forked from OSchip/llvm-project
5175 lines
204 KiB
C++
5175 lines
204 KiB
C++
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCXXABI.h"
|
|
#include "CGCleanup.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "ConstantEmitter.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/APFixedPoint.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/FixedPointBuilder.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsPowerPC.h"
|
|
#include "llvm/IR/MatrixBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include <cstdarg>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using llvm::Value;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Scalar Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Determine whether the given binary operation may overflow.
|
|
/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
|
|
/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
|
|
/// the returned overflow check is precise. The returned value is 'true' for
|
|
/// all other opcodes, to be conservative.
|
|
bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
|
|
BinaryOperator::Opcode Opcode, bool Signed,
|
|
llvm::APInt &Result) {
|
|
// Assume overflow is possible, unless we can prove otherwise.
|
|
bool Overflow = true;
|
|
const auto &LHSAP = LHS->getValue();
|
|
const auto &RHSAP = RHS->getValue();
|
|
if (Opcode == BO_Add) {
|
|
if (Signed)
|
|
Result = LHSAP.sadd_ov(RHSAP, Overflow);
|
|
else
|
|
Result = LHSAP.uadd_ov(RHSAP, Overflow);
|
|
} else if (Opcode == BO_Sub) {
|
|
if (Signed)
|
|
Result = LHSAP.ssub_ov(RHSAP, Overflow);
|
|
else
|
|
Result = LHSAP.usub_ov(RHSAP, Overflow);
|
|
} else if (Opcode == BO_Mul) {
|
|
if (Signed)
|
|
Result = LHSAP.smul_ov(RHSAP, Overflow);
|
|
else
|
|
Result = LHSAP.umul_ov(RHSAP, Overflow);
|
|
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
|
|
if (Signed && !RHS->isZero())
|
|
Result = LHSAP.sdiv_ov(RHSAP, Overflow);
|
|
else
|
|
return false;
|
|
}
|
|
return Overflow;
|
|
}
|
|
|
|
struct BinOpInfo {
|
|
Value *LHS;
|
|
Value *RHS;
|
|
QualType Ty; // Computation Type.
|
|
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
|
|
FPOptions FPFeatures;
|
|
const Expr *E; // Entire expr, for error unsupported. May not be binop.
|
|
|
|
/// Check if the binop can result in integer overflow.
|
|
bool mayHaveIntegerOverflow() const {
|
|
// Without constant input, we can't rule out overflow.
|
|
auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
|
|
auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
|
|
if (!LHSCI || !RHSCI)
|
|
return true;
|
|
|
|
llvm::APInt Result;
|
|
return ::mayHaveIntegerOverflow(
|
|
LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
|
|
}
|
|
|
|
/// Check if the binop computes a division or a remainder.
|
|
bool isDivremOp() const {
|
|
return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
|
|
Opcode == BO_RemAssign;
|
|
}
|
|
|
|
/// Check if the binop can result in an integer division by zero.
|
|
bool mayHaveIntegerDivisionByZero() const {
|
|
if (isDivremOp())
|
|
if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
|
|
return CI->isZero();
|
|
return true;
|
|
}
|
|
|
|
/// Check if the binop can result in a float division by zero.
|
|
bool mayHaveFloatDivisionByZero() const {
|
|
if (isDivremOp())
|
|
if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
|
|
return CFP->isZero();
|
|
return true;
|
|
}
|
|
|
|
/// Check if at least one operand is a fixed point type. In such cases, this
|
|
/// operation did not follow usual arithmetic conversion and both operands
|
|
/// might not be of the same type.
|
|
bool isFixedPointOp() const {
|
|
// We cannot simply check the result type since comparison operations return
|
|
// an int.
|
|
if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
|
|
QualType LHSType = BinOp->getLHS()->getType();
|
|
QualType RHSType = BinOp->getRHS()->getType();
|
|
return LHSType->isFixedPointType() || RHSType->isFixedPointType();
|
|
}
|
|
if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
|
|
return UnOp->getSubExpr()->getType()->isFixedPointType();
|
|
return false;
|
|
}
|
|
};
|
|
|
|
static bool MustVisitNullValue(const Expr *E) {
|
|
// If a null pointer expression's type is the C++0x nullptr_t, then
|
|
// it's not necessarily a simple constant and it must be evaluated
|
|
// for its potential side effects.
|
|
return E->getType()->isNullPtrType();
|
|
}
|
|
|
|
/// If \p E is a widened promoted integer, get its base (unpromoted) type.
|
|
static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
|
|
const Expr *E) {
|
|
const Expr *Base = E->IgnoreImpCasts();
|
|
if (E == Base)
|
|
return llvm::None;
|
|
|
|
QualType BaseTy = Base->getType();
|
|
if (!BaseTy->isPromotableIntegerType() ||
|
|
Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
|
|
return llvm::None;
|
|
|
|
return BaseTy;
|
|
}
|
|
|
|
/// Check if \p E is a widened promoted integer.
|
|
static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
|
|
return getUnwidenedIntegerType(Ctx, E).hasValue();
|
|
}
|
|
|
|
/// Check if we can skip the overflow check for \p Op.
|
|
static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
|
|
assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
|
|
"Expected a unary or binary operator");
|
|
|
|
// If the binop has constant inputs and we can prove there is no overflow,
|
|
// we can elide the overflow check.
|
|
if (!Op.mayHaveIntegerOverflow())
|
|
return true;
|
|
|
|
// If a unary op has a widened operand, the op cannot overflow.
|
|
if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
|
|
return !UO->canOverflow();
|
|
|
|
// We usually don't need overflow checks for binops with widened operands.
|
|
// Multiplication with promoted unsigned operands is a special case.
|
|
const auto *BO = cast<BinaryOperator>(Op.E);
|
|
auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
|
|
if (!OptionalLHSTy)
|
|
return false;
|
|
|
|
auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
|
|
if (!OptionalRHSTy)
|
|
return false;
|
|
|
|
QualType LHSTy = *OptionalLHSTy;
|
|
QualType RHSTy = *OptionalRHSTy;
|
|
|
|
// This is the simple case: binops without unsigned multiplication, and with
|
|
// widened operands. No overflow check is needed here.
|
|
if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
|
|
!LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
|
|
return true;
|
|
|
|
// For unsigned multiplication the overflow check can be elided if either one
|
|
// of the unpromoted types are less than half the size of the promoted type.
|
|
unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
|
|
return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
|
|
(2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
|
|
}
|
|
|
|
class ScalarExprEmitter
|
|
: public StmtVisitor<ScalarExprEmitter, Value*> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
bool IgnoreResultAssign;
|
|
llvm::LLVMContext &VMContext;
|
|
public:
|
|
|
|
ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
|
|
: CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
|
|
VMContext(cgf.getLLVMContext()) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool TestAndClearIgnoreResultAssign() {
|
|
bool I = IgnoreResultAssign;
|
|
IgnoreResultAssign = false;
|
|
return I;
|
|
}
|
|
|
|
llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
|
|
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
|
|
LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
|
|
return CGF.EmitCheckedLValue(E, TCK);
|
|
}
|
|
|
|
void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
|
|
const BinOpInfo &Info);
|
|
|
|
Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
|
|
return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
|
|
}
|
|
|
|
void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
|
|
const AlignValueAttr *AVAttr = nullptr;
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
const ValueDecl *VD = DRE->getDecl();
|
|
|
|
if (VD->getType()->isReferenceType()) {
|
|
if (const auto *TTy =
|
|
dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
|
|
AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
|
|
} else {
|
|
// Assumptions for function parameters are emitted at the start of the
|
|
// function, so there is no need to repeat that here,
|
|
// unless the alignment-assumption sanitizer is enabled,
|
|
// then we prefer the assumption over alignment attribute
|
|
// on IR function param.
|
|
if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
|
|
return;
|
|
|
|
AVAttr = VD->getAttr<AlignValueAttr>();
|
|
}
|
|
}
|
|
|
|
if (!AVAttr)
|
|
if (const auto *TTy =
|
|
dyn_cast<TypedefType>(E->getType()))
|
|
AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
|
|
|
|
if (!AVAttr)
|
|
return;
|
|
|
|
Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
|
|
llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
|
|
CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression with complex type that represents a
|
|
/// value l-value, this method emits the address of the l-value, then loads
|
|
/// and returns the result.
|
|
Value *EmitLoadOfLValue(const Expr *E) {
|
|
Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
|
|
E->getExprLoc());
|
|
|
|
EmitLValueAlignmentAssumption(E, V);
|
|
return V;
|
|
}
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *EmitConversionToBool(Value *Src, QualType DstTy);
|
|
|
|
/// Emit a check that a conversion from a floating-point type does not
|
|
/// overflow.
|
|
void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
|
|
Value *Src, QualType SrcType, QualType DstType,
|
|
llvm::Type *DstTy, SourceLocation Loc);
|
|
|
|
/// Known implicit conversion check kinds.
|
|
/// Keep in sync with the enum of the same name in ubsan_handlers.h
|
|
enum ImplicitConversionCheckKind : unsigned char {
|
|
ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
|
|
ICCK_UnsignedIntegerTruncation = 1,
|
|
ICCK_SignedIntegerTruncation = 2,
|
|
ICCK_IntegerSignChange = 3,
|
|
ICCK_SignedIntegerTruncationOrSignChange = 4,
|
|
};
|
|
|
|
/// Emit a check that an [implicit] truncation of an integer does not
|
|
/// discard any bits. It is not UB, so we use the value after truncation.
|
|
void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
|
|
QualType DstType, SourceLocation Loc);
|
|
|
|
/// Emit a check that an [implicit] conversion of an integer does not change
|
|
/// the sign of the value. It is not UB, so we use the value after conversion.
|
|
/// NOTE: Src and Dst may be the exact same value! (point to the same thing)
|
|
void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
|
|
QualType DstType, SourceLocation Loc);
|
|
|
|
/// Emit a conversion from the specified type to the specified destination
|
|
/// type, both of which are LLVM scalar types.
|
|
struct ScalarConversionOpts {
|
|
bool TreatBooleanAsSigned;
|
|
bool EmitImplicitIntegerTruncationChecks;
|
|
bool EmitImplicitIntegerSignChangeChecks;
|
|
|
|
ScalarConversionOpts()
|
|
: TreatBooleanAsSigned(false),
|
|
EmitImplicitIntegerTruncationChecks(false),
|
|
EmitImplicitIntegerSignChangeChecks(false) {}
|
|
|
|
ScalarConversionOpts(clang::SanitizerSet SanOpts)
|
|
: TreatBooleanAsSigned(false),
|
|
EmitImplicitIntegerTruncationChecks(
|
|
SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
|
|
EmitImplicitIntegerSignChangeChecks(
|
|
SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
|
|
};
|
|
Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
|
|
llvm::Type *SrcTy, llvm::Type *DstTy,
|
|
ScalarConversionOpts Opts);
|
|
Value *
|
|
EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
|
|
SourceLocation Loc,
|
|
ScalarConversionOpts Opts = ScalarConversionOpts());
|
|
|
|
/// Convert between either a fixed point and other fixed point or fixed point
|
|
/// and an integer.
|
|
Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
|
|
SourceLocation Loc);
|
|
|
|
/// Emit a conversion from the specified complex type to the specified
|
|
/// destination type, where the destination type is an LLVM scalar type.
|
|
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
|
|
QualType SrcTy, QualType DstTy,
|
|
SourceLocation Loc);
|
|
|
|
/// EmitNullValue - Emit a value that corresponds to null for the given type.
|
|
Value *EmitNullValue(QualType Ty);
|
|
|
|
/// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
|
|
Value *EmitFloatToBoolConversion(Value *V) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
|
|
return Builder.CreateFCmpUNE(V, Zero, "tobool");
|
|
}
|
|
|
|
/// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
|
|
Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
|
|
Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
|
|
|
|
return Builder.CreateICmpNE(V, Zero, "tobool");
|
|
}
|
|
|
|
Value *EmitIntToBoolConversion(Value *V) {
|
|
// Because of the type rules of C, we often end up computing a
|
|
// logical value, then zero extending it to int, then wanting it
|
|
// as a logical value again. Optimize this common case.
|
|
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
|
|
if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
|
|
Value *Result = ZI->getOperand(0);
|
|
// If there aren't any more uses, zap the instruction to save space.
|
|
// Note that there can be more uses, for example if this
|
|
// is the result of an assignment.
|
|
if (ZI->use_empty())
|
|
ZI->eraseFromParent();
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return Builder.CreateIsNotNull(V, "tobool");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
Value *Visit(Expr *E) {
|
|
ApplyDebugLocation DL(CGF, E);
|
|
return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
|
|
}
|
|
|
|
Value *VisitStmt(Stmt *S) {
|
|
S->dump(llvm::errs(), CGF.getContext());
|
|
llvm_unreachable("Stmt can't have complex result type!");
|
|
}
|
|
Value *VisitExpr(Expr *S);
|
|
|
|
Value *VisitConstantExpr(ConstantExpr *E) {
|
|
// A constant expression of type 'void' generates no code and produces no
|
|
// value.
|
|
if (E->getType()->isVoidType())
|
|
return nullptr;
|
|
|
|
if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
|
|
if (E->isGLValue())
|
|
return CGF.Builder.CreateLoad(Address(
|
|
Result, CGF.getContext().getTypeAlignInChars(E->getType())));
|
|
return Result;
|
|
}
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
Value *VisitParenExpr(ParenExpr *PE) {
|
|
return Visit(PE->getSubExpr());
|
|
}
|
|
Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
|
|
return Visit(E->getReplacement());
|
|
}
|
|
Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
|
|
return Visit(GE->getResultExpr());
|
|
}
|
|
Value *VisitCoawaitExpr(CoawaitExpr *S) {
|
|
return CGF.EmitCoawaitExpr(*S).getScalarVal();
|
|
}
|
|
Value *VisitCoyieldExpr(CoyieldExpr *S) {
|
|
return CGF.EmitCoyieldExpr(*S).getScalarVal();
|
|
}
|
|
Value *VisitUnaryCoawait(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
// Leaves.
|
|
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return Builder.getInt(E->getValue());
|
|
}
|
|
Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
|
|
return Builder.getInt(E->getValue());
|
|
}
|
|
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
return llvm::ConstantFP::get(VMContext, E->getValue());
|
|
}
|
|
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
Value *VisitGNUNullExpr(const GNUNullExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
Value *VisitOffsetOfExpr(OffsetOfExpr *E);
|
|
Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
|
|
Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
|
|
llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
|
|
return Builder.CreateBitCast(V, ConvertType(E->getType()));
|
|
}
|
|
|
|
Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
|
|
}
|
|
|
|
Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
|
|
return CGF.EmitPseudoObjectRValue(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
|
|
|
|
Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
|
|
if (E->isGLValue())
|
|
return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
|
|
E->getExprLoc());
|
|
|
|
// Otherwise, assume the mapping is the scalar directly.
