KIND>
CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
TODO(getLoc(), "genarr ");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
TODO(getLoc(), "genarr ");
}
template <int KIND>
CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
TODO(getLoc(), "genarr ");
}
template <typename A>
CC genarr(const Fortran::evaluate::Constant<A> &x) {
TODO(getLoc(), "genarr ");
}
CC genarr(const Fortran::semantics::SymbolRef &sym,
ComponentPath &components) {
return genarr(sym.get(), components);
}
ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
return convertToArrayBoxValue(getLoc(), builder, val, len);
}
CC genarr(const ExtValue &extMemref) {
ComponentPath dummy(/*isImplicit=*/true);
return genarr(extMemref, dummy);
}
//===--------------------------------------------------------------------===//
// Array construction
//===--------------------------------------------------------------------===//
/// Target agnostic computation of the size of an element in the array.
/// Returns the size in bytes with type `index` or a null Value if the element
/// size is not constant.
mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
mlir::Type resTy) {
mlir::Location loc = getLoc();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
if (fir::hasDynamicSize(eleTy)) {
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
// Array of char with dynamic length parameter. Downcast to an array
// of singleton char, and scale by the len type parameter from
// `exv`.
exv.match(
[&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
[&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
[&](const fir::BoxValue &box) {
multiplier = fir::factory::CharacterExprHelper(builder, loc)
.readLengthFromBox(box.getAddr());
},
[&](const fir::MutableBoxValue &box) {
multiplier = fir::factory::CharacterExprHelper(builder, loc)
.readLengthFromBox(box.getAddr());
},
[&](const auto &) {
fir::emitFatalError(loc,
"array constructor element has unknown size");
});
fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
eleTy.getContext(), charTy.getFKind());
if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
assert(eleTy == seqTy.getEleTy());
resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
}
eleTy = newEleTy;
} else {
TODO(loc, "dynamic sized type");
}
}
mlir::Type eleRefTy = builder.getRefType(eleTy);
mlir::Type resRefTy = builder.getRefType(resTy);
mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
auto offset = builder.create<fir::CoordinateOp>(
loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
return builder.createConvert(loc, idxTy, offset);
}
/// Get the function signature of the LLVM memcpy intrinsic.
mlir::FunctionType memcpyType() {
return fir::factory::getLlvmMemcpy(builder).getType();
}
/// Create a call to the LLVM memcpy intrinsic.
void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
mlir::Location loc = getLoc();
mlir::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
mlir::SymbolRefAttr funcSymAttr =
builder.getSymbolRefAttr(memcpyFunc.getName());
mlir::FunctionType funcTy = memcpyFunc.getType();
builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
}
// Construct code to check for a buffer overrun and realloc the buffer when
// space is depleted. This is done between each item in the ac-value-list.
mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
mlir::Value bufferSize, mlir::Value buffSize,
mlir::Value eleSz) {
mlir::Location loc = getLoc();
mlir::FuncOp reallocFunc = fir::factory::getRealloc(builder);
auto cond = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
/*withElseRegion=*/true);
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Not enough space, resize the buffer.
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
builder.create<fir::StoreOp>(loc, newSz, buffSize);
mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
mlir::SymbolRefAttr funcSymAttr =
builder.getSymbolRefAttr(reallocFunc.getName());
mlir::FunctionType funcTy = reallocFunc.getType();
auto newMem = builder.create<fir::CallOp>(
loc, funcTy.getResults(), funcSymAttr,
llvm::ArrayRef<mlir::Value>{
builder.createConvert(loc, funcTy.getInputs()[0], mem),
builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
mlir::Value castNewMem =
builder.createConvert(loc, mem.getType(), newMem.getResult(0));
builder.create<fir::ResultOp>(loc, castNewMem);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// Otherwise, just forward the buffer.
builder.create<fir::ResultOp>(loc, mem);
builder.restoreInsertionPoint(insPt);
return ifOp.getResult(0);
}
/// Copy the next value (or vector of values) into the array being
/// constructed.
mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
mlir::Value buffSize, mlir::Value mem,
mlir::Value eleSz, mlir::Type eleTy,
mlir::Type eleRefTy, mlir::Type resTy) {
mlir::Location loc = getLoc();
auto off = builder.create<fir::LoadOp>(loc, buffPos);
auto limit = builder.create<fir::LoadOp>(loc, buffSize);
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
if (fir::isRecordWithAllocatableMember(eleTy))
TODO(loc, "deep copy on allocatable members");
if (!eleSz) {
// Compute the element size at runtime.
assert(fir::hasDynamicSize(eleTy));
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
auto charBytes =
builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
mlir::Value bytes =
builder.createIntegerConstant(loc, idxTy, charBytes);
mlir::Value length = fir::getLen(exv);
if (!length)
fir::emitFatalError(loc, "result is not boxed character");
eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
} else {
TODO(loc, "PDT size");
// Will call the PDT's size function with the type parameters.
