llvm-project/flang/runtime/derived.cpp

239 lines
9.8 KiB
C++

//===-- runtime/derived.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
int Initialize(const Descriptor &instance, const typeInfo::DerivedType &derived,
Terminator &terminator, bool hasStat, const Descriptor *errMsg) {
const Descriptor &componentDesc{derived.component()};
std::size_t elements{instance.Elements()};
std::size_t byteStride{instance.ElementBytes()};
int stat{StatOk};
// Initialize data components in each element; the per-element iteration
// constitutes the inner loops, not outer
std::size_t myComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j < elements; ++j) {
Descriptor &allocDesc{*instance.OffsetElement<Descriptor>(
j * byteStride + comp.offset())};
comp.EstablishDescriptor(allocDesc, instance, terminator);
allocDesc.raw().attribute = CFI_attribute_allocatable;
if (comp.genre() == typeInfo::Component::Genre::Automatic) {
stat = ReturnError(terminator, allocDesc.Allocate(), errMsg, hasStat);
if (stat == StatOk) {
stat = Initialize(allocDesc, derived, terminator, hasStat, errMsg);
}
if (stat != StatOk) {
break;
}
}
}
} else if (const void *init{comp.initialization()}) {
// Explicit initialization of data pointers and
// non-allocatable non-automatic components
std::size_t bytes{comp.SizeInBytes(instance)};
for (std::size_t j{0}; j < elements; ++j) {
char *ptr{instance.OffsetElement<char>(j * byteStride + comp.offset())};
std::memcpy(ptr, init, bytes);
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noInitializationNeeded()) {
// Default initialization of non-pointer non-allocatable/automatic
// data component. Handles parent component's elements. Recursive.
SubscriptValue extent[maxRank];
const typeInfo::Value *bounds{comp.bounds()};
for (int dim{0}; dim < comp.rank(); ++dim) {
typeInfo::TypeParameterValue lb{
bounds[2 * dim].GetValue(&instance).value_or(0)};
typeInfo::TypeParameterValue ub{
bounds[2 * dim + 1].GetValue(&instance).value_or(0)};
extent[dim] = ub >= lb ? ub - lb + 1 : 0;
}
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j < elements; ++j) {
compDesc.Establish(compType,
instance.OffsetElement<char>(j * byteStride + comp.offset()),
comp.rank(), extent);
stat = Initialize(compDesc, compType, terminator, hasStat, errMsg);
if (stat != StatOk) {
break;
}
}
}
}
// Initialize procedure pointer components in each element
const Descriptor &procPtrDesc{derived.procPtr()};
std::size_t myProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < myProcPtrs; ++k) {
const auto &comp{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
for (std::size_t j{0}; j < elements; ++j) {
auto &pptr{*instance.OffsetElement<typeInfo::ProcedurePointer>(
j * byteStride + comp.offset)};
pptr = comp.procInitialization;
}
}
return stat;
}
static const typeInfo::SpecialBinding *FindFinal(
const typeInfo::DerivedType &derived, int rank) {
if (const auto *ranked{derived.FindSpecialBinding(
typeInfo::SpecialBinding::RankFinal(rank))}) {
return ranked;
} else if (const auto *assumed{derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::AssumedRankFinal)}) {
return assumed;
} else {
return derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalFinal);
}
}
static void CallFinalSubroutine(
const Descriptor &descriptor, const typeInfo::DerivedType &derived) {
if (const auto *special{FindFinal(derived, descriptor.rank())}) {
// The following code relies on the fact that finalizable objects
// must be contiguous.
if (special->which() == typeInfo::SpecialBinding::Which::ElementalFinal) {
std::size_t byteStride{descriptor.ElementBytes()};
std::size_t elements{descriptor.Elements()};
if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &elemDesc{statDesc.descriptor()};
elemDesc = descriptor;
elemDesc.raw().attribute = CFI_attribute_pointer;
elemDesc.raw().rank = 0;
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
for (std::size_t j{0}; j < elements; ++j) {
elemDesc.set_base_addr(
descriptor.OffsetElement<char>(j * byteStride));
p(elemDesc);
}
} else {
auto *p{special->GetProc<void (*)(char *)>()};
for (std::size_t j{0}; j < elements; ++j) {
p(descriptor.OffsetElement<char>(j * byteStride));
}
}
} else if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &tmpDesc{statDesc.descriptor()};
tmpDesc = descriptor;
tmpDesc.raw().attribute = CFI_attribute_pointer;
tmpDesc.Addendum()->set_derivedType(&derived);
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
p(tmpDesc);
} else {
auto *p{special->GetProc<void (*)(char *)>()};
p(descriptor.OffsetElement<char>());
}
}
}
// Fortran 2018 subclause 7.5.6.2
void Finalize(
const Descriptor &descriptor, const typeInfo::DerivedType &derived) {
if (derived.noFinalizationNeeded() || !descriptor.IsAllocated()) {
return;
}
CallFinalSubroutine(descriptor, derived);
const auto *parentType{derived.GetParentType()};
bool recurse{parentType && !parentType->noFinalizationNeeded()};
// If there's a finalizable parent component, handle it last, as required
// by the Fortran standard (7.5.6.2), and do so recursively with the same
// descriptor so that the rank is preserved.
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
std::size_t byteStride{descriptor.ElementBytes()};
for (auto k{recurse
? std::size_t{1} /* skip first component, it's the parent */
: 0};
k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
if (const typeInfo::DerivedType * compType{comp.derivedType()}) {
if (!compType->noFinalizationNeeded()) {
for (std::size_t j{0}; j < elements; ++j) {
const Descriptor &compDesc{*descriptor.OffsetElement<Descriptor>(
j * byteStride + comp.offset())};
if (compDesc.IsAllocated()) {
Finalize(compDesc, *compType);
}
}
}
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noFinalizationNeeded()) {
SubscriptValue extent[maxRank];
const typeInfo::Value *bounds{comp.bounds()};
for (int dim{0}; dim < comp.rank(); ++dim) {
extent[dim] = bounds[2 * dim].GetValue(&descriptor).value_or(0) -
bounds[2 * dim + 1].GetValue(&descriptor).value_or(0) + 1;
}
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j < elements; ++j) {
compDesc.Establish(compType,
descriptor.OffsetElement<char>(j * byteStride + comp.offset()),
comp.rank(), extent);
Finalize(compDesc, compType);
}
}
}
if (recurse) {
Finalize(descriptor, *parentType);
}
}
// The order of finalization follows Fortran 2018 7.5.6.2, with
// elementwise deallocation of non-parent components (and their consequent
// finalizations) taking place before parent component finalization.
void Destroy(const Descriptor &descriptor, bool finalize,
const typeInfo::DerivedType &derived) {
if (derived.noDestructionNeeded() || !descriptor.IsAllocated()) {
return;
}
if (finalize && !derived.noFinalizationNeeded()) {
Finalize(descriptor, derived);
}
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
std::size_t byteStride{descriptor.ElementBytes()};
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j < elements; ++j) {
descriptor.OffsetElement<Descriptor>(j * byteStride + comp.offset())
->Deallocate();
}
}
}
}
} // namespace Fortran::runtime