|
|
return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
|
|
}
|
|
|
|
// l-values.
|
|
Value *VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
|
|
return CGF.emitScalarConstant(Constant, E);
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
|
|
return CGF.EmitObjCSelectorExpr(E);
|
|
}
|
|
Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
|
|
return CGF.EmitObjCProtocolExpr(E);
|
|
}
|
|
Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
if (E->getMethodDecl() &&
|
|
E->getMethodDecl()->getReturnType()->isReferenceType())
|
|
return EmitLoadOfLValue(E);
|
|
return CGF.EmitObjCMessageExpr(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
|
|
LValue LV = CGF.EmitObjCIsaExpr(E);
|
|
Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
|
|
return V;
|
|
}
|
|
|
|
Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
|
|
VersionTuple Version = E->getVersion();
|
|
|
|
// If we're checking for a platform older than our minimum deployment
|
|
// target, we can fold the check away.
|
|
if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
|
|
return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
|
|
|
|
return CGF.EmitBuiltinAvailable(Version);
|
|
}
|
|
|
|
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
|
|
Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
|
|
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
|
|
Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
|
|
Value *VisitMemberExpr(MemberExpr *E);
|
|
Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
// Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
|
|
// transitively calls EmitCompoundLiteralLValue, here in C++ since compound
|
|
// literals aren't l-values in C++. We do so simply because that's the
|
|
// cleanest way to handle compound literals in C++.
|
|
// See the discussion here: https://reviews.llvm.org/D64464
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
Value *VisitInitListExpr(InitListExpr *E);
|
|
|
|
Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
|
|
assert(CGF.getArrayInitIndex() &&
|
|
"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
|
|
return CGF.getArrayInitIndex();
|
|
}
|
|
|
|
Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
|
|
CGF.CGM.EmitExplicitCastExprType(E, &CGF);
|
|
return VisitCastExpr(E);
|
|
}
|
|
Value *VisitCastExpr(CastExpr *E);
|
|
|
|
Value *VisitCallExpr(const CallExpr *E) {
|
|
if (E->getCallReturnType(CGF.getContext())->isReferenceType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
Value *V = CGF.EmitCallExpr(E).getScalarVal();
|
|
|
|
EmitLValueAlignmentAssumption(E, V);
|
|
return V;
|
|
}
|
|
|
|
Value *VisitStmtExpr(const StmtExpr *E);
|
|
|
|
// Unary Operators.
|
|
Value *VisitUnaryPostDec(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, false, false);
|
|
}
|
|
Value *VisitUnaryPostInc(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, true, false);
|
|
}
|
|
Value *VisitUnaryPreDec(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, false, true);
|
|
}
|
|
Value *VisitUnaryPreInc(const UnaryOperator *E) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
return EmitScalarPrePostIncDec(E, LV, true, true);
|
|
}
|
|
|
|
llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
|
|
llvm::Value *InVal,
|
|
bool IsInc);
|
|
|
|
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
|
|
|
|
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
if (isa<MemberPointerType>(E->getType())) // never sugared
|
|
return CGF.CGM.getMemberPointerConstant(E);
|
|
|
|
return EmitLValue(E->getSubExpr()).getPointer(CGF);
|
|
}
|
|
Value *VisitUnaryDeref(const UnaryOperator *E) {
|
|
if (E->getType()->isVoidType())
|
|
return Visit(E->getSubExpr()); // the actual value should be unused
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitUnaryPlus(const UnaryOperator *E) {
|
|
// This differs from gcc, though, most likely due to a bug in gcc.
|
|
TestAndClearIgnoreResultAssign();
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
Value *VisitUnaryMinus (const UnaryOperator *E);
|
|
Value *VisitUnaryNot (const UnaryOperator *E);
|
|
Value *VisitUnaryLNot (const UnaryOperator *E);
|
|
Value *VisitUnaryReal (const UnaryOperator *E);
|
|
Value *VisitUnaryImag (const UnaryOperator *E);
|
|
Value *VisitUnaryExtension(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
// C++
|
|
Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
|
|
auto &Ctx = CGF.getContext();
|
|
APValue Evaluated =
|
|
SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
|
|
return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
|
|
SLE->getType());
|
|
}
|
|
|
|
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
|
|
return Visit(DAE->getExpr());
|
|
}
|
|
Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
|
|
CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
|
|
return Visit(DIE->getExpr());
|
|
}
|
|
Value *VisitCXXThisExpr(CXXThisExpr *TE) {
|
|
return CGF.LoadCXXThis();
|
|
}
|
|
|
|
Value *VisitExprWithCleanups(ExprWithCleanups *E);
|
|
Value *VisitCXXNewExpr(const CXXNewExpr *E) {
|
|
return CGF.EmitCXXNewExpr(E);
|
|
}
|
|
Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
|
CGF.EmitCXXDeleteExpr(E);
|
|
return nullptr;
|
|
}
|
|
|
|
Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
|
|
Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
|
|
return Builder.getInt1(E->isSatisfied());
|
|
}
|
|
|
|
Value *VisitRequiresExpr(const RequiresExpr *E) {
|
|
return Builder.getInt1(E->isSatisfied());
|
|
}
|
|
|
|
Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
|
|
return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
|
|
}
|
|
|
|
Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
|
|
return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
|
|
}
|
|
|
|
Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
|
|
// C++ [expr.pseudo]p1:
|
|
// The result shall only be used as the operand for the function call
|
|
// operator (), and the result of such a call has type void. The only
|
|
// effect is the evaluation of the postfix-expression before the dot or
|
|
// arrow.
|
|
CGF.EmitScalarExpr(E->getBase());
|
|
return nullptr;
|
|
}
|
|
|
|
Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
|
|
Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
|
|
CGF.EmitCXXThrowExpr(E);
|
|
return nullptr;
|
|
}
|
|
|
|
Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
|
|
return Builder.getInt1(E->getValue());
|
|
}
|
|
|
|
// Binary Operators.
|
|
Value *EmitMul(const BinOpInfo &Ops) {
|
|
if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
|
|
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
|
|
case LangOptions::SOB_Undefined:
|
|
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
|
|
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
|
|
LLVM_FALLTHROUGH;
|
|
case LangOptions::SOB_Trapping:
|
|
if (CanElideOverflowCheck(CGF.getContext(), Ops))
|
|
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
|
|
return EmitOverflowCheckedBinOp(Ops);
|
|
}
|
|
}
|
|
|
|
if (Ops.Ty->isConstantMatrixType()) {
|
|
llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
|
|
// We need to check the types of the operands of the operator to get the
|
|
// correct matrix dimensions.
|
|
auto *BO = cast<BinaryOperator>(Ops.E);
|
|
auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
|
|
BO->getLHS()->getType().getCanonicalType());
|
|
auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
|
|
BO->getRHS()->getType().getCanonicalType());
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
|
|
if (LHSMatTy && RHSMatTy)
|
|
return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
|
|
LHSMatTy->getNumColumns(),
|
|
RHSMatTy->getNumColumns());
|
|
return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
|
|
}
|
|
|
|
if (Ops.Ty->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
|
|
!CanElideOverflowCheck(CGF.getContext(), Ops))
|
|
return EmitOverflowCheckedBinOp(Ops);
|
|
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
|
|
// Preserve the old values
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
|
|
return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
|
|
}
|
|
if (Ops.isFixedPointOp())
|
|
return EmitFixedPointBinOp(Ops);
|
|
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
|
|
}
|
|
/// Create a binary op that checks for overflow.
|
|
/// Currently only supports +, - and *.
|
|
Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
|
|
|
|
// Check for undefined division and modulus behaviors.
|
|
void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
|
|
llvm::Value *Zero,bool isDiv);
|
|
// Common helper for getting how wide LHS of shift is.
|
|
static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
|
|
|
|
// Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
|
|
// non powers of two.
|
|
Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
|
|
|
|
Value *EmitDiv(const BinOpInfo &Ops);
|
|
Value *EmitRem(const BinOpInfo &Ops);
|
|
Value *EmitAdd(const BinOpInfo &Ops);
|
|
Value *EmitSub(const BinOpInfo &Ops);
|
|
Value *EmitShl(const BinOpInfo &Ops);
|
|
Value *EmitShr(const BinOpInfo &Ops);
|
|
Value *EmitAnd(const BinOpInfo &Ops) {
|
|
return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
|
|
}
|
|
Value *EmitXor(const BinOpInfo &Ops) {
|
|
return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
|
|
}
|
|
Value *EmitOr (const BinOpInfo &Ops) {
|
|
return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
|
|
}
|
|
|
|
// Helper functions for fixed point binary operations.
|
|
Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
|
|
|
|
BinOpInfo EmitBinOps(const BinaryOperator *E);
|
|
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
|
|
Value *&Result);
|
|
|
|
Value *EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
|
|
|
|
// Binary operators and binary compound assignment operators.
|
|
#define HANDLEBINOP(OP) \
|
|
Value *VisitBin ## OP(const BinaryOperator *E) { \
|
|
return Emit ## OP(EmitBinOps(E)); \
|
|
} \
|
|
Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
|
|
return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
|
|
}
|
|
HANDLEBINOP(Mul)
|
|
HANDLEBINOP(Div)
|
|
HANDLEBINOP(Rem)
|
|
HANDLEBINOP(Add)
|
|
HANDLEBINOP(Sub)
|
|
HANDLEBINOP(Shl)
|
|
HANDLEBINOP(Shr)
|
|
HANDLEBINOP(And)
|
|
HANDLEBINOP(Xor)
|
|
HANDLEBINOP(Or)
|
|
#undef HANDLEBINOP
|
|
|
|
// Comparisons.
|
|
Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
|
|
llvm::CmpInst::Predicate SICmpOpc,
|
|
llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
|
|
#define VISITCOMP(CODE, UI, SI, FP, SIG) \
|
|
Value *VisitBin##CODE(const BinaryOperator *E) { \
|
|
return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
|
|
llvm::FCmpInst::FP, SIG); }
|
|
VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
|
|
VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
|
|
VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
|
|
VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
|
|
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
|
|
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
|
|
#undef VISITCOMP
|
|
|
|
Value *VisitBinAssign (const BinaryOperator *E);
|
|
|
|
Value *VisitBinLAnd (const BinaryOperator *E);
|
|
Value *VisitBinLOr (const BinaryOperator *E);
|
|
Value *VisitBinComma (const BinaryOperator *E);
|
|
|
|
Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
|
|
Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
|
|
return Visit(E->getSemanticForm());
|
|
}
|
|
|
|
// Other Operators.
|
|
Value *VisitBlockExpr(const BlockExpr *BE);
|
|
Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
|
|
Value *VisitChooseExpr(ChooseExpr *CE);
|
|
Value *VisitVAArgExpr(VAArgExpr *VE);
|
|
Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
|
|
return CGF.EmitObjCStringLiteral(E);
|
|
}
|
|
Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
|
|
return CGF.EmitObjCBoxedExpr(E);
|
|
}
|
|
Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
|
|
return CGF.EmitObjCArrayLiteral(E);
|
|
}
|
|
Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
|
|
return CGF.EmitObjCDictionaryLiteral(E);
|
|
}
|
|
Value *VisitAsTypeExpr(AsTypeExpr *CE);
|
|
Value *VisitAtomicExpr(AtomicExpr *AE);
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
|
|
assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType())
|
|
return EmitFloatToBoolConversion(Src);
|
|
|
|
if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
|
|
|
|
assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
if (isa<llvm::IntegerType>(Src->getType()))
|
|
return EmitIntToBoolConversion(Src);
|
|
|
|
assert(isa<llvm::PointerType>(Src->getType()));
|
|
return EmitPointerToBoolConversion(Src, SrcType);
|
|
}
|
|
|
|
void ScalarExprEmitter::EmitFloatConversionCheck(
|
|
Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
|
|
QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
|
|
assert(SrcType->isFloatingType() && "not a conversion from floating point");
|
|
if (!isa<llvm::IntegerType>(DstTy))
|
|
return;
|
|
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
using llvm::APFloat;
|
|
using llvm::APSInt;
|
|
|
|
llvm::Value *Check = nullptr;
|
|
const llvm::fltSemantics &SrcSema =
|
|
CGF.getContext().getFloatTypeSemantics(OrigSrcType);
|
|
|
|
// Floating-point to integer. This has undefined behavior if the source is
|
|
// +-Inf, NaN, or doesn't fit into the destination type (after truncation
|
|
// to an integer).
|
|
unsigned Width = CGF.getContext().getIntWidth(DstType);
|
|
bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
|
|
|
|
APSInt Min = APSInt::getMinValue(Width, Unsigned);
|
|
APFloat MinSrc(SrcSema, APFloat::uninitialized);
|
|
if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
|
|
APFloat::opOverflow)
|
|
// Don't need an overflow check for lower bound. Just check for
|
|
// -Inf/NaN.
|
|
MinSrc = APFloat::getInf(SrcSema, true);
|
|
else
|
|
// Find the largest value which is too small to represent (before
|
|
// truncation toward zero).
|
|
MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
|
|
|
|
APSInt Max = APSInt::getMaxValue(Width, Unsigned);
|
|
APFloat MaxSrc(SrcSema, APFloat::uninitialized);
|
|
if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
|
|
APFloat::opOverflow)
|
|
// Don't need an overflow check for upper bound. Just check for
|
|
// +Inf/NaN.
|
|
MaxSrc = APFloat::getInf(SrcSema, false);
|
|
else
|
|
// Find the smallest value which is too large to represent (before
|
|
// truncation toward zero).
|
|
MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
|
|
|
|
// If we're converting from __half, convert the range to float to match
|
|
// the type of src.
|
|
if (OrigSrcType->isHalfType()) {
|
|
const llvm::fltSemantics &Sema =
|
|
CGF.getContext().getFloatTypeSemantics(SrcType);
|
|
bool IsInexact;
|
|
MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
|
|
MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
|
|
}
|
|
|
|
llvm::Value *GE =
|
|
Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
|
|
llvm::Value *LE =
|
|
Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
|
|
Check = Builder.CreateAnd(GE, LE);
|
|
|
|
llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
|
|
CGF.EmitCheckTypeDescriptor(OrigSrcType),
|
|
CGF.EmitCheckTypeDescriptor(DstType)};
|
|
CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
|
|
SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
|
|
}
|
|
|
|
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
|
|
// Returns 'i1 false' when the truncation Src -> Dst was lossy.