}
}
// Compute the coordinate using `fir.coordinate_of`, or, if the type has
// dynamic size, generating the pointer arithmetic.
auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
mlir::Type refTy = eleRefTy;
if (fir::hasDynamicSize(eleTy)) {
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
// Scale a simple pointer using dynamic length and offset values.
auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
charTy.getFKind());
refTy = builder.getRefType(chTy);
mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
buff = builder.createConvert(loc, toTy, buff);
off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
} else {
TODO(loc, "PDT offset");
}
}
auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
mlir::ValueRange{off});
return builder.createConvert(loc, eleRefTy, coor);
};
// Lambda to lower an abstract array box value.
auto doAbstractArray = [&](const auto &v) {
// Compute the array size.
mlir::Value arrSz = one;
for (auto ext : v.getExtents())
arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
// Grow the buffer as needed.
auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
// Copy the elements to the buffer.
mlir::Value byteSz =
builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
mlir::Value buffi = computeCoordinate(buff, off);
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
/*volatile=*/builder.createBool(loc, false));
createCallMemcpy(args);
// Save the incremented buffer position.
builder.create<fir::StoreOp>(loc, endOff, buffPos);
};
// Copy a trivial scalar value into the buffer.
auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
// Increment the buffer position.
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
// Grow the buffer as needed.
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
// Store the element in the buffer.
mlir::Value buff =
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
mlir::ValueRange{off});
fir::factory::genScalarAssignment(
builder, loc,
[&]() -> ExtValue {
if (len)
return fir::CharBoxValue(buffi, len);
return buffi;
}(),
v);
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
};
// Copy the value.
exv.match(
[&](mlir::Value) { doTrivialScalar(exv); },
[&](const fir::CharBoxValue &v) {
auto buffer = v.getBuffer();
if (fir::isa_char(buffer.getType())) {
doTrivialScalar(exv, eleSz);
} else {
// Increment the buffer position.
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
// Grow the buffer as needed.
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
// Store the element in the buffer.
mlir::Value buff =
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
mlir::Value buffi = computeCoordinate(buff, off);
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
/*volatile=*/builder.createBool(loc, false));
createCallMemcpy(args);
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
}
},
[&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
[&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
[&](const auto &) {
TODO(loc, "unhandled array constructor expression");
});
return mem;
}
// Lower the expr cases in an ac-value-list.
template <typename A>
std::pair<ExtValue, bool>
genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
mlir::Value, mlir::Value, mlir::Value,
Fortran::lower::StatementContext &stmtCtx) {
if (isArray(x))
return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
/*needCopy=*/true};
return {asScalar(x), /*needCopy=*/true};
}
// Lower an ac-implied-do in an ac-value-list.
template <typename A>
std::pair<ExtValue, bool>
genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
mlir::Type resTy, mlir::Value mem,
mlir::Value buffPos, mlir::Value buffSize,
Fortran::lower::StatementContext &) {
mlir::Location loc = getLoc();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value lo =
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
mlir::Value up =
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
mlir::Value step =
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
auto seqTy = resTy.template cast<fir::SequenceType>();
mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
auto loop =
builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
/*finalCount=*/false, mem);
// create a new binding for x.name(), to ac-do-variable, to the iteration
// value.
symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
// Thread mem inside the loop via loop argument.
mem = loop.getRegionIterArgs()[0];
mlir::Type eleRefTy = builder.getRefType(eleTy);
// Any temps created in the loop body must be freed inside the loop body.
stmtCtx.pushScope();
llvm::Optional<mlir::Value> charLen;
for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
auto [exv, copyNeeded] = std::visit(
[&](const auto &v) {
return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
stmtCtx);
},
acv.u);
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
eleSz, eleTy, eleRefTy, resTy)
: fir::getBase(exv);
if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) {
charLen = builder.createTemporary(loc, builder.getI64Type());
mlir::Value castLen =
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
builder.create<fir::StoreOp>(loc, castLen, charLen.getValue());
}
}
stmtCtx.finalize(/*popScope=*/true);
builder.create<fir::ResultOp>(loc, mem);
builder.restoreInsertionPoint(insPt);
mem = loop.getResult(0);
symMap.popImpliedDoBinding();
llvm::SmallVector<mlir::Value> extents = {
builder.create<fir::LoadOp>(loc, buffPos).getResult()};
// Convert to extended value.
if (fir::isa_char(seqTy.getEleTy())) {
auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
}
return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
}
// To simplify the handling and interaction between the various cases, array
// constructors are always lowered to the incremental construction code
// pattern, even if the extent of the array value is constant. After the
// MemToReg pass and constant folding, the optimizer should be able to
// determine that all the buffer overrun tests are false when the
// incremental construction wasn't actually required.
template <typename A>
CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
mlir::Location loc = getLoc();
auto evExpr = toEvExpr(x);
mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
mlir::IndexType idxTy = builder.getIndexType();
auto seqTy = resTy.template cast<fir::SequenceType>();
mlir::Type eleTy = fir::unwrapSequenceType(resTy);
mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
builder.create<fir::StoreOp>(loc, zero, buffPos);
// Allocate space for the array to be constructed.
mlir::Value mem;
if (fir::hasDynamicSize(resTy)) {
if (fir::hasDynamicSize(eleTy)) {
// The size of each element may depend on a general expression. Defer
// creating the buffer until after the expression is evaluated.
mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
builder.create<fir::StoreOp>(loc, zero, buffSize);
} else {
mlir::Value initBuffSz =
builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
mem = builder.create<fir::AllocMemOp>(
loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
}
} else {
mem = builder.create<fir::AllocMemOp>(loc, resTy);
int64_t buffSz = 1;
for (auto extent : seqTy.getShape())
buffSz *= extent;
mlir::Value initBuffSz =
builder.createIntegerConstant(loc, idxTy, buffSz);
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
}
// Compute size of element
mlir::Type eleRefTy = builder.getRefType(eleTy);
// Populate the buffer with the elements, growing as necessary.
llvm::Optional<mlir::Value> charLen;
for (const auto &expr : x) {
auto [exv, copyNeeded] = std::visit(
[&](const auto &e) {
return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
stmtCtx);
},
expr.u);
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
eleSz, eleTy, eleRefTy, resTy)
: fir::getBase(exv);
if (fir::isa_char(seqTy.getEleTy()) && !charLen.hasValue()) {
charLen = builder.createTemporary(loc, builder.getI64Type());
mlir::Value castLen =
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
builder.create<fir::StoreOp>(loc, castLen, charLen.getValue());
}
}
mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
llvm::SmallVector<mlir::Value> extents = {
builder.create<fir::LoadOp>(loc, buffPos)};
// Cleanup the temporary.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup(
[bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
// Return the continuation.
if (fir::isa_char(seqTy.getEleTy())) {
if (charLen.hasValue()) {
auto len = builder.create<fir::LoadOp>(loc, charLen.getValue());
return genarr(fir::CharArrayBoxValue{mem, len, extents});
}
return genarr(fir::CharArrayBoxValue{mem, zero, extents});
}
return genarr(fir::ArrayBoxValue{mem, extents});
}
CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
TODO(getLoc(), "genarr ImpliedDoIndex");
}
CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
TODO(getLoc(), "genarr TypeParamInquiry");
}
CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
TODO(getLoc(), "genarr DescriptorInquiry");
}
CC genarr(const Fortran::evaluate::StructureConstructor &x) {
TODO(getLoc(), "genarr StructureConstructor");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Not<KIND> &x) {
TODO(getLoc(), "genarr Not");
}
template <int KIND>
CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
TODO(getLoc(), "genarr LogicalOperation");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Integer, KIND>> &x) {
TODO(getLoc(), "genarr Relational Integer");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Character, KIND>> &x) {
TODO(getLoc(), "genarr Relational Character");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Real, KIND>> &x) {
TODO(getLoc(), "genarr Relational Real");
}
template <int KIND>
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
Fortran::common::TypeCategory::Complex, KIND>> &x) {
TODO(getLoc(), "genarr Relational Complex");
}
CC genarr(
const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
TODO(getLoc(), "genarr Relational SomeType");
}
template <typename A>
CC genarr(const Fortran::evaluate::Designator<A> &des) {
ComponentPath components(des.Rank() > 0);
return std::visit([&](const auto &x) { return genarr(x, components); },
des.u);
}
template <typename T>
CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
// Note that it's possible that the function being called returns either an
// array or a scalar. In the first case, use the element type of the array.
return genProcRef(
funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
}
template <typename A>
CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
components.reversePath.push_back(ImplicitSubscripts{});
ExtValue exv = asScalarRef(x);
// lowerPath(exv, components);
auto lambda = genarr(exv, components);
return [=](IterSpace iters) { return lambda(components.pc(iters)); };
}
CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
ComponentPath &components) {
if (x.IsSymbol())
return genImplicitArrayAccess(x.GetFirstSymbol(), components);
return genImplicitArrayAccess(x.GetComponent(), components);
}
template <typename A>
CC genAsScalar(const A &x) {
mlir::Location loc = getLoc();
if (isProjectedCopyInCopyOut()) {
return [=, &x, builder = &converter.getFirOpBuilder()](
IterSpace iters) -> ExtValue {
ExtValue exv = asScalarRef(x);
mlir::Value val = fir::getBase(exv);
mlir::Type eleTy = fir::unwrapRefType(val.getType());
if (isAdjustedArrayElementType(eleTy)) {
if (fir::isa_char(eleTy)) {
TODO(getLoc(), "assignment of character type");
} else if (fir::isa_derived(eleTy)) {
TODO(loc, "assignment of derived type");
} else {
fir::emitFatalError(loc, "array type not expected in scalar");
}
} else {
builder->create<fir::StoreOp>(loc, iters.getElement(), val);
}
return exv;
};
}
return [=, &x](IterSpace) { return asScalar(x); };
}
CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
if (explicitSpaceIsActive()) {
TODO(getLoc(), "genarr Symbol explicitSpace");
} else {
return genImplicitArrayAccess(x, components);
}
}
CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
TODO(getLoc(), "genarr Component");
}
/// Array reference with subscripts. If this has rank > 0, this is a form
/// of an array section (slice).