|
|
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
|
|
std::pair<llvm::Value *, SanitizerMask>>
|
|
EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
|
|
QualType DstType, CGBuilderTy &Builder) {
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy = Dst->getType();
|
|
(void)DstTy; // Only used in assert()
|
|
|
|
// This should be truncation of integral types.
|
|
assert(Src != Dst);
|
|
assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
|
|
assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
|
|
"non-integer llvm type");
|
|
|
|
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
|
|
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
|
|
|
|
// If both (src and dst) types are unsigned, then it's an unsigned truncation.
|
|
// Else, it is a signed truncation.
|
|
ScalarExprEmitter::ImplicitConversionCheckKind Kind;
|
|
SanitizerMask Mask;
|
|
if (!SrcSigned && !DstSigned) {
|
|
Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
|
|
Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
|
|
} else {
|
|
Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
|
|
Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
|
|
}
|
|
|
|
llvm::Value *Check = nullptr;
|
|
// 1. Extend the truncated value back to the same width as the Src.
|
|
Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
|
|
// 2. Equality-compare with the original source value
|
|
Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
|
|
// If the comparison result is 'i1 false', then the truncation was lossy.
|
|
return std::make_pair(Kind, std::make_pair(Check, Mask));
|
|
}
|
|
|
|
static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
|
|
QualType SrcType, QualType DstType) {
|
|
return SrcType->isIntegerType() && DstType->isIntegerType();
|
|
}
|
|
|
|
void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
|
|
Value *Dst, QualType DstType,
|
|
SourceLocation Loc) {
|
|
if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
|
|
return;
|
|
|
|
// We only care about int->int conversions here.
|
|
// We ignore conversions to/from pointer and/or bool.
|
|
if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
|
|
DstType))
|
|
return;
|
|
|
|
unsigned SrcBits = Src->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Dst->getType()->getScalarSizeInBits();
|
|
// This must be truncation. Else we do not care.
|
|
if (SrcBits <= DstBits)
|
|
return;
|
|
|
|
assert(!DstType->isBooleanType() && "we should not get here with booleans.");
|
|
|
|
// If the integer sign change sanitizer is enabled,
|
|
// and we are truncating from larger unsigned type to smaller signed type,
|
|
// let that next sanitizer deal with it.
|
|
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
|
|
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
|
|
if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
|
|
(!SrcSigned && DstSigned))
|
|
return;
|
|
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
|
|
std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
|
|
std::pair<llvm::Value *, SanitizerMask>>
|
|
Check =
|
|
EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
|
|
// If the comparison result is 'i1 false', then the truncation was lossy.
|
|
|
|
// Do we care about this type of truncation?
|
|
if (!CGF.SanOpts.has(Check.second.second))
|
|
return;
|
|
|
|
llvm::Constant *StaticArgs[] = {
|
|
CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
|
|
CGF.EmitCheckTypeDescriptor(DstType),
|
|
llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
|
|
CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
|
|
{Src, Dst});
|
|
}
|
|
|
|
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
|
|
// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
|
|
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
|
|
std::pair<llvm::Value *, SanitizerMask>>
|
|
EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
|
|
QualType DstType, CGBuilderTy &Builder) {
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy = Dst->getType();
|
|
|
|
assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
|
|
"non-integer llvm type");
|
|
|
|
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
|
|
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
|
|
(void)SrcSigned; // Only used in assert()
|
|
(void)DstSigned; // Only used in assert()
|
|
unsigned SrcBits = SrcTy->getScalarSizeInBits();
|
|
unsigned DstBits = DstTy->getScalarSizeInBits();
|
|
(void)SrcBits; // Only used in assert()
|
|
(void)DstBits; // Only used in assert()
|
|
|
|
assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
|
|
"either the widths should be different, or the signednesses.");
|
|
|
|
// NOTE: zero value is considered to be non-negative.
|
|
auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
|
|
const char *Name) -> Value * {
|
|
// Is this value a signed type?
|
|
bool VSigned = VType->isSignedIntegerOrEnumerationType();
|
|
llvm::Type *VTy = V->getType();
|
|
if (!VSigned) {
|
|
// If the value is unsigned, then it is never negative.
|
|
// FIXME: can we encounter non-scalar VTy here?
|
|
return llvm::ConstantInt::getFalse(VTy->getContext());
|
|
}
|
|
// Get the zero of the same type with which we will be comparing.
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
|
|
// %V.isnegative = icmp slt %V, 0
|
|
// I.e is %V *strictly* less than zero, does it have negative value?
|
|
return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
|
|
llvm::Twine(Name) + "." + V->getName() +
|
|
".negativitycheck");
|
|
};
|
|
|
|
// 1. Was the old Value negative?
|
|
llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
|
|
// 2. Is the new Value negative?
|
|
llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
|
|
// 3. Now, was the 'negativity status' preserved during the conversion?
|
|
// NOTE: conversion from negative to zero is considered to change the sign.
|
|
// (We want to get 'false' when the conversion changed the sign)
|
|
// So we should just equality-compare the negativity statuses.
|
|
llvm::Value *Check = nullptr;
|
|
Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
|
|
// If the comparison result is 'false', then the conversion changed the sign.
|
|
return std::make_pair(
|
|
ScalarExprEmitter::ICCK_IntegerSignChange,
|
|
std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
|
|
}
|
|
|
|
void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
|
|
Value *Dst, QualType DstType,
|
|
SourceLocation Loc) {
|
|
if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
|
|
return;
|
|
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy = Dst->getType();
|
|
|
|
// We only care about int->int conversions here.
|
|
// We ignore conversions to/from pointer and/or bool.
|
|
if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
|
|
DstType))
|
|
return;
|
|
|
|
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
|
|
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
|
|
unsigned SrcBits = SrcTy->getScalarSizeInBits();
|
|
unsigned DstBits = DstTy->getScalarSizeInBits();
|
|
|
|
// Now, we do not need to emit the check in *all* of the cases.
|
|
// We can avoid emitting it in some obvious cases where it would have been
|
|
// dropped by the opt passes (instcombine) always anyways.
|
|
// If it's a cast between effectively the same type, no check.
|
|
// NOTE: this is *not* equivalent to checking the canonical types.
|
|
if (SrcSigned == DstSigned && SrcBits == DstBits)
|
|
return;
|
|
// At least one of the values needs to have signed type.
|
|
// If both are unsigned, then obviously, neither of them can be negative.
|
|
if (!SrcSigned && !DstSigned)
|
|
return;
|
|
// If the conversion is to *larger* *signed* type, then no check is needed.
|
|
// Because either sign-extension happens (so the sign will remain),
|
|
// or zero-extension will happen (the sign bit will be zero.)
|
|
if ((DstBits > SrcBits) && DstSigned)
|
|
return;
|
|
if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
|
|
(SrcBits > DstBits) && SrcSigned) {
|
|
// If the signed integer truncation sanitizer is enabled,
|
|
// and this is a truncation from signed type, then no check is needed.
|
|
// Because here sign change check is interchangeable with truncation check.
|
|
return;
|
|
}
|
|
// That's it. We can't rule out any more cases with the data we have.
|
|
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
|
|
std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
|
|
std::pair<llvm::Value *, SanitizerMask>>
|
|
Check;
|
|
|
|
// Each of these checks needs to return 'false' when an issue was detected.
|
|
ImplicitConversionCheckKind CheckKind;
|
|
llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
|
|
// So we can 'and' all the checks together, and still get 'false',
|
|
// if at least one of the checks detected an issue.
|
|
|
|
Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
|
|
CheckKind = Check.first;
|
|
Checks.emplace_back(Check.second);
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
|
|
(SrcBits > DstBits) && !SrcSigned && DstSigned) {
|
|
// If the signed integer truncation sanitizer was enabled,
|
|
// and we are truncating from larger unsigned type to smaller signed type,
|
|
// let's handle the case we skipped in that check.
|
|
Check =
|
|
EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
|
|
CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
|
|
Checks.emplace_back(Check.second);
|
|
// If the comparison result is 'i1 false', then the truncation was lossy.
|
|
}
|
|
|
|
llvm::Constant *StaticArgs[] = {
|
|
CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
|
|
CGF.EmitCheckTypeDescriptor(DstType),
|
|
llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
|
|
// EmitCheck() will 'and' all the checks together.
|
|
CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
|
|
{Src, Dst});
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
|
|
QualType DstType, llvm::Type *SrcTy,
|
|
llvm::Type *DstTy,
|
|
ScalarConversionOpts Opts) {
|
|
// The Element types determine the type of cast to perform.
|
|
llvm::Type *SrcElementTy;
|
|
llvm::Type *DstElementTy;
|
|
QualType SrcElementType;
|
|
QualType DstElementType;
|
|
if (SrcType->isMatrixType() && DstType->isMatrixType()) {
|
|
SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
|
|
DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
|
|
SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
|
|
DstElementType = DstType->castAs<MatrixType>()->getElementType();
|
|
} else {
|
|
assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
|
|
"cannot cast between matrix and non-matrix types");
|
|
SrcElementTy = SrcTy;
|
|
DstElementTy = DstTy;
|
|
SrcElementType = SrcType;
|
|
DstElementType = DstType;
|
|
}
|
|
|
|
if (isa<llvm::IntegerType>(SrcElementTy)) {
|
|
bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
|
|
if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
|
|
InputSigned = true;
|
|
}
|
|
|
|
if (isa<llvm::IntegerType>(DstElementTy))
|
|
return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
|
|
if (InputSigned)
|
|
return Builder.CreateSIToFP(Src, DstTy, "conv");
|
|
return Builder.CreateUIToFP(Src, DstTy, "conv");
|
|
}
|
|
|
|
if (isa<llvm::IntegerType>(DstElementTy)) {
|
|
assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
|
|
if (DstElementType->isSignedIntegerOrEnumerationType())
|
|
return Builder.CreateFPToSI(Src, DstTy, "conv");
|
|
return Builder.CreateFPToUI(Src, DstTy, "conv");
|
|
}
|
|
|
|
if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
|
|
return Builder.CreateFPTrunc(Src, DstTy, "conv");
|
|
return Builder.CreateFPExt(Src, DstTy, "conv");
|
|
}
|
|
|
|
/// Emit a conversion from the specified type to the specified destination type,
|
|
/// both of which are LLVM scalar types.
|
|
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
|
|
QualType DstType,
|
|
SourceLocation Loc,
|
|
ScalarConversionOpts Opts) {
|
|
// All conversions involving fixed point types should be handled by the
|
|
// EmitFixedPoint family functions. This is done to prevent bloating up this
|
|
// function more, and although fixed point numbers are represented by
|
|
// integers, we do not want to follow any logic that assumes they should be
|
|
// treated as integers.
|
|
// TODO(leonardchan): When necessary, add another if statement checking for
|
|
// conversions to fixed point types from other types.
|
|
if (SrcType->isFixedPointType()) {
|
|
if (DstType->isBooleanType())
|
|
// It is important that we check this before checking if the dest type is
|
|
// an integer because booleans are technically integer types.
|
|
// We do not need to check the padding bit on unsigned types if unsigned
|
|
// padding is enabled because overflow into this bit is undefined
|
|
// behavior.
|
|
return Builder.CreateIsNotNull(Src, "tobool");
|
|
if (DstType->isFixedPointType() || DstType->isIntegerType() ||
|
|
DstType->isRealFloatingType())
|
|
return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
|
|
|
|
llvm_unreachable(
|
|
"Unhandled scalar conversion from a fixed point type to another type.");
|
|
} else if (DstType->isFixedPointType()) {
|
|
if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
|
|
// This also includes converting booleans and enums to fixed point types.
|
|
return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
|
|
|
|
llvm_unreachable(
|
|
"Unhandled scalar conversion to a fixed point type from another type.");
|
|
}
|
|
|
|
QualType NoncanonicalSrcType = SrcType;
|
|
QualType NoncanonicalDstType = DstType;
|
|
|
|
SrcType = CGF.getContext().getCanonicalType(SrcType);
|
|
DstType = CGF.getContext().getCanonicalType(DstType);
|
|
if (SrcType == DstType) return Src;
|
|
|
|
if (DstType->isVoidType()) return nullptr;
|
|
|
|
llvm::Value *OrigSrc = Src;
|
|
QualType OrigSrcType = SrcType;
|
|
llvm::Type *SrcTy = Src->getType();
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Cast from half through float if half isn't a native type.
|
|
if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
|
|
// Cast to FP using the intrinsic if the half type itself isn't supported.
|
|
if (DstTy->isFloatingPointTy()) {
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
|
|
return Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
|
|
Src);
|
|
} else {
|
|
// Cast to other types through float, using either the intrinsic or FPExt,
|
|
// depending on whether the half type itself is supported
|
|
// (as opposed to operations on half, available with NativeHalfType).