///
/// There are two "slicing" primitives that may be applied on a dimension by
/// dimension basis: (1) triple notation and (2) vector addressing. Since
/// dimensions can be selectively sliced, some dimensions may contain
/// regular scalar expressions and those dimensions do not participate in
/// the array expression evaluation.
CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
if (explicitSpaceIsActive()) {
TODO(getLoc(), "genarr ArrayRef explicitSpace");
} else {
if (Fortran::lower::isRankedArrayAccess(x)) {
components.reversePath.push_back(&x);
return genImplicitArrayAccess(x.base(), components);
}
}
bool atEnd = pathIsEmpty(components);
components.reversePath.push_back(&x);
auto result = genarr(x.base(), components);
if (components.applied)
return result;
mlir::Location loc = getLoc();
if (atEnd) {
if (x.Rank() == 0)
return genAsScalar(x);
fir::emitFatalError(loc, "expected scalar");
}
return [=](IterSpace) -> ExtValue {
fir::emitFatalError(loc, "reached arrayref with path");
};
}
CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
TODO(getLoc(), "coarray reference");
}
CC genarr(const Fortran::evaluate::NamedEntity &x,
ComponentPath &components) {
return x.IsSymbol() ? genarr(x.GetFirstSymbol(), components)
: genarr(x.GetComponent(), components);
}
CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
return std::visit([&](const auto &v) { return genarr(v, components); },
x.u);
}
bool pathIsEmpty(const ComponentPath &components) {
return components.reversePath.empty();
}
/// Given an optional fir.box, returns an fir.box that is the original one if
/// it is present and it otherwise an unallocated box.
/// Absent fir.box are implemented as a null pointer descriptor. Generated
/// code may need to unconditionally read a fir.box that can be absent.
/// This helper allows creating a fir.box that can be read in all cases
/// outside of a fir.if (isPresent) region. However, the usages of the value
/// read from such box should still only be done in a fir.if(isPresent).
static fir::ExtendedValue
absentBoxToUnalllocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::Value isPresent) {
mlir::Value box = fir::getBase(exv);
mlir::Type boxType = box.getType();
assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
mlir::Value emptyBox =
fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
auto safeToReadBox =
builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
return fir::substBase(exv, safeToReadBox);
}
std::tuple<CC, mlir::Value, mlir::Type>
genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
assert(expr.Rank() > 0 && "expr must be an array");
mlir::Location loc = getLoc();
ExtValue optionalArg = asInquired(expr);
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
// Generate an array load and access to an array that may be an absent
// optional or an unallocated optional.
mlir::Value base = getBase(optionalArg);
const bool hasOptionalAttr =
fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
mlir::Type baseType = fir::unwrapRefType(base.getType());
const bool isBox = baseType.isa<fir::BoxType>();
const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
expr, converter.getFoldingContext());
mlir::Type arrType = fir::unwrapPassByRefType(baseType);
mlir::Type eleType = fir::unwrapSequenceType(arrType);
ExtValue exv = optionalArg;
if (hasOptionalAttr && isBox && !isAllocOrPtr) {
// Elemental argument cannot be allocatable or pointers (C15100).
// Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
// Pointer optional arrays cannot be absent. The only kind of entities
// that can get here are optional assumed shape and polymorphic entities.
exv = absentBoxToUnalllocatedBox(builder, loc, exv, isPresent);
}
// All the properties can be read from any fir.box but the read values may
// be undefined and should only be used inside a fir.if (canBeRead) region.
if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
mlir::Value memref = fir::getBase(exv);
mlir::Value shape = builder.createShape(loc, exv);
mlir::Value noSlice;
auto arrLoad = builder.create<fir::ArrayLoadOp>(
loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
mlir::Value arrLd = arrLoad.getResult();
// Mark the load to tell later passes it is unsafe to use this array_load
// shape unconditionally.
arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
// Place the array as optional on the arrayOperands stack so that its
// shape will only be used as a fallback to induce the implicit loop nest
// (that is if there is no non optional array arguments).
arrayOperands.push_back(
ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
// By value semantics.
auto cc = [=](IterSpace iters) -> ExtValue {
auto arrFetch = builder.create<fir::ArrayFetchOp>(
loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
return fir::factory::arraySectionElementToExtendedValue(
builder, loc, exv, arrFetch, noSlice);
};
return {cc, isPresent, eleType};
}
/// Generate a continuation to pass \p expr to an OPTIONAL argument of an
/// elemental procedure. This is meant to handle the cases where \p expr might
/// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
/// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
/// directly be called instead.
CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
mlir::Location loc = getLoc();
// Only by-value numerical and logical so far.
if (semant != ConstituentSemantics::RefTransparent)
TODO(loc, "optional arguments in user defined elemental procedures");
// Handle scalar argument case (the if-then-else is generated outside of the
// implicit loop nest).
if (expr.Rank() == 0) {
ExtValue optionalArg = asInquired(expr);
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
mlir::Value elementValue =
fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
return [=](IterSpace iters) -> ExtValue { return elementValue; };
}
CC cc;
mlir::Value isPresent;
mlir::Type eleType;
std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
return [=](IterSpace iters) -> ExtValue {
mlir::Value elementValue =
builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
})
.genElse([&]() {
mlir::Value zero =
fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0];
return elementValue;
};
}
CC genarr(const Fortran::evaluate::ComplexPart &x,
ComponentPath &components) {
TODO(getLoc(), "genarr ComplexPart");
}
CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
ComponentPath &components) {
TODO(getLoc(), "genarr StaticDataObject::Pointer");
}
/// Substrings (see 9.4.1)
CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
TODO(getLoc(), "genarr Substring");
}
/// Base case of generating an array reference,
CC genarr(const ExtValue &extMemref, ComponentPath &components) {
mlir::Location loc = getLoc();
mlir::Value memref = fir::getBase(extMemref);
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
mlir::Value shape = builder.createShape(loc, extMemref);
mlir::Value slice;
if (components.isSlice()) {
TODO(loc, "genarr with Slices");
}
arrayOperands.push_back(ArrayOperand{memref, shape, slice});
if (destShape.empty())
destShape = getShape(arrayOperands.back());
if (isBoxValue()) {
// Semantics are a reference to a boxed array.
// This case just requires that an embox operation be created to box the
// value. The value of the box is forwarded in the continuation.
mlir::Type reduceTy = reduceRank(arrTy, slice);
auto boxTy = fir::BoxType::get(reduceTy);
if (components.substring) {
// Adjust char length to substring size.
fir::CharacterType charTy =
fir::factory::CharacterExprHelper::getCharType(reduceTy);
auto seqTy = reduceTy.cast<fir::SequenceType>();
// TODO: Use a constant for fir.char LEN if we can compute it.
boxTy = fir::BoxType::get(
fir::SequenceType::get(fir::CharacterType::getUnknownLen(
builder.getContext(), charTy.getFKind()),
seqTy.getDimension()));
}
mlir::Value embox =
memref.getType().isa<fir::BoxType>()
? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
.getResult()
: builder
.create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
fir::getTypeParams(extMemref))
.getResult();
return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
}
if (isReferentiallyOpaque()) {
TODO(loc, "genarr isReferentiallyOpaque");
}
auto arrLoad = builder.create<fir::ArrayLoadOp>(
loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
mlir::Value arrLd = arrLoad.getResult();
if (isProjectedCopyInCopyOut()) {
// Semantics are projected copy-in copy-out.
// The backing store of the destination of an array expression may be
// partially modified. These updates are recorded in FIR by forwarding a
// continuation that generates an `array_update` Op. The destination is
// always loaded at the beginning of the statement and merged at the
// end.
destination = arrLoad;
auto lambda = ccStoreToDest.hasValue()
? ccStoreToDest.getValue()
: defaultStoreToDestination(components.substring);
return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
}
if (isCustomCopyInCopyOut()) {
TODO(loc, "isCustomCopyInCopyOut");
}
if (isCopyInCopyOut()) {
// Semantics are copy-in copy-out.
// The continuation simply forwards the result of the `array_load` Op,
// which is the value of the array as it was when loaded. All data
// references with rank > 0 in an array expression typically have
// copy-in copy-out semantics.
return [=](IterSpace) -> ExtValue { return arrLd; };
}
mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
if (isValueAttribute()) {
// Semantics are value attribute.