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
|
|
Src = Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
|
|
CGF.CGM.FloatTy),
|
|
Src);
|
|
} else {
|
|
Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
|
|
}
|
|
SrcType = CGF.getContext().FloatTy;
|
|
SrcTy = CGF.FloatTy;
|
|
}
|
|
}
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (SrcTy == DstTy) {
|
|
if (Opts.EmitImplicitIntegerSignChangeChecks)
|
|
EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
|
|
NoncanonicalDstType, Loc);
|
|
|
|
return Src;
|
|
}
|
|
|
|
// Handle pointer conversions next: pointers can only be converted to/from
|
|
// other pointers and integers. Check for pointer types in terms of LLVM, as
|
|
// some native types (like Obj-C id) may map to a pointer type.
|
|
if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(SrcTy))
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
|
|
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
|
|
// First, convert to the correct width so that we control the kind of
|
|
// extension.
|
|
llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
|
|
bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
|
|
llvm::Value* IntResult =
|
|
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
|
|
// Then, cast to pointer.
|
|
return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
|
|
}
|
|
|
|
if (isa<llvm::PointerType>(SrcTy)) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return Builder.CreatePtrToInt(Src, DstTy, "conv");
|
|
}
|
|
|
|
// A scalar can be splatted to an extended vector of the same element type
|
|
if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
|
|
// Sema should add casts to make sure that the source expression's type is
|
|
// the same as the vector's element type (sans qualifiers)
|
|
assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
|
|
SrcType.getTypePtr() &&
|
|
"Splatted expr doesn't match with vector element type?");
|
|
|
|
// Splat the element across to all elements
|
|
unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
|
|
return Builder.CreateVectorSplat(NumElements, Src, "splat");
|
|
}
|
|
|
|
if (SrcType->isMatrixType() && DstType->isMatrixType())
|
|
return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
|
|
|
|
if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
|
|
// Allow bitcast from vector to integer/fp of the same size.
|
|
unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DstSize = DstTy->getPrimitiveSizeInBits();
|
|
if (SrcSize == DstSize)
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
|
|
// Conversions between vectors of different sizes are not allowed except
|
|
// when vectors of half are involved. Operations on storage-only half
|
|
// vectors require promoting half vector operands to float vectors and
|
|
// truncating the result, which is either an int or float vector, to a
|
|
// short or half vector.
|
|
|
|
// Source and destination are both expected to be vectors.
|
|
llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
|
|
llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
|
|
(void)DstElementTy;
|
|
|
|
assert(((SrcElementTy->isIntegerTy() &&
|
|
DstElementTy->isIntegerTy()) ||
|
|
(SrcElementTy->isFloatingPointTy() &&
|
|
DstElementTy->isFloatingPointTy())) &&
|
|
"unexpected conversion between a floating-point vector and an "
|
|
"integer vector");
|
|
|
|
// Truncate an i32 vector to an i16 vector.
|
|
if (SrcElementTy->isIntegerTy())
|
|
return Builder.CreateIntCast(Src, DstTy, false, "conv");
|
|
|
|
// Truncate a float vector to a half vector.
|
|
if (SrcSize > DstSize)
|
|
return Builder.CreateFPTrunc(Src, DstTy, "conv");
|
|
|
|
// Promote a half vector to a float vector.
|
|
return Builder.CreateFPExt(Src, DstTy, "conv");
|
|
}
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
Value *Res = nullptr;
|
|
llvm::Type *ResTy = DstTy;
|
|
|
|
// An overflowing conversion has undefined behavior if either the source type
|
|
// or the destination type is a floating-point type. However, we consider the
|
|
// range of representable values for all floating-point types to be
|
|
// [-inf,+inf], so no overflow can ever happen when the destination type is a
|
|
// floating-point type.
|
|
if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
|
|
OrigSrcType->isFloatingType())
|
|
EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
|
|
Loc);
|
|
|
|
// Cast to half through float if half isn't a native type.
|
|
if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
|
|
// Make sure we cast in a single step if from another FP type.
|
|
if (SrcTy->isFloatingPointTy()) {
|
|
// Use the intrinsic if the half type itself isn't supported
|
|
// (as opposed to operations on half, available with NativeHalfType).
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
|
|
return Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
|
|
// If the half type is supported, just use an fptrunc.
|
|
return Builder.CreateFPTrunc(Src, DstTy);
|
|
}
|
|
DstTy = CGF.FloatTy;
|
|
}
|
|
|
|
Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
|
|
|
|
if (DstTy != ResTy) {
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
|
|
assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
|
|
Res = Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
|
|
Res);
|
|
} else {
|
|
Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
|
|
}
|
|
}
|
|
|
|
if (Opts.EmitImplicitIntegerTruncationChecks)
|
|
EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
|
|
NoncanonicalDstType, Loc);
|
|
|
|
if (Opts.EmitImplicitIntegerSignChangeChecks)
|
|
EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
|
|
NoncanonicalDstType, Loc);
|
|
|
|
return Res;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
|
|
QualType DstTy,
|
|
SourceLocation Loc) {
|
|
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
|
|
llvm::Value *Result;
|
|
if (SrcTy->isRealFloatingType())
|
|
Result = FPBuilder.CreateFloatingToFixed(Src,
|
|
CGF.getContext().getFixedPointSemantics(DstTy));
|
|
else if (DstTy->isRealFloatingType())
|
|
Result = FPBuilder.CreateFixedToFloating(Src,
|
|
CGF.getContext().getFixedPointSemantics(SrcTy),
|
|
ConvertType(DstTy));
|
|
else {
|
|
auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
|
|
auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
|
|
|
|
if (DstTy->isIntegerType())
|
|
Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
|
|
DstFPSema.getWidth(),
|
|
DstFPSema.isSigned());
|
|
else if (SrcTy->isIntegerType())
|
|
Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
|
|
DstFPSema);
|
|
else
|
|
Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Emit a conversion from the specified complex type to the specified
|
|
/// destination type, where the destination type is an LLVM scalar type.
|
|
Value *ScalarExprEmitter::EmitComplexToScalarConversion(
|
|
CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
|
|
SourceLocation Loc) {
|
|
// Get the source element type.
|
|
SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstTy->isBooleanType()) {
|
|
// Complex != 0 -> (Real != 0) | (Imag != 0)
|
|
Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
|
|
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
|
|
return Builder.CreateOr(Src.first, Src.second, "tobool");
|
|
}
|
|
|
|
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
|
|
// the imaginary part of the complex value is discarded and the value of the
|
|
// real part is converted according to the conversion rules for the
|
|
// corresponding real type.
|
|
return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
|
|
return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
|
|
}
|
|
|
|
/// Emit a sanitization check for the given "binary" operation (which
|
|
/// might actually be a unary increment which has been lowered to a binary
|
|
/// operation). The check passes if all values in \p Checks (which are \c i1),
|
|
/// are \c true.
|
|
void ScalarExprEmitter::EmitBinOpCheck(
|
|
ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
|
|
assert(CGF.IsSanitizerScope);
|
|
SanitizerHandler Check;
|
|
SmallVector<llvm::Constant *, 4> StaticData;
|
|
SmallVector<llvm::Value *, 2> DynamicData;
|
|
|
|
BinaryOperatorKind Opcode = Info.Opcode;
|
|
if (BinaryOperator::isCompoundAssignmentOp(Opcode))
|
|
Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
|
|
|
|
StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
|
|
const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
|
|
if (UO && UO->getOpcode() == UO_Minus) {
|
|
Check = SanitizerHandler::NegateOverflow;
|
|
StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
|
|
DynamicData.push_back(Info.RHS);
|
|
} else {
|
|
if (BinaryOperator::isShiftOp(Opcode)) {
|
|
// Shift LHS negative or too large, or RHS out of bounds.
|
|
Check = SanitizerHandler::ShiftOutOfBounds;
|
|
const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
|
|
StaticData.push_back(
|
|
CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
|
|
StaticData.push_back(
|
|
CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
|
|
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
|
|
// Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
|
|
Check = SanitizerHandler::DivremOverflow;
|
|
StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
|
|
} else {
|
|
// Arithmetic overflow (+, -, *).
|
|
switch (Opcode) {
|
|
case BO_Add: Check = SanitizerHandler::AddOverflow; break;
|
|
case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
|
|
case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
|
|
default: llvm_unreachable("unexpected opcode for bin op check");
|
|
}
|
|
StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
|
|
}
|
|
DynamicData.push_back(Info.LHS);
|
|
DynamicData.push_back(Info.RHS);
|
|
}
|
|
|
|
CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
|
|
CGF.ErrorUnsupported(E, "scalar expression");
|
|
if (E->getType()->isVoidType())
|
|
return nullptr;
|
|
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
}
|
|
|
|
Value *
|
|
ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
|
|
ASTContext &Context = CGF.getContext();
|
|
llvm::Optional<LangAS> GlobalAS =
|
|
Context.getTargetInfo().getConstantAddressSpace();
|
|
llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
|
|
E->ComputeName(Context), "__usn_str",
|
|
static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
|
|
|
|
unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
|
|
|
|
if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
|
|
return GlobalConstStr;
|
|
|
|
llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
|
|
llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
|
|
return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
|
|
// Vector Mask Case
|
|
if (E->getNumSubExprs() == 2) {
|
|
Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
|
|
Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
|
|
Value *Mask;
|
|
|
|
auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
|
|
unsigned LHSElts = LTy->getNumElements();
|
|
|
|
Mask = RHS;
|
|
|
|
auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
|
|
|
|
// Mask off the high bits of each shuffle index.
|
|
Value *MaskBits =
|
|
llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
|
|
Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
|
|
|
|
// newv = undef
|
|
// mask = mask & maskbits
|
|
// for each elt
|
|
// n = extract mask i
|
|
// x = extract val n
|
|
// newv = insert newv, x, i
|
|
auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
|
|
MTy->getNumElements());
|
|
Value* NewV = llvm::UndefValue::get(RTy);
|
|
for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
|
|
Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
|
|
Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
|
|
|
|
Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
|
|
NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
|
|
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
|
|
|
|
SmallVector<int, 32> Indices;
|
|
for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
|
|
llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
|
|
// Check for -1 and output it as undef in the IR.
|
|
if (Idx.isSigned() && Idx.isAllOnes())
|
|
Indices.push_back(-1);
|
|
else
|
|
Indices.push_back(Idx.getZExtValue());
|
|
}
|
|
|
|
return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
|
|
QualType SrcType = E->getSrcExpr()->getType(),
|
|
DstType = E->getType();
|
|
|
|
Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
|
|
|
|
SrcType = CGF.getContext().getCanonicalType(SrcType);
|
|
DstType = CGF.getContext().getCanonicalType(DstType);
|
|
if (SrcType == DstType) return Src;
|
|
|
|
assert(SrcType->isVectorType() &&
|
|
"ConvertVector source type must be a vector");
|
|
assert(DstType->isVectorType() &&
|
|
"ConvertVector destination type must be a vector");
|
|
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (SrcTy == DstTy)
|
|
return Src;
|
|
|
|
QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
|
|
DstEltType = DstType->castAs<VectorType>()->getElementType();
|
|
|
|
assert(SrcTy->isVectorTy() &&
|
|
"ConvertVector source IR type must be a vector");
|
|
assert(DstTy->isVectorTy() &&
|
|
"ConvertVector destination IR type must be a vector");
|
|
|
|
llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
|
|
*DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
|
|
|
|
if (DstEltType->isBooleanType()) {
|
|
assert((SrcEltTy->isFloatingPointTy() ||
|
|
isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
|
|
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
|
|
if (SrcEltTy->isFloatingPointTy()) {
|
|
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
|
|
} else {
|
|
return Builder.CreateICmpNE(Src, Zero, "tobool");
|
|
}
|
|
}
|
|
|
|
// We have the arithmetic types: real int/float.
|
|
Value *Res = nullptr;
|
|
|
|
if (isa<llvm::IntegerType>(SrcEltTy)) {
|
|
bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
|
|
if (isa<llvm::IntegerType>(DstEltTy))
|
|
Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
|
|
else if (InputSigned)
|
|
Res = Builder.CreateSIToFP(Src, DstTy, "conv");
|
|
else
|
|
Res = Builder.CreateUIToFP(Src, DstTy, "conv");
|
|
} else if (isa<llvm::IntegerType>(DstEltTy)) {
|
|
assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
|
|
if (DstEltType->isSignedIntegerOrEnumerationType())
|
|
Res = Builder.CreateFPToSI(Src, DstTy, "conv");
|
|
else
|
|
Res = Builder.CreateFPToUI(Src, DstTy, "conv");
|
|
} else {
|
|
assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
|
|
"Unknown real conversion");
|
|
if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
|
|
Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
|
|
else
|
|
Res = Builder.CreateFPExt(Src, DstTy, "conv");
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
|
|
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
|
|
CGF.EmitIgnoredExpr(E->getBase());
|
|
return CGF.emitScalarConstant(Constant, E);
|
|
} else {
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
|
|
llvm::APSInt Value = Result.Val.getInt();
|
|
CGF.EmitIgnoredExpr(E->getBase());
|
|
return Builder.getInt(Value);
|
|
}
|
|
}
|
|
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
|
|
// Emit subscript expressions in rvalue context's. For most cases, this just
|
|
// loads the lvalue formed by the subscript expr. However, we have to be
|
|
// careful, because the base of a vector subscript is occasionally an rvalue,
|
|
// so we can't get it as an lvalue.
|
|
if (!E->getBase()->getType()->isVectorType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
// Handle the vector case. The base must be a vector, the index must be an
|
|
// integer value.
|
|
Value *Base = Visit(E->getBase());
|
|
Value *Idx = Visit(E->getIdx());
|
|
QualType IdxTy = E->getIdx()->getType();
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
|
|
CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
|
|
|
|
return Builder.CreateExtractElement(Base, Idx, "vecext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
|
|
// Handle the vector case. The base must be a vector, the index must be an
|
|
// integer value.
|
|
Value *RowIdx = Visit(E->getRowIdx());
|
|
Value *ColumnIdx = Visit(E->getColumnIdx());
|
|
|
|
const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
|
|
unsigned NumRows = MatrixTy->getNumRows();
|
|
llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
|
|
Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
|
|
if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
|
|
MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
|
|
|
|
Value *Matrix = Visit(E->getBase());
|
|
|
|
// TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
|
|
return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
|
|
}
|
|
|
|
static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
|
|
unsigned Off) {
|
|
int MV = SVI->getMaskValue(Idx);
|
|
if (MV == -1)
|
|
return -1;
|
|
return Off + MV;
|
|
}
|
|
|
|
static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
|
|
assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
|
|
"Index operand too large for shufflevector mask!");
|
|
return C->getZExtValue();
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
(void)Ignore;
|
|
assert (Ignore == false && "init list ignored");
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
if (E->hadArrayRangeDesignator())
|
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
|
|
|
llvm::VectorType *VType =
|
|
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
|
|
|
|
if (!VType) {
|
|
if (NumInitElements == 0) {
|
|
// C++11 value-initialization for the scalar.
|
|
return EmitNullValue(E->getType());
|
|
}
|
|
// We have a scalar in braces. Just use the first element.
|
|
return Visit(E->getInit(0));
|
|
}
|
|
|
|
unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
|
|
|
|
// Loop over initializers collecting the Value for each, and remembering
|
|
// whether the source was swizzle (ExtVectorElementExpr). This will allow
|
|
// us to fold the shuffle for the swizzle into the shuffle for the vector
|
|
// initializer, since LLVM optimizers generally do not want to touch
|
|
// shuffles.
|
|
unsigned CurIdx = 0;
|
|
bool VIsUndefShuffle = false;
|
|
llvm::Value *V = llvm::UndefValue::get(VType);
|
|
for (unsigned i = 0; i != NumInitElements; ++i) {
|
|
Expr *IE = E->getInit(i);
|
|
Value *Init = Visit(IE);
|
|
SmallVector<int, 16> Args;
|
|
|
|
llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
|
|
|
|
// Handle scalar elements. If the scalar initializer is actually one
|
|
// element of a different vector of the same width, use shuffle instead of
|
|
// extract+insert.
|
|
if (!VVT) {
|
|
if (isa<ExtVectorElementExpr>(IE)) {
|
|
llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
|
|
|
|
if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
|
|
->getNumElements() == ResElts) {
|
|
llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
|
|
Value *LHS = nullptr, *RHS = nullptr;
|
|
if (CurIdx == 0) {
|
|
// insert into undef -> shuffle (src, undef)
|
|
// shufflemask must use an i32
|
|
Args.push_back(getAsInt32(C, CGF.Int32Ty));
|
|
Args.resize(ResElts, -1);
|
|
|
|
LHS = EI->getVectorOperand();
|
|
RHS = V;
|
|
VIsUndefShuffle = true;
|
|
} else if (VIsUndefShuffle) {
|
|
// insert into undefshuffle && size match -> shuffle (v, src)
|
|
llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
|
|
for (unsigned j = 0; j != CurIdx; ++j)
|
|
Args.push_back(getMaskElt(SVV, j, 0));
|
|
Args.push_back(ResElts + C->getZExtValue());
|
|
Args.resize(ResElts, -1);
|
|
|
|
LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
|
|
RHS = EI->getVectorOperand();
|
|
VIsUndefShuffle = false;
|
|
}
|
|
if (!Args.empty()) {
|
|
V = Builder.CreateShuffleVector(LHS, RHS, Args);
|
|
++CurIdx;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
|
|
"vecinit");
|
|
VIsUndefShuffle = false;
|
|
++CurIdx;
|
|
continue;
|
|
}
|
|
|
|
unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
|
|
|
|
// If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
|
|
// input is the same width as the vector being constructed, generate an
|
|
// optimized shuffle of the swizzle input into the result.
|
|
unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
|
|
if (isa<ExtVectorElementExpr>(IE)) {
|
|
llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
|
|
Value *SVOp = SVI->getOperand(0);
|
|
auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
|
|
|
|
if (OpTy->getNumElements() == ResElts) {
|
|
for (unsigned j = 0; j != CurIdx; ++j) {
|
|
// If the current vector initializer is a shuffle with undef, merge
|
|
// this shuffle directly into it.
|
|
if (VIsUndefShuffle) {
|
|
Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
|
|
} else {
|
|
Args.push_back(j);
|
|
}
|
|
}
|
|
for (unsigned j = 0, je = InitElts; j != je; ++j)
|
|
Args.push_back(getMaskElt(SVI, j, Offset));
|
|
Args.resize(ResElts, -1);
|
|
|
|
if (VIsUndefShuffle)
|
|
V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
|
|
|
|
Init = SVOp;
|
|
}
|
|
}
|
|
|
|
// Extend init to result vector length, and then shuffle its contribution
|
|
// to the vector initializer into V.
|
|
if (Args.empty()) {
|
|
for (unsigned j = 0; j != InitElts; ++j)
|
|
Args.push_back(j);
|
|
Args.resize(ResElts, -1);
|
|
Init = Builder.CreateShuffleVector(Init, Args, "vext");
|
|
|
|
Args.clear();
|
|
for (unsigned j = 0; j != CurIdx; ++j)
|
|
Args.push_back(j);
|
|
for (unsigned j = 0; j != InitElts; ++j)
|
|
Args.push_back(j + Offset);
|
|
Args.resize(ResElts, -1);
|
|
}
|
|
|
|
// If V is undef, make sure it ends up on the RHS of the shuffle to aid
|
|
// merging subsequent shuffles into this one.
|
|
if (CurIdx == 0)
|
|
std::swap(V, Init);
|
|
V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
|
|
VIsUndefShuffle = isa<llvm::UndefValue>(Init);
|
|
CurIdx += InitElts;
|
|
}
|
|
|
|
// FIXME: evaluate codegen vs. shuffling against constant null vector.
|
|
// Emit remaining default initializers.
|
|
llvm::Type *EltTy = VType->getElementType();
|
|
|
|
// Emit remaining default initializers
|
|
for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
|
|
Value *Idx = Builder.getInt32(CurIdx);
|
|
llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
|
|
V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
|
|
}
|
|
return V;
|
|
}
|
|
|
|
bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
|
|
const Expr *E = CE->getSubExpr();
|
|
|
|
if (CE->getCastKind() == CK_UncheckedDerivedToBase)
|
|
return false;
|
|
|
|
if (isa<CXXThisExpr>(E->IgnoreParens())) {
|
|
// We always assume that 'this' is never null.
|
|
return false;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
|
|
// And that glvalue casts are never null.
|
|
if (ICE->isGLValue())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
|
|
// have to handle a more broad range of conversions than explicit casts, as they
|
|
// handle things like function to ptr-to-function decay etc.
|
|
Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
|
|
Expr *E = CE->getSubExpr();
|
|
QualType DestTy = CE->getType();
|
|
CastKind Kind = CE->getCastKind();
|
|
|
|
// These cases are generally not written to ignore the result of
|
|
// evaluating their sub-expressions, so we clear this now.
|
|
bool Ignored = TestAndClearIgnoreResultAssign();
|
|
|
|
// Since almost all cast kinds apply to scalars, this switch doesn't have
|
|
// a default case, so the compiler will warn on a missing case. The cases
|
|
// are in the same order as in the CastKind enum.
|
|
switch (Kind) {
|
|
case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
|
|
case CK_BuiltinFnToFnPtr:
|
|
llvm_unreachable("builtin functions are handled elsewhere");
|
|
|
|
case CK_LValueBitCast:
|
|
case CK_ObjCObjectLValueCast: {
|
|
Address Addr = EmitLValue(E).getAddress(CGF);
|
|
Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
|
|
LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
|
|
return EmitLoadOfLValue(LV, CE->getExprLoc());
|
|
}
|
|
|
|
case CK_LValueToRValueBitCast: {
|
|
LValue SourceLVal = CGF.EmitLValue(E);
|
|
Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
|
|
CGF.ConvertTypeForMem(DestTy));
|
|
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
|
|
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
|
|
return EmitLoadOfLValue(DestLV, CE->getExprLoc());
|
|
}
|
|
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_BitCast: {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy = ConvertType(DestTy);
|
|
if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
|
|
SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
|
|
llvm_unreachable("wrong cast for pointers in different address spaces"
|
|
"(must be an address space cast)!");
|
|
}
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
|
|
if (auto PT = DestTy->getAs<PointerType>())
|
|
CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
|
|
/*MayBeNull=*/true,
|
|
CodeGenFunction::CFITCK_UnrelatedCast,
|
|
CE->getBeginLoc());
|
|
}
|
|
|
|
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
|
|
const QualType SrcType = E->getType();
|
|
|
|
if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
|
|
// Casting to pointer that could carry dynamic information (provided by
|
|
// invariant.group) requires launder.
|
|
Src = Builder.CreateLaunderInvariantGroup(Src);
|
|
} else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
|
|
// Casting to pointer that does not carry dynamic information (provided
|
|
// by invariant.group) requires stripping it. Note that we don't do it
|
|
// if the source could not be dynamic type and destination could be
|
|
// dynamic because dynamic information is already laundered. It is
|
|
// because launder(strip(src)) == launder(src), so there is no need to
|
|
// add extra strip before launder.
|
|
Src = Builder.CreateStripInvariantGroup(Src);
|
|
}
|
|
}
|
|
|
|
// Update heapallocsite metadata when there is an explicit pointer cast.
|
|
if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
|
|
if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
|
|
QualType PointeeType = DestTy->getPointeeType();
|
|
if (!PointeeType.isNull())
|
|
CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
|
|
CE->getExprLoc());
|
|
}
|
|
}
|
|
|
|
// If Src is a fixed vector and Dst is a scalable vector, and both have the
|
|
// same element type, use the llvm.experimental.vector.insert intrinsic to
|
|
// perform the bitcast.
|
|
if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
|
|
if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
|
|
// If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
|
|
// vector, use a vector insert and bitcast the result.
|
|
bool NeedsBitCast = false;
|
|
auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
|
|
llvm::Type *OrigType = DstTy;
|
|
if (ScalableDst == PredType &&
|
|
FixedSrc->getElementType() == Builder.getInt8Ty()) {
|
|
DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
|
|
ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
|
|
NeedsBitCast = true;
|
|
}
|
|
if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
|
|
llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
|
|
llvm::Value *Result = Builder.CreateInsertVector(
|
|
DstTy, UndefVec, Src, Zero, "castScalableSve");
|
|
if (NeedsBitCast)
|
|
Result = Builder.CreateBitCast(Result, OrigType);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If Src is a scalable vector and Dst is a fixed vector, and both have the
|
|
// same element type, use the llvm.experimental.vector.extract intrinsic to
|
|
// perform the bitcast.
|
|
if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
|
|
if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
|
|
// If we are casting a scalable 16 x i1 predicate vector to a fixed i8
|
|
// vector, bitcast the source and use a vector extract.
|
|
auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
|
|
if (ScalableSrc == PredType &&
|
|
FixedDst->getElementType() == Builder.getInt8Ty()) {
|
|
SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
|
|
ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
|
|
Src = Builder.CreateBitCast(Src, SrcTy);
|
|
}
|
|
if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
|
|
return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform VLAT <-> VLST bitcast through memory.
|
|
// TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
|
|
// require the element types of the vectors to be the same, we
|
|
// need to keep this around for bitcasts between VLAT <-> VLST where
|
|
// the element types of the vectors are not the same, until we figure
|
|
// out a better way of doing these casts.
|
|
if ((isa<llvm::FixedVectorType>(SrcTy) &&
|
|
isa<llvm::ScalableVectorType>(DstTy)) ||
|
|
(isa<llvm::ScalableVectorType>(SrcTy) &&
|
|
isa<llvm::FixedVectorType>(DstTy))) {
|
|
Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
|
|
LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
|
|
CGF.EmitStoreOfScalar(Src, LV);
|
|
Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
|
|
"castFixedSve");
|
|
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
|
|
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
|
|
return EmitLoadOfLValue(DestLV, CE->getExprLoc());
|
|
}
|
|
|
|
return Builder.CreateBitCast(Src, DstTy);
|
|
}
|
|
case CK_AddressSpaceConversion: {
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
|
|
Result.Val.isNullPointer()) {
|
|
// If E has side effect, it is emitted even if its final result is a
|
|
// null pointer. In that case, a DCE pass should be able to
|
|
// eliminate the useless instructions emitted during translating E.
|
|
if (Result.HasSideEffects)
|
|
Visit(E);
|
|
return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
|
|
ConvertType(DestTy)), DestTy);
|
|
}
|
|
// Since target may map different address spaces in AST to the same address
|
|
// space, an address space conversion may end up as a bitcast.
|
|
return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
|
|
CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
|
|
DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
|
|
}
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_UserDefinedConversion:
|
|
return Visit(const_cast<Expr*>(E));
|
|
|
|
case CK_NoOp: {
|
|
llvm::Value *V = Visit(const_cast<Expr *>(E));
|
|
if (V) {
|
|
// CK_NoOp can model a pointer qualification conversion, which can remove
|
|
// an array bound and change the IR type.
|
|
// FIXME: Once pointee types are removed from IR, remove this.
|
|
llvm::Type *T = ConvertType(DestTy);
|
|
if (T != V->getType())
|
|
V = Builder.CreateBitCast(V, T);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
case CK_BaseToDerived: {
|
|
const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
|
|
assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
|
|
|
|
Address Base = CGF.EmitPointerWithAlignment(E);
|
|
Address Derived =
|
|
CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
|
|
CE->path_begin(), CE->path_end(),
|
|
CGF.ShouldNullCheckClassCastValue(CE));
|
|
|
|
// C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
|
|
// performed and the object is not of the derived type.
|
|
if (CGF.sanitizePerformTypeCheck())
|
|
CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
|
|
Derived.getPointer(), DestTy->getPointeeType());
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
|
|
CGF.EmitVTablePtrCheckForCast(
|
|
DestTy->getPointeeType(), Derived.getPointer(),
|
|
/*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
|
|
CE->getBeginLoc());
|
|
|
|
return Derived.getPointer();
|
|
}
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
// The EmitPointerWithAlignment path does this fine; just discard
|
|
// the alignment.
|
|
return CGF.EmitPointerWithAlignment(CE).getPointer();
|
|
}
|
|
|
|
case CK_Dynamic: {
|
|
Address V = CGF.EmitPointerWithAlignment(E);
|
|
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
|
|
return CGF.EmitDynamicCast(V, DCE);
|
|
}
|
|
|
|
case CK_ArrayToPointerDecay:
|
|
return CGF.EmitArrayToPointerDecay(E).getPointer();
|
|
case CK_FunctionToPointerDecay:
|
|
return EmitLValue(E).getPointer(CGF);
|
|
|
|
case CK_NullToPointer:
|
|
if (MustVisitNullValue(E))
|
|
CGF.EmitIgnoredExpr(E);
|
|
|
|
return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
|
|
DestTy);
|
|
|
|
case CK_NullToMemberPointer: {
|
|
if (MustVisitNullValue(E))
|
|
CGF.EmitIgnoredExpr(E);
|
|
|
|
const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
|
|
return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
|
|
}
|
|
|
|
case CK_ReinterpretMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer: {
|
|
Value *Src = Visit(E);
|
|
|
|
// Note that the AST doesn't distinguish between checked and
|
|
// unchecked member pointer conversions, so we always have to
|
|
// implement checked conversions here. This is inefficient when
|
|
// actual control flow may be required in order to perform the
|
|
// check, which it is for data member pointers (but not member
|
|
// function pointers on Itanium and ARM).