// Here the continuation will `array_fetch` a value from an array and
// then store that value in a temporary. One can thus imitate pass by
// value even when the call is pass by reference.
return [=](IterSpace iters) -> ExtValue {
mlir::Value base;
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
if (isAdjustedArrayElementType(eleTy)) {
mlir::Type eleRefTy = builder.getRefType(eleTy);
base = builder.create<fir::ArrayAccessOp>(
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
} else {
base = builder.create<fir::ArrayFetchOp>(
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
}
mlir::Value temp = builder.createTemporary(
loc, base.getType(),
llvm::ArrayRef<mlir::NamedAttribute>{
Fortran::lower::getAdaptToByRefAttr(builder)});
builder.create<fir::StoreOp>(loc, base, temp);
return fir::factory::arraySectionElementToExtendedValue(
builder, loc, extMemref, temp, slice);
};
}
// In the default case, the array reference forwards an `array_fetch` or
// `array_access` Op in the continuation.
return [=](IterSpace iters) -> ExtValue {
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
if (isAdjustedArrayElementType(eleTy)) {
mlir::Type eleRefTy = builder.getRefType(eleTy);
mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
llvm::SmallVector<mlir::Value> substringBounds;
populateBounds(substringBounds, components.substring);
if (!substringBounds.empty()) {
// mlir::Value dstLen = fir::factory::genLenOfCharacter(
// builder, loc, arrLoad, iters.iterVec(), substringBounds);
// fir::CharBoxValue dstChar(arrayOp, dstLen);
// return fir::factory::CharacterExprHelper{builder, loc}
// .createSubstring(dstChar, substringBounds);
}
}
return fir::factory::arraySectionElementToExtendedValue(
builder, loc, extMemref, arrayOp, slice);
}
auto arrFetch = builder.create<fir::ArrayFetchOp>(
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
return fir::factory::arraySectionElementToExtendedValue(
builder, loc, extMemref, arrFetch, slice);
};
}
/// Reduce the rank of a array to be boxed based on the slice's operands.
static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
if (slice) {
auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
assert(slOp && "expected slice op");
auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
assert(seqTy && "expected array type");
mlir::Operation::operand_range triples = slOp.getTriples();
fir::SequenceType::Shape shape;
// reduce the rank for each invariant dimension
for (unsigned i = 1, end = triples.size(); i < end; i += 3)
if (!mlir::isa_and_nonnull<fir::UndefOp>(triples[i].getDefiningOp()))
shape.push_back(fir::SequenceType::getUnknownExtent());
return fir::SequenceType::get(shape, seqTy.getEleTy());
}
// not sliced, so no change in rank
return arrTy;
}
private:
void determineShapeOfDest(const fir::ExtendedValue &lhs) {
destShape = fir::factory::getExtents(builder, getLoc(), lhs);
}
void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
if (!destShape.empty())
return;
// if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
// return;
mlir::Type idxTy = builder.getIndexType();
mlir::Location loc = getLoc();
if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
lhs))
for (Fortran::common::ConstantSubscript extent : *constantShape)
destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
}
ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
mlir::Type resTy = converter.genType(exp);
return std::visit(
[&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
exp.u);
}
ExtValue lowerArrayExpression(const ExtValue &exv) {
assert(!explicitSpace);
mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
return lowerArrayExpression(genarr(exv), resTy);
}
void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
const Fortran::evaluate::Substring *substring) {
if (!substring)
return;
bounds.push_back(fir::getBase(asScalar(substring->lower())));
if (auto upper = substring->upper())
bounds.push_back(fir::getBase(asScalar(*upper)));
}
/// Default store to destination implementation.
/// This implements the default case, which is to assign the value in
/// `iters.element` into the destination array, `iters.innerArgument`. Handles
/// by value and by reference assignment.
CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
return [=](IterSpace iterSpace) -> ExtValue {
mlir::Location loc = getLoc();
mlir::Value innerArg = iterSpace.innerArgument();
fir::ExtendedValue exv = iterSpace.elementExv();
mlir::Type arrTy = innerArg.getType();
mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
if (isAdjustedArrayElementType(eleTy)) {
// The elemental update is in the memref domain. Under this semantics,
// we must always copy the computed new element from its location in
// memory into the destination array.
mlir::Type resRefTy = builder.getRefType(eleTy);
// Get a reference to the array element to be amended.
auto arrayOp = builder.create<fir::ArrayAccessOp>(
loc, resRefTy, innerArg, iterSpace.iterVec(),
destination.getTypeparams());
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
llvm::SmallVector<mlir::Value> substringBounds;
populateBounds(substringBounds, substring);
mlir::Value dstLen = fir::factory::genLenOfCharacter(
builder, loc, destination, iterSpace.iterVec(), substringBounds);
fir::ArrayAmendOp amend = createCharArrayAmend(
loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
return abstractArrayExtValue(amend, dstLen);
}
if (fir::isa_derived(eleTy)) {
fir::ArrayAmendOp amend = createDerivedArrayAmend(
loc, destination, builder, arrayOp, exv, eleTy, innerArg);
return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
}
assert(eleTy.isa<fir::SequenceType>() && "must be an array");
TODO(loc, "array (as element) assignment");
}
// By value semantics. The element is being assigned by value.
mlir::Value ele = builder.createConvert(loc, eleTy, fir::getBase(exv));
auto update = builder.create<fir::ArrayUpdateOp>(
loc, arrTy, innerArg, ele, iterSpace.iterVec(),
destination.getTypeparams());
return abstractArrayExtValue(update);
};
}
/// For an elemental array expression.