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
|
|
}
|
|
|
|
case CK_ARCProduceObject:
|
|
return CGF.EmitARCRetainScalarExpr(E);
|
|
case CK_ARCConsumeObject:
|
|
return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
|
|
case CK_ARCReclaimReturnedObject:
|
|
return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
|
|
case CK_ARCExtendBlockObject:
|
|
return CGF.EmitARCExtendBlockObject(E);
|
|
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
|
|
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexCast:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_ConstructorConversion:
|
|
case CK_ToUnion:
|
|
llvm_unreachable("scalar cast to non-scalar value");
|
|
|
|
case CK_LValueToRValue:
|
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
|
|
assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
|
|
return Visit(const_cast<Expr*>(E));
|
|
|
|
case CK_IntegralToPointer: {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
|
|
// First, convert to the correct width so that we control the kind of
|
|
// extension.
|
|
auto DestLLVMTy = ConvertType(DestTy);
|
|
llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
|
|
bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
|
|
llvm::Value* IntResult =
|
|
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
|
|
|
|
auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
|
|
|
|
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
|
|
// Going from integer to pointer that could be dynamic requires reloading
|
|
// dynamic information from invariant.group.
|
|
if (DestTy.mayBeDynamicClass())
|
|
IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
|
|
}
|
|
return IntToPtr;
|
|
}
|
|
case CK_PointerToIntegral: {
|
|
assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
|
|
auto *PtrExpr = Visit(E);
|
|
|
|
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
|
|
const QualType SrcType = E->getType();
|
|
|
|
// Casting to integer requires stripping dynamic information as it does
|
|
// not carries it.
|
|
if (SrcType.mayBeDynamicClass())
|
|
PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
|
|
}
|
|
|
|
return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
|
|
}
|
|
case CK_ToVoid: {
|
|
CGF.EmitIgnoredExpr(E);
|
|
return nullptr;
|
|
}
|
|
case CK_MatrixCast: {
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
}
|
|
case CK_VectorSplat: {
|
|
llvm::Type *DstTy = ConvertType(DestTy);
|
|
Value *Elt = Visit(const_cast<Expr*>(E));
|
|
// Splat the element across to all elements
|
|
unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
|
|
return Builder.CreateVectorSplat(NumElements, Elt, "splat");
|
|
}
|
|
|
|
case CK_FixedPointCast:
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
|
|
case CK_FixedPointToBoolean:
|
|
assert(E->getType()->isFixedPointType() &&
|
|
"Expected src type to be fixed point type");
|
|
assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
|
|
case CK_FixedPointToIntegral:
|
|
assert(E->getType()->isFixedPointType() &&
|
|
"Expected src type to be fixed point type");
|
|
assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
|
|
case CK_IntegralToFixedPoint:
|
|
assert(E->getType()->isIntegerType() &&
|
|
"Expected src type to be an integer");
|
|
assert(DestTy->isFixedPointType() &&
|
|
"Expected dest type to be fixed point type");
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
|
|
case CK_IntegralCast: {
|
|
ScalarConversionOpts Opts;
|
|
if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
|
|
if (!ICE->isPartOfExplicitCast())
|
|
Opts = ScalarConversionOpts(CGF.SanOpts);
|
|
}
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc(), Opts);
|
|
}
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingCast:
|
|
case CK_FixedPointToFloating:
|
|
case CK_FloatingToFixedPoint: {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
}
|
|
case CK_BooleanToSignedIntegral: {
|
|
ScalarConversionOpts Opts;
|
|
Opts.TreatBooleanAsSigned = true;
|
|
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
|
|
CE->getExprLoc(), Opts);
|
|
}
|
|
case CK_IntegralToBoolean:
|
|
return EmitIntToBoolConversion(Visit(E));
|
|
case CK_PointerToBoolean:
|
|
return EmitPointerToBoolConversion(Visit(E), E->getType());
|
|
case CK_FloatingToBoolean: {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
|
|
return EmitFloatToBoolConversion(Visit(E));
|
|
}
|
|
case CK_MemberPointerToBoolean: {
|
|
llvm::Value *MemPtr = Visit(E);
|
|
const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
|
|
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
|
|
}
|
|
|
|
case CK_FloatingComplexToReal:
|
|
case CK_IntegralComplexToReal:
|
|
return CGF.EmitComplexExpr(E, false, true).first;
|
|
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_IntegralComplexToBoolean: {
|
|
CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
|
|
|
|
// TODO: kill this function off, inline appropriate case here
|
|
return EmitComplexToScalarConversion(V, E->getType(), DestTy,
|
|
CE->getExprLoc());
|
|
}
|
|
|
|
case CK_ZeroToOCLOpaqueType: {
|
|
assert((DestTy->isEventT() || DestTy->isQueueT() ||
|
|
DestTy->isOCLIntelSubgroupAVCType()) &&
|
|
"CK_ZeroToOCLEvent cast on non-event type");
|
|
return llvm::Constant::getNullValue(ConvertType(DestTy));
|
|
}
|
|
|
|
case CK_IntToOCLSampler:
|
|
return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
|
|
|
|
} // end of switch
|
|
|
|
llvm_unreachable("unknown scalar cast");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
CodeGenFunction::StmtExprEvaluation eval(CGF);
|
|
Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
|
|
!E->getType()->isVoidType());
|
|
if (!RetAlloca.isValid())
|
|
return nullptr;
|
|
return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
Value *V = Visit(E->getSubExpr());
|
|
// Defend against dominance problems caused by jumps out of expression
|
|
// evaluation through the shared cleanup block.
|
|
Scope.ForceCleanup({&V});
|
|
return V;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
|
|
llvm::Value *InVal, bool IsInc,
|
|
FPOptions FPFeatures) {
|
|
BinOpInfo BinOp;
|
|
BinOp.LHS = InVal;
|
|
BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
|
|
BinOp.Ty = E->getType();
|
|
BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
|
|
BinOp.FPFeatures = FPFeatures;
|
|
BinOp.E = E;
|
|
return BinOp;
|
|
}
|
|
|
|
llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
|
|
const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
|
|
llvm::Value *Amount =
|
|
llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
|
|
StringRef Name = IsInc ? "inc" : "dec";
|
|
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateAdd(InVal, Amount, Name);
|
|
case LangOptions::SOB_Undefined:
|
|
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
|
|
return Builder.CreateNSWAdd(InVal, Amount, Name);
|
|
LLVM_FALLTHROUGH;
|
|
case LangOptions::SOB_Trapping:
|
|
if (!E->canOverflow())
|
|
return Builder.CreateNSWAdd(InVal, Amount, Name);
|
|
return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
|
|
E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
|
|
}
|
|
llvm_unreachable("Unknown SignedOverflowBehaviorTy");
|
|
}
|
|
|
|
namespace {
|
|
/// Handles check and update for lastprivate conditional variables.
|
|
class OMPLastprivateConditionalUpdateRAII {
|
|
private:
|
|
CodeGenFunction &CGF;
|
|
const UnaryOperator *E;
|
|
|
|
public:
|
|
OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
|
|
const UnaryOperator *E)
|
|
: CGF(CGF), E(E) {}
|
|
~OMPLastprivateConditionalUpdateRAII() {
|
|
if (CGF.getLangOpts().OpenMP)
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
|
|
CGF, E->getSubExpr());
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
llvm::Value *
|
|
ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
|
|
QualType type = E->getSubExpr()->getType();
|
|
llvm::PHINode *atomicPHI = nullptr;
|
|
llvm::Value *value;
|
|
llvm::Value *input;
|
|
|
|
int amount = (isInc ? 1 : -1);
|
|
bool isSubtraction = !isInc;
|
|
|
|
if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
|
|
type = atomicTy->getValueType();
|
|
if (isInc && type->isBooleanType()) {
|
|
llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
|
|
if (isPre) {
|
|
Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
|
|
->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
|
|
return Builder.getTrue();
|
|
}
|
|
// For atomic bool increment, we just store true and return it for
|
|
// preincrement, do an atomic swap with true for postincrement
|
|
return Builder.CreateAtomicRMW(
|
|
llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
|
|
llvm::AtomicOrdering::SequentiallyConsistent);
|
|
}
|
|
// Special case for atomic increment / decrement on integers, emit
|
|
// atomicrmw instructions. We skip this if we want to be doing overflow
|
|
// checking, and fall into the slow path with the atomic cmpxchg loop.
|
|
if (!type->isBooleanType() && type->isIntegerType() &&
|
|
!(type->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
|
|
CGF.getLangOpts().getSignedOverflowBehavior() !=
|
|
LangOptions::SOB_Trapping) {
|
|
llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
|
|
llvm::AtomicRMWInst::Sub;
|
|
llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
|
|
llvm::Instruction::Sub;
|
|
llvm::Value *amt = CGF.EmitToMemory(
|
|
llvm::ConstantInt::get(ConvertType(type), 1, true), type);
|
|
llvm::Value *old =
|
|
Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
|
|
llvm::AtomicOrdering::SequentiallyConsistent);
|
|
return isPre ? Builder.CreateBinOp(op, old, amt) : old;
|
|
}
|
|
value = EmitLoadOfLValue(LV, E->getExprLoc());
|
|
input = value;
|
|
// For every other atomic operation, we need to emit a load-op-cmpxchg loop
|
|
llvm::BasicBlock *startBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
|
|
value = CGF.EmitToMemory(value, type);
|
|
Builder.CreateBr(opBB);
|
|
Builder.SetInsertPoint(opBB);
|
|
atomicPHI = Builder.CreatePHI(value->getType(), 2);
|
|
atomicPHI->addIncoming(value, startBB);
|
|
value = atomicPHI;
|
|
} else {
|
|
value = EmitLoadOfLValue(LV, E->getExprLoc());
|
|
input = value;
|
|
}
|
|
|
|
// Special case of integer increment that we have to check first: bool++.
|
|
// Due to promotion rules, we get:
|
|
// bool++ -> bool = bool + 1
|
|
// -> bool = (int)bool + 1
|
|
// -> bool = ((int)bool + 1 != 0)
|
|
// An interesting aspect of this is that increment is always true.
|
|
// Decrement does not have this property.
|
|
if (isInc && type->isBooleanType()) {
|
|
value = Builder.getTrue();
|
|
|
|
// Most common case by far: integer increment.
|
|
} else if (type->isIntegerType()) {
|
|
QualType promotedType;
|
|
bool canPerformLossyDemotionCheck = false;
|
|
if (type->isPromotableIntegerType()) {
|
|
promotedType = CGF.getContext().getPromotedIntegerType(type);
|
|
assert(promotedType != type && "Shouldn't promote to the same type.");
|
|
canPerformLossyDemotionCheck = true;
|
|
canPerformLossyDemotionCheck &=
|
|
CGF.getContext().getCanonicalType(type) !=
|
|
CGF.getContext().getCanonicalType(promotedType);
|
|
canPerformLossyDemotionCheck &=
|
|
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
|
|
type, promotedType);
|
|
assert((!canPerformLossyDemotionCheck ||
|
|
type->isSignedIntegerOrEnumerationType() ||
|
|
promotedType->isSignedIntegerOrEnumerationType() ||
|
|
ConvertType(type)->getScalarSizeInBits() ==
|
|
ConvertType(promotedType)->getScalarSizeInBits()) &&
|
|
"The following check expects that if we do promotion to different "
|
|
"underlying canonical type, at least one of the types (either "
|
|
"base or promoted) will be signed, or the bitwidths will match.");
|
|
}
|
|
if (CGF.SanOpts.hasOneOf(
|
|
SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
|
|
canPerformLossyDemotionCheck) {
|
|
// While `x += 1` (for `x` with width less than int) is modeled as
|
|
// promotion+arithmetics+demotion, and we can catch lossy demotion with
|
|
// ease; inc/dec with width less than int can't overflow because of
|
|
// promotion rules, so we omit promotion+demotion, which means that we can
|
|
// not catch lossy "demotion". Because we still want to catch these cases
|
|
// when the sanitizer is enabled, we perform the promotion, then perform
|
|
// the increment/decrement in the wider type, and finally
|
|
// perform the demotion. This will catch lossy demotions.
|
|
|
|
value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
|
|
Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
|
|
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
|
|
// Do pass non-default ScalarConversionOpts so that sanitizer check is
|
|
// emitted.
|
|
value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
|
|
ScalarConversionOpts(CGF.SanOpts));
|
|
|
|
// Note that signed integer inc/dec with width less than int can't
|
|
// overflow because of promotion rules; we're just eliding a few steps
|
|
// here.
|
|
} else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
|
|
value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
|
|
} else if (E->canOverflow() && type->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
|
|
value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
|
|
E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
|
|
} else {
|
|
llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
|
|
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
// Next most common: pointer increment.
|
|
} else if (const PointerType *ptr = type->getAs<PointerType>()) {
|
|
QualType type = ptr->getPointeeType();
|
|
|
|
// VLA types don't have constant size.
|
|
if (const VariableArrayType *vla
|
|
= CGF.getContext().getAsVariableArrayType(type)) {
|
|
llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
|
|
if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
|
|
if (CGF.getLangOpts().isSignedOverflowDefined())
|
|
value = Builder.CreateGEP(value->getType()->getPointerElementType(),
|
|
value, numElts, "vla.inc");
|
|
else
|
|
value = CGF.EmitCheckedInBoundsGEP(
|
|
value, numElts, /*SignedIndices=*/false, isSubtraction,
|
|
E->getExprLoc(), "vla.inc");
|
|
|
|
// Arithmetic on function pointers (!) is just +-1.
|
|
} else if (type->isFunctionType()) {
|
|
llvm::Value *amt = Builder.getInt32(amount);
|
|
|
|
value = CGF.EmitCastToVoidPtr(value);
|
|
if (CGF.getLangOpts().isSignedOverflowDefined())
|
|
value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
|
|
else
|
|
value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
|
|
isSubtraction, E->getExprLoc(),
|
|
"incdec.funcptr");
|
|
value = Builder.CreateBitCast(value, input->getType());
|
|
|
|
// For everything else, we can just do a simple increment.
|
|
} else {
|
|
llvm::Value *amt = Builder.getInt32(amount);
|
|
if (CGF.getLangOpts().isSignedOverflowDefined())
|
|
value = Builder.CreateGEP(value->getType()->getPointerElementType(),
|
|
value, amt, "incdec.ptr");
|
|
else
|
|
value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
|
|
isSubtraction, E->getExprLoc(),
|
|
"incdec.ptr");
|
|
}
|
|
|
|
// Vector increment/decrement.
|
|
} else if (type->isVectorType()) {
|
|
if (type->hasIntegerRepresentation()) {
|
|
llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
|
|
|
|
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
|
|
} else {
|
|
value = Builder.CreateFAdd(
|
|
value,
|
|
llvm::ConstantFP::get(value->getType(), amount),
|
|
isInc ? "inc" : "dec");
|
|
}
|
|
|
|
// Floating point.
|
|
} else if (type->isRealFloatingType()) {
|
|
// Add the inc/dec to the real part.
|
|
llvm::Value *amt;
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
|
|
|
|
if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
|
|
// Another special case: half FP increment should be done via float
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
|
|
value = Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
|
|
CGF.CGM.FloatTy),
|
|
input, "incdec.conv");
|
|
} else {
|
|
value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
|
|
}
|
|
}
|
|
|
|
if (value->getType()->isFloatTy())
|
|
amt = llvm::ConstantFP::get(VMContext,
|
|
llvm::APFloat(static_cast<float>(amount)));
|
|
else if (value->getType()->isDoubleTy())
|
|
amt = llvm::ConstantFP::get(VMContext,
|
|
llvm::APFloat(static_cast<double>(amount)));
|
|
else {
|
|
// Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
|
|
// from float.