/// 1. Lower the scalars and array loads.
/// 2. Create the iteration space.
/// 3. Create the element-by-element computation in the loop.
/// 4. Return the resulting array value.
/// If no destination was set in the array context, a temporary of
/// \p resultTy will be created to hold the evaluated expression.
/// Otherwise, \p resultTy is ignored and the expression is evaluated
/// in the destination. \p f is a continuation built from an
/// evaluate::Expr or an ExtendedValue.
ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
mlir::Location loc = getLoc();
auto [iterSpace, insPt] = genIterSpace(resultTy);
auto exv = f(iterSpace);
iterSpace.setElement(std::move(exv));
auto lambda = ccStoreToDest.hasValue()
? ccStoreToDest.getValue()
: defaultStoreToDestination(/*substring=*/nullptr);
mlir::Value updVal = fir::getBase(lambda(iterSpace));
finalizeElementCtx();
builder.create<fir::ResultOp>(loc, updVal);
builder.restoreInsertionPoint(insPt);
return abstractArrayExtValue(iterSpace.outerResult());
}
/// Get the shape from an ArrayOperand. The shape of the array is adjusted if
/// the array was sliced.
llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
// if (array.slice)
// return computeSliceShape(array.slice);
if (array.memref.getType().isa<fir::BoxType>())
return fir::factory::readExtents(builder, getLoc(),
fir::BoxValue{array.memref});
std::vector<mlir::Value, std::allocator<mlir::Value>> extents =
fir::factory::getExtents(array.shape);
return {extents.begin(), extents.end()};
}
/// Get the shape from an ArrayLoad.
llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
arrayLoad.getSlice()});
}
/// Returns the first array operand that may not be absent. If all
/// array operands may be absent, return the first one.
const ArrayOperand &getInducingShapeArrayOperand() const {
assert(!arrayOperands.empty());
for (const ArrayOperand &op : arrayOperands)
if (!op.mayBeAbsent)
return op;
// If all arrays operand appears in optional position, then none of them
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
// first operands.
// TODO: There is an opportunity to add a runtime check here that
// this array is present as required.
return arrayOperands[0];
}
/// Generate the shape of the iteration space over the array expression. The
/// iteration space may be implicit, explicit, or both. If it is implied it is
/// based on the destination and operand array loads, or an optional
/// Fortran::evaluate::Shape from the front end. If the shape is explicit,
/// this returns any implicit shape component, if it exists.
llvm::SmallVector<mlir::Value> genIterationShape() {
// Use the precomputed destination shape.
if (!destShape.empty())
return destShape;
// Otherwise, use the destination's shape.
if (destination)
return getShape(destination);
// Otherwise, use the first ArrayLoad operand shape.
if (!arrayOperands.empty())
return getShape(getInducingShapeArrayOperand());
fir::emitFatalError(getLoc(),
"failed to compute the array expression shape");
}
bool explicitSpaceIsActive() const {
return explicitSpace && explicitSpace->isActive();
}
bool implicitSpaceHasMasks() const {
return implicitSpace && !implicitSpace->empty();
}
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap)
: converter{converter}, builder{converter.getFirOpBuilder()},
stmtCtx{stmtCtx}, symMap{symMap} {}
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
ConstituentSemantics sem)
: converter{converter}, builder{converter.getFirOpBuilder()},
stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
ConstituentSemantics sem,
Fortran::lower::ExplicitIterSpace *expSpace,
Fortran::lower::ImplicitIterSpace *impSpace)
: converter{converter}, builder{converter.getFirOpBuilder()},
stmtCtx{stmtCtx}, symMap{symMap},
explicitSpace(expSpace->isActive() ? expSpace : nullptr),
implicitSpace(impSpace->empty() ? nullptr : impSpace), semant{sem} {
// Generate any mask expressions, as necessary. This is the compute step
// that creates the effective masks. See 10.2.3.2 in particular.