|
|
llvm::APFloat F(static_cast<float>(amount));
|
|
bool ignored;
|
|
const llvm::fltSemantics *FS;
|
|
// Don't use getFloatTypeSemantics because Half isn't
|
|
// necessarily represented using the "half" LLVM type.
|
|
if (value->getType()->isFP128Ty())
|
|
FS = &CGF.getTarget().getFloat128Format();
|
|
else if (value->getType()->isHalfTy())
|
|
FS = &CGF.getTarget().getHalfFormat();
|
|
else if (value->getType()->isPPC_FP128Ty())
|
|
FS = &CGF.getTarget().getIbm128Format();
|
|
else
|
|
FS = &CGF.getTarget().getLongDoubleFormat();
|
|
F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
|
|
amt = llvm::ConstantFP::get(VMContext, F);
|
|
}
|
|
value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
|
|
|
|
if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
|
|
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
|
|
value = Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
|
|
CGF.CGM.FloatTy),
|
|
value, "incdec.conv");
|
|
} else {
|
|
value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
|
|
}
|
|
}
|
|
|
|
// Fixed-point types.
|
|
} else if (type->isFixedPointType()) {
|
|
// Fixed-point types are tricky. In some cases, it isn't possible to
|
|
// represent a 1 or a -1 in the type at all. Piggyback off of
|
|
// EmitFixedPointBinOp to avoid having to reimplement saturation.
|
|
BinOpInfo Info;
|
|
Info.E = E;
|
|
Info.Ty = E->getType();
|
|
Info.Opcode = isInc ? BO_Add : BO_Sub;
|
|
Info.LHS = value;
|
|
Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
|
|
// If the type is signed, it's better to represent this as +(-1) or -(-1),
|
|
// since -1 is guaranteed to be representable.
|
|
if (type->isSignedFixedPointType()) {
|
|
Info.Opcode = isInc ? BO_Sub : BO_Add;
|
|
Info.RHS = Builder.CreateNeg(Info.RHS);
|
|
}
|
|
// Now, convert from our invented integer literal to the type of the unary
|
|
// op. This will upscale and saturate if necessary. This value can become
|
|
// undef in some cases.
|
|
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
|
|
auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
|
|
Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
|
|
value = EmitFixedPointBinOp(Info);
|
|
|
|
// Objective-C pointer types.
|
|
} else {
|
|
const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
|
|
value = CGF.EmitCastToVoidPtr(value);
|
|
|
|
CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
|
|
if (!isInc) size = -size;
|
|
llvm::Value *sizeValue =
|
|
llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
|
|
|
|
if (CGF.getLangOpts().isSignedOverflowDefined())
|
|
value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
|
|
else
|
|
value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
|
|
/*SignedIndices=*/false, isSubtraction,
|
|
E->getExprLoc(), "incdec.objptr");
|
|
value = Builder.CreateBitCast(value, input->getType());
|
|
}
|
|
|
|
if (atomicPHI) {
|
|
llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
|
|
auto Pair = CGF.EmitAtomicCompareExchange(
|
|
LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
|
|
llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
|
|
llvm::Value *success = Pair.second;
|
|
atomicPHI->addIncoming(old, curBlock);
|
|
Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
|
|
Builder.SetInsertPoint(contBB);
|
|
return isPre ? value : input;
|
|
}
|
|
|
|
// Store the updated result through the lvalue.
|
|
if (LV.isBitField())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(value), LV);
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? value : input;
|
|
}
|
|
|
|
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
Value *Op = Visit(E->getSubExpr());
|
|
|
|
// Generate a unary FNeg for FP ops.
|
|
if (Op->getType()->isFPOrFPVectorTy())
|
|
return Builder.CreateFNeg(Op, "fneg");
|
|
|
|
// Emit unary minus with EmitSub so we handle overflow cases etc.
|
|
BinOpInfo BinOp;
|
|
BinOp.RHS = Op;
|
|
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
|
|
BinOp.Ty = E->getType();
|
|
BinOp.Opcode = BO_Sub;
|
|
BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
|
|
BinOp.E = E;
|
|
return EmitSub(BinOp);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
Value *Op = Visit(E->getSubExpr());
|
|
return Builder.CreateNot(Op, "neg");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
|
|
// Perform vector logical not on comparison with zero vector.
|
|
if (E->getType()->isVectorType() &&
|
|
E->getType()->castAs<VectorType>()->getVectorKind() ==
|
|
VectorType::GenericVector) {
|
|
Value *Oper = Visit(E->getSubExpr());
|
|
Value *Zero = llvm::Constant::getNullValue(Oper->getType());
|
|
Value *Result;
|
|
if (Oper->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
|
|
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
|
|
Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
|
|
} else
|
|
Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
|
|
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
|
|
}
|
|
|
|
// Compare operand to zero.
|
|
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
|
|
|
|
// Invert value.
|
|
// TODO: Could dynamically modify easy computations here. For example, if
|
|
// the operand is an icmp ne, turn into icmp eq.
|
|
BoolVal = Builder.CreateNot(BoolVal, "lnot");
|
|
|
|
// ZExt result to the expr type.
|
|
return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
|
|
// Try folding the offsetof to a constant.
|
|
Expr::EvalResult EVResult;
|
|
if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
|
|
llvm::APSInt Value = EVResult.Val.getInt();
|
|
return Builder.getInt(Value);
|
|
}
|
|
|
|
// Loop over the components of the offsetof to compute the value.
|
|
unsigned n = E->getNumComponents();
|
|
llvm::Type* ResultType = ConvertType(E->getType());
|
|
llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
|
|
QualType CurrentType = E->getTypeSourceInfo()->getType();
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
OffsetOfNode ON = E->getComponent(i);
|
|
llvm::Value *Offset = nullptr;
|
|
switch (ON.getKind()) {
|
|
case OffsetOfNode::Array: {
|
|
// Compute the index
|
|
Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
|
|
llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
|
|
bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
|
|
Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
|
|
|
|
// Save the element type
|
|
CurrentType =
|
|
CGF.getContext().getAsArrayType(CurrentType)->getElementType();
|
|
|
|
// Compute the element size
|
|
llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
|
|
CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
|
|
|
|
// Multiply out to compute the result
|
|
Offset = Builder.CreateMul(Idx, ElemSize);
|
|
break;
|
|
}
|
|
|
|
case OffsetOfNode::Field: {
|
|
FieldDecl *MemberDecl = ON.getField();
|
|
RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
|
|
|
|
// Compute the index of the field in its parent.
|
|
unsigned i = 0;
|
|
// FIXME: It would be nice if we didn't have to loop here!
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field, ++i) {
|
|
if (*Field == MemberDecl)
|
|
break;
|
|
}
|
|
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
|
|
|
|
// Compute the offset to the field
|
|
int64_t OffsetInt = RL.getFieldOffset(i) /
|
|
CGF.getContext().getCharWidth();
|
|
Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
|
|
|
|
// Save the element type.
|
|
CurrentType = MemberDecl->getType();
|
|
break;
|
|
}
|
|
|
|
case OffsetOfNode::Identifier:
|
|
llvm_unreachable("dependent __builtin_offsetof");
|
|
|
|
case OffsetOfNode::Base: {
|
|
if (ON.getBase()->isVirtual()) {
|
|
CGF.ErrorUnsupported(E, "virtual base in offsetof");
|
|
continue;
|
|
}
|
|
|
|
RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
|
|
|
|
// Save the element type.
|
|
CurrentType = ON.getBase()->getType();
|
|
|
|
// Compute the offset to the base.
|
|
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
|
|
CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
|
|
Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
|
|
break;
|
|
}
|
|
}
|
|
Result = Builder.CreateAdd(Result, Offset);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
|
|
/// argument of the sizeof expression as an integer.
|
|
Value *
|
|
ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
|
|
const UnaryExprOrTypeTraitExpr *E) {
|
|
QualType TypeToSize = E->getTypeOfArgument();
|
|
if (E->getKind() == UETT_SizeOf) {
|
|
if (const VariableArrayType *VAT =
|
|
CGF.getContext().getAsVariableArrayType(TypeToSize)) {
|
|
if (E->isArgumentType()) {
|
|
// sizeof(type) - make sure to emit the VLA size.
|
|
CGF.EmitVariablyModifiedType(TypeToSize);
|
|
} else {
|
|
// C99 6.5.3.4p2: If the argument is an expression of type
|
|
// VLA, it is evaluated.
|
|
CGF.EmitIgnoredExpr(E->getArgumentExpr());
|
|
}
|
|
|
|
auto VlaSize = CGF.getVLASize(VAT);
|
|
llvm::Value *size = VlaSize.NumElts;
|
|
|
|
// Scale the number of non-VLA elements by the non-VLA element size.
|
|
CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
|
|
if (!eltSize.isOne())
|
|
size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
|
|
|
|
return size;
|
|
}
|
|
} else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
|
|
auto Alignment =
|
|
CGF.getContext()
|
|
.toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
|
|
E->getTypeOfArgument()->getPointeeType()))
|
|
.getQuantity();
|
|
return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
|
|
}
|
|
|
|
// If this isn't sizeof(vla), the result must be constant; use the constant
|
|
// folding logic so we don't have to duplicate it here.
|
|
return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType()) {
|
|
// If it's an l-value, load through the appropriate subobject l-value.
|
|
// Note that we have to ask E because Op might be an l-value that
|
|
// this won't work for, e.g. an Obj-C property.
|
|
if (E->isGLValue())
|
|
return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
|
|
E->getExprLoc()).getScalarVal();
|
|
|
|
// Otherwise, calculate and project.
|
|
return CGF.EmitComplexExpr(Op, false, true).first;
|
|
}
|
|
|
|
return Visit(Op);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType()) {
|
|
// If it's an l-value, load through the appropriate subobject l-value.
|
|
// Note that we have to ask E because Op might be an l-value that
|
|
// this won't work for, e.g. an Obj-C property.
|
|
if (Op->isGLValue())
|
|
return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
|
|
E->getExprLoc()).getScalarVal();
|
|
|
|
// Otherwise, calculate and project.
|
|
return CGF.EmitComplexExpr(Op, true, false).second;
|
|
}
|
|
|
|
// __imag on a scalar returns zero. Emit the subexpr to ensure side
|
|
// effects are evaluated, but not the actual value.
|
|
if (Op->isGLValue())
|
|
CGF.EmitLValue(Op);
|
|
else
|
|
CGF.EmitScalarExpr(Op, true);
|
|
return llvm::Constant::getNullValue(ConvertType(E->getType()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
BinOpInfo Result;
|
|
Result.LHS = Visit(E->getLHS());
|
|
Result.RHS = Visit(E->getRHS());
|
|
Result.Ty = E->getType();
|
|
Result.Opcode = E->getOpcode();
|
|
Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
|
|
Result.E = E;
|
|
return Result;
|
|
}
|
|
|
|
LValue ScalarExprEmitter::EmitCompoundAssignLValue(
|
|
const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
|
|
Value *&Result) {
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
BinOpInfo OpInfo;
|
|
|
|
if (E->getComputationResultType()->isAnyComplexType())
|
|
return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
|
|
|
|
// Emit the RHS first. __block variables need to have the rhs evaluated
|
|
// first, plus this should improve codegen a little.
|
|
OpInfo.RHS = Visit(E->getRHS());
|
|
OpInfo.Ty = E->getComputationResultType();
|
|
OpInfo.Opcode = E->getOpcode();
|
|
OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
|
|
OpInfo.E = E;
|
|
// Load/convert the LHS.
|
|
LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
|
|
|
|
llvm::PHINode *atomicPHI = nullptr;
|
|
if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
|
|
QualType type = atomicTy->getValueType();
|
|
if (!type->isBooleanType() && type->isIntegerType() &&
|
|
!(type->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
|
|
CGF.getLangOpts().getSignedOverflowBehavior() !=
|
|
LangOptions::SOB_Trapping) {
|
|
llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
|
|
llvm::Instruction::BinaryOps Op;
|
|
switch (OpInfo.Opcode) {
|
|
// We don't have atomicrmw operands for *, %, /, <<, >>
|
|
case BO_MulAssign: case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
break;
|
|
case BO_AddAssign:
|
|
AtomicOp = llvm::AtomicRMWInst::Add;
|
|
Op = llvm::Instruction::Add;
|
|
break;
|
|
case BO_SubAssign:
|
|
AtomicOp = llvm::AtomicRMWInst::Sub;
|
|
Op = llvm::Instruction::Sub;
|
|
break;
|
|
case BO_AndAssign:
|
|
AtomicOp = llvm::AtomicRMWInst::And;
|
|
Op = llvm::Instruction::And;
|
|
break;
|
|
case BO_XorAssign:
|
|
AtomicOp = llvm::AtomicRMWInst::Xor;
|
|
Op = llvm::Instruction::Xor;
|
|
break;
|
|
case BO_OrAssign:
|
|
AtomicOp = llvm::AtomicRMWInst::Or;
|
|
Op = llvm::Instruction::Or;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid compound assignment type");
|
|
}
|
|
if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
|
|
llvm::Value *Amt = CGF.EmitToMemory(
|
|
EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
|
|
E->getExprLoc()),
|
|
LHSTy);
|
|
Value *OldVal = Builder.CreateAtomicRMW(
|
|
AtomicOp, LHSLV.getPointer(CGF), Amt,
|
|
llvm::AtomicOrdering::SequentiallyConsistent);
|
|
|
|
// Since operation is atomic, the result type is guaranteed to be the
|
|
// same as the input in LLVM terms.
|
|
Result = Builder.CreateBinOp(Op, OldVal, Amt);
|
|
return LHSLV;
|
|
}
|
|
}
|
|
// FIXME: For floating point types, we should be saving and restoring the
|
|
// floating point environment in the loop.
|
|
llvm::BasicBlock *startBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
|
|
OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
|
|
OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
|
|
Builder.CreateBr(opBB);
|
|
Builder.SetInsertPoint(opBB);
|
|
atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
|
|
atomicPHI->addIncoming(OpInfo.LHS, startBB);
|
|
OpInfo.LHS = atomicPHI;
|
|
}
|
|
else
|
|
OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
|
|
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
|
|
SourceLocation Loc = E->getExprLoc();
|
|
OpInfo.LHS =
|
|
EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
|
|
|
|
// Expand the binary operator.