// genMasks();
}
mlir::Location getLoc() { return converter.getCurrentLocation(); }
/// Array appears in a lhs context such that it is assigned after the rhs is
/// fully evaluated.
inline bool isCopyInCopyOut() {
return semant == ConstituentSemantics::CopyInCopyOut;
}
/// Array appears in a lhs (or temp) context such that a projected,
/// discontiguous subspace of the array is assigned after the rhs is fully
/// evaluated. That is, the rhs array value is merged into a section of the
/// lhs array.
inline bool isProjectedCopyInCopyOut() {
return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
}
inline bool isCustomCopyInCopyOut() {
return semant == ConstituentSemantics::CustomCopyInCopyOut;
}
/// Array appears in a context where it must be boxed.
inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
/// Array appears in a context where differences in the memory reference can
/// be observable in the computational results. For example, an array
/// element is passed to an impure procedure.
inline bool isReferentiallyOpaque() {
return semant == ConstituentSemantics::RefOpaque;
}
/// Array appears in a context where it is passed as a VALUE argument.
inline bool isValueAttribute() {
return semant == ConstituentSemantics::ByValueArg;
}
/// Can the loops over the expression be unordered?
inline bool isUnordered() const { return unordered; }
void setUnordered(bool b) { unordered = b; }
Fortran::lower::AbstractConverter &converter;
fir::FirOpBuilder &builder;
Fortran::lower::StatementContext &stmtCtx;
bool elementCtx = false;
Fortran::lower::SymMap &symMap;
/// The continuation to generate code to update the destination.
llvm::Optional<CC> ccStoreToDest;
llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
ccLoadDest;
/// The destination is the loaded array into which the results will be
/// merged.
fir::ArrayLoadOp destination;
/// The shape of the destination.
llvm::SmallVector<mlir::Value> destShape;
/// List of arrays in the expression that have been loaded.
llvm::SmallVector<ArrayOperand> arrayOperands;
/// If there is a user-defined iteration space, explicitShape will hold the
/// information from the front end.
Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
// Can the array expression be evaluated in any order?
// Will be set to false if any of the expression parts prevent this.
bool unordered = true;
};
} // namespace
fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
}
fir::GlobalOp Fortran::lower::createDenseGlobal(
mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
mlir::StringAttr linkage, bool isConst,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::AbstractConverter &converter) {
Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
Fortran::lower::SymMap emptyMap;
InitializerData initData(/*genRawVals=*/true);
ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
/*initializer=*/&initData);
sel.genval(expr);
size_t sz = initData.rawVals.size();
llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
mlir::RankedTensorType tensorTy;
auto &builder = converter.getFirOpBuilder();
mlir::Type iTy = initData.rawType;
if (!iTy)
return 0; // array extent is probably 0 in this case, so just return 0.
tensorTy = mlir::RankedTensorType::get(sz, iTy);
auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
}
fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
InitializerData initData; // needed for initializations
return ScalarExprLowering{loc, converter, symMap, stmtCtx,
/*initializer=*/&initData}
.genval(expr);
}
fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
return ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(expr);
}
fir::ExtendedValue Fortran::lower::createInitializerAddress(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
InitializerData init;
return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
}
fir::ExtendedValue
Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
stmtCtx, expr);
}
fir::MutableBoxValue Fortran::lower::createMutableBox(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
// MutableBox lowering StatementContext does not need to be propagated
// to the caller because the result value is a variable, not a temporary
// expression. The StatementContext clean-up can occur before using the
// resulting MutableBoxValue. Variables of all other types are handled in the
// bridge.
Fortran::lower::StatementContext dummyStmtCtx;
return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
.genMutableBoxValue(expr);
}
mlir::Value Fortran::lower::createSubroutineCall(
AbstractConverter &converter, const evaluate::ProcedureRef &call,
SymMap &symMap, StatementContext &stmtCtx) {
mlir::Location loc = converter.getCurrentLocation();
// Simple subroutine call, with potential alternate return.
auto res = Fortran::lower::createSomeExtendedExpression(
loc, converter, toEvExpr(call), symMap, stmtCtx);
return fir::getBase(res);
}
void Fortran::lower::createSomeArrayAssignment(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
}
void Fortran::lower::createSomeArrayAssignment(
Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
llvm::dbgs() << "assign expression: " << rhs << '\n';);
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
}
void Fortran::lower::createAllocatableArrayAssignment(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
Fortran::lower::ExplicitIterSpace &explicitSpace,
Fortran::lower::ImplicitIterSpace &implicitSpace,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
<< " given the explicit iteration space:\n"
<< explicitSpace << "\n and implied mask conditions:\n"
<< implicitSpace << '\n';);
ArrayExprLowering::lowerAllocatableArrayAssignment(
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
}
fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
Fortran::lower::AbstractConverter &converter,
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
expr);
}
mlir::Value Fortran::lower::genMaxWithZero(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value value) {
mlir::Value zero = builder.createIntegerConstant(loc, value.getType(), 0);
if (mlir::Operation *definingOp = value.getDefiningOp())
if (auto cst = mlir::dyn_cast<mlir::arith::ConstantOp>(definingOp))
if (auto intAttr = cst.getValue().dyn_cast<mlir::IntegerAttr>())
return intAttr.getInt() < 0 ? zero : value;
return Fortran::lower::genMax(builder, loc,
llvm::SmallVector<mlir::Value>{value, zero});
}