|
|
Result = (this->*Func)(OpInfo);
|
|
|
|
// Convert the result back to the LHS type,
|
|
// potentially with Implicit Conversion sanitizer check.
|
|
Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
|
|
Loc, ScalarConversionOpts(CGF.SanOpts));
|
|
|
|
if (atomicPHI) {
|
|
llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
|
|
auto Pair = CGF.EmitAtomicCompareExchange(
|
|
LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
|
|
llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
|
|
llvm::Value *success = Pair.second;
|
|
atomicPHI->addIncoming(old, curBlock);
|
|
Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
|
|
Builder.SetInsertPoint(contBB);
|
|
return LHSLV;
|
|
}
|
|
|
|
// Store the result value into the LHS lvalue. Bit-fields are handled
|
|
// specially because the result is altered by the store, i.e., [C99 6.5.16p1]
|
|
// 'An assignment expression has the value of the left operand after the
|
|
// assignment...'.
|
|
if (LHSLV.isBitField())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
|
|
|
|
if (CGF.getLangOpts().OpenMP)
|
|
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
|
|
E->getLHS());
|
|
return LHSLV;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
Value *RHS = nullptr;
|
|
LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
|
|
|
|
// If the result is clearly ignored, return now.
|
|
if (Ignore)
|
|
return nullptr;
|
|
|
|
// The result of an assignment in C is the assigned r-value.
|
|
if (!CGF.getLangOpts().CPlusPlus)
|
|
return RHS;
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LHS.isVolatileQualified())
|
|
return RHS;
|
|
|
|
// Otherwise, reload the value.
|
|
return EmitLoadOfLValue(LHS, E->getExprLoc());
|
|
}
|
|
|
|
void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
|
|
const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
|
|
SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
|
|
Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
|
|
SanitizerKind::IntegerDivideByZero));
|
|
}
|
|
|
|
const auto *BO = cast<BinaryOperator>(Ops.E);
|
|
if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
|
|
Ops.Ty->hasSignedIntegerRepresentation() &&
|
|
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
|
|
Ops.mayHaveIntegerOverflow()) {
|
|
llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
|
|
|
|
llvm::Value *IntMin =
|
|
Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
|
|
llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
|
|
|
|
llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
|
|
llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
|
|
llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
|
|
Checks.push_back(
|
|
std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
|
|
}
|
|
|
|
if (Checks.size() > 0)
|
|
EmitBinOpCheck(Checks, Ops);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
|
|
{
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
|
|
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
|
|
Ops.Ty->isIntegerType() &&
|
|
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
|
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
|
|
} else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
|
|
Ops.Ty->isRealFloatingType() &&
|
|
Ops.mayHaveFloatDivisionByZero()) {
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
|
llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
|
|
EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
|
|
Ops);
|
|
}
|
|
}
|
|
|
|
if (Ops.Ty->isConstantMatrixType()) {
|
|
llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
|
|
// We need to check the types of the operands of the operator to get the
|
|
// correct matrix dimensions.
|
|
auto *BO = cast<BinaryOperator>(Ops.E);
|
|
(void)BO;
|
|
assert(
|
|
isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
|
|
"first operand must be a matrix");
|
|
assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
|
|
"second operand must be an arithmetic type");
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
|
|
return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
|
|
Ops.Ty->hasUnsignedIntegerRepresentation());
|
|
}
|
|
|
|
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
|
|
llvm::Value *Val;
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
|
|
Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
|
|
if ((CGF.getLangOpts().OpenCL &&
|
|
!CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
|
|
(CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
|
|
!CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
|
|
// OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
|
|
// OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
|
|
// build option allows an application to specify that single precision
|
|
// floating-point divide (x/y and 1/x) and sqrt used in the program
|
|
// source are correctly rounded.
|
|
llvm::Type *ValTy = Val->getType();
|
|
if (ValTy->isFloatTy() ||
|
|
(isa<llvm::VectorType>(ValTy) &&
|
|
cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
|
|
CGF.SetFPAccuracy(Val, 2.5);
|
|
}
|
|
return Val;
|
|
}
|
|
else if (Ops.isFixedPointOp())
|
|
return EmitFixedPointBinOp(Ops);
|
|
else if (Ops.Ty->hasUnsignedIntegerRepresentation())
|
|
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
|
|
else
|
|
return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
|
|
// Rem in C can't be a floating point type: C99 6.5.5p2.
|
|
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
|
|
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
|
|
Ops.Ty->isIntegerType() &&
|
|
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
|
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
|
|
}
|
|
|
|
if (Ops.Ty->hasUnsignedIntegerRepresentation())
|
|
return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
|
|
else
|
|
return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
|
|
unsigned IID;
|
|
unsigned OpID = 0;
|
|
SanitizerHandler OverflowKind;
|
|
|
|
bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
|
|
switch (Ops.Opcode) {
|
|
case BO_Add:
|
|
case BO_AddAssign:
|
|
OpID = 1;
|
|
IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
|
|
llvm::Intrinsic::uadd_with_overflow;
|
|
OverflowKind = SanitizerHandler::AddOverflow;
|
|
break;
|
|
case BO_Sub:
|
|
case BO_SubAssign:
|
|
OpID = 2;
|
|
IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
|
|
llvm::Intrinsic::usub_with_overflow;
|
|
OverflowKind = SanitizerHandler::SubOverflow;
|
|
break;
|
|
case BO_Mul:
|
|
case BO_MulAssign:
|
|
OpID = 3;
|
|
IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
|
|
llvm::Intrinsic::umul_with_overflow;
|
|
OverflowKind = SanitizerHandler::MulOverflow;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported operation for overflow detection");
|
|
}
|
|
OpID <<= 1;
|
|
if (isSigned)
|
|
OpID |= 1;
|
|
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
|
|
|
|
llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
|
|
|
|
Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
|
|
Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
|
|
Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
|
|
|
|
// Handle overflow with llvm.trap if no custom handler has been specified.
|
|
const std::string *handlerName =
|
|
&CGF.getLangOpts().OverflowHandler;
|
|
if (handlerName->empty()) {
|
|
// If the signed-integer-overflow sanitizer is enabled, emit a call to its
|
|
// runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
|
|
if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
|
|
llvm::Value *NotOverflow = Builder.CreateNot(overflow);
|
|
SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
|
|
: SanitizerKind::UnsignedIntegerOverflow;
|
|
EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
|
|
} else
|
|
CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
|
|
return result;
|
|
}
|
|
|
|
// Branch in case of overflow.
|
|
llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *continueBB =
|
|
CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
|
|
llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
|
|
|
|
Builder.CreateCondBr(overflow, overflowBB, continueBB);
|
|
|
|
// If an overflow handler is set, then we want to call it and then use its
|
|
// result, if it returns.
|
|
Builder.SetInsertPoint(overflowBB);
|
|
|
|
// Get the overflow handler.
|
|
llvm::Type *Int8Ty = CGF.Int8Ty;
|
|
llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
|
|
llvm::FunctionType *handlerTy =
|
|
llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
|
|
llvm::FunctionCallee handler =
|
|
CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
|
|
|
|
// Sign extend the args to 64-bit, so that we can use the same handler for
|
|
// all types of overflow.
|
|
llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
|
|
llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
|
|
|
|
// Call the handler with the two arguments, the operation, and the size of
|
|
// the result.
|
|
llvm::Value *handlerArgs[] = {
|
|
lhs,
|
|
rhs,
|
|
Builder.getInt8(OpID),
|
|
Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
|
|
};
|
|
llvm::Value *handlerResult =
|
|
CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
|
|
|
|
// Truncate the result back to the desired size.
|
|
handlerResult = Builder.CreateTrunc(handlerResult, opTy);
|
|
Builder.CreateBr(continueBB);
|
|
|
|
Builder.SetInsertPoint(continueBB);
|
|
llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
|
|
phi->addIncoming(result, initialBB);
|
|
phi->addIncoming(handlerResult, overflowBB);
|
|
|
|
return phi;
|
|
}
|
|
|
|
/// Emit pointer + index arithmetic.
|
|
static Value *emitPointerArithmetic(CodeGenFunction &CGF,
|
|
const BinOpInfo &op,
|
|
bool isSubtraction) {
|
|
// Must have binary (not unary) expr here. Unary pointer
|
|
// increment/decrement doesn't use this path.
|
|
const BinaryOperator *expr = cast<BinaryOperator>(op.E);
|
|
|
|
Value *pointer = op.LHS;
|
|
Expr *pointerOperand = expr->getLHS();
|
|
Value *index = op.RHS;
|
|
Expr *indexOperand = expr->getRHS();
|
|
|
|
// In a subtraction, the LHS is always the pointer.
|
|
if (!isSubtraction && !pointer->getType()->isPointerTy()) {
|
|
std::swap(pointer, index);
|
|
std::swap(pointerOperand, indexOperand);
|
|
}
|
|
|
|
bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
|
|
|
|
unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
|
|
auto &DL = CGF.CGM.getDataLayout();
|
|
auto PtrTy = cast<llvm::PointerType>(pointer->getType());
|
|
|
|
// Some versions of glibc and gcc use idioms (particularly in their malloc
|
|
// routines) that add a pointer-sized integer (known to be a pointer value)
|
|
// to a null pointer in order to cast the value back to an integer or as
|
|
// part of a pointer alignment algorithm. This is undefined behavior, but
|
|
// we'd like to be able to compile programs that use it.
|
|
//
|
|
// Normally, we'd generate a GEP with a null-pointer base here in response
|
|
// to that code, but it's also UB to dereference a pointer created that
|
|
// way. Instead (as an acknowledged hack to tolerate the idiom) we will
|
|
// generate a direct cast of the integer value to a pointer.
|
|
//
|
|
// The idiom (p = nullptr + N) is not met if any of the following are true:
|
|
//
|
|
// The operation is subtraction.
|
|
// The index is not pointer-sized.
|
|
// The pointer type is not byte-sized.
|
|
//
|
|
if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
|
|
op.Opcode,
|
|
expr->getLHS(),
|
|
expr->getRHS()))
|
|
return CGF.Builder.CreateIntToPtr(index, pointer->getType());
|
|
|
|
if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
|
|
// Zero-extend or sign-extend the pointer value according to
|
|
// whether the index is signed or not.
|
|
index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
|
|
"idx.ext");
|
|
}
|
|
|
|
// If this is subtraction, negate the index.
|
|
if (isSubtraction)
|
|
index = CGF.Builder.CreateNeg(index, "idx.neg");
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
|
|
CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
|
|
/*Accessed*/ false);
|
|
|
|
const PointerType *pointerType
|
|
= pointerOperand->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
QualType objectType = pointerOperand->getType()
|
|
->castAs<ObjCObjectPointerType>()
|
|
->getPointeeType();
|
|
llvm::Value *objectSize
|
|
= CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
|
|
|
|
index = CGF.Builder.CreateMul(index, objectSize);
|
|
|
|
Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
|
|
result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
|
|
return CGF.Builder.CreateBitCast(result, pointer->getType());
|
|
}
|
|
|
|
QualType elementType = pointerType->getPointeeType();
|
|
if (const VariableArrayType *vla
|
|
= CGF.getContext().getAsVariableArrayType(elementType)) {
|
|
// The element count here is the total number of non-VLA elements.
|
|
llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
|
|
|
|
// Effectively, the multiply by the VLA size is part of the GEP.
|
|
// GEP indexes are signed, and scaling an index isn't permitted to
|
|
// signed-overflow, so we use the same semantics for our explicit
|
|
// multiply. We suppress this if overflow is not undefined behavior.
|
|
if (CGF.getLangOpts().isSignedOverflowDefined()) {
|
|
index = CGF.Builder.CreateMul(index, numElements, "vla.index");
|
|
pointer = CGF.Builder.CreateGEP(
|
|
pointer->getType()->getPointerElementType(), pointer, index,
|
|
"add.ptr");
|
|
} else {
|
|
index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
|
|
pointer =
|
|
CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
|
|
op.E->getExprLoc(), "add.ptr");
|
|
}
|
|
return pointer;
|
|
}
|
|
|
|
// Explicitly handle GNU void* and function pointer arithmetic extensions. The
|
|
// GNU void* casts amount to no-ops since our void* type is i8*, but this is
|
|
// future proof.
|
|
if (elementType->isVoidType() || elementType->isFunctionType()) {
|
|
Value *result = CGF.EmitCastToVoidPtr(pointer);
|
|
result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
|
|
return CGF.Builder.CreateBitCast(result, pointer->getType());
|
|
}
|
|
|
|
if (CGF.getLangOpts().isSignedOverflowDefined())
|
|
return CGF.Builder.CreateGEP(
|
|
pointer->getType()->getPointerElementType(), pointer, index, "add.ptr");
|
|
|
|
return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
|
|
op.E->getExprLoc(), "add.ptr");
|
|
}
|
|
|
|
// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
|
|
// Addend. Use negMul and negAdd to negate the first operand of the Mul or
|
|
// the add operand respectively. This allows fmuladd to represent a*b-c, or
|
|
// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
|
|
// efficient operations.
|
|
static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
|
|
const CodeGenFunction &CGF, CGBuilderTy &Builder,
|
|
bool negMul, bool negAdd) {
|
|
assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
|
|
|
|
Value *MulOp0 = MulOp->getOperand(0);
|
|
Value *MulOp1 = MulOp->getOperand(1);
|
|
if (negMul)
|
|
MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
|
|
if (negAdd)
|
|
Addend = Builder.CreateFNeg(Addend, "neg");
|
|
|
|
Value *FMulAdd = nullptr;
|
|
if (Builder.getIsFPConstrained()) {
|
|
assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
|
|
"Only constrained operation should be created when Builder is in FP "
|
|
"constrained mode");
|
|
FMulAdd = Builder.CreateConstrainedFPCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
|
|
Addend->getType()),
|
|
{MulOp0, MulOp1, Addend});
|
|
} else {
|
|
FMulAdd = Builder.CreateCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
|
|
{MulOp0, MulOp1, Addend});
|
|
}
|
|
MulOp->eraseFromParent();
|
|
|
|
return FMulAdd;
|
|
}
|
|
|
|
// Check whether it would be legal to emit an fmuladd intrinsic call to
|
|
// represent op and if so, build the fmuladd.
|
|
//
|
|
// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
|
|
// Does NOT check the type of the operation - it's assumed that this function
|
|
// will be called from contexts where it's known that the type is contractable.
|
|
static Value* tryEmitFMulAdd(const BinOpInfo &op,
|
|
const CodeGenFunction &CGF, CGBuilderTy &Builder,
|
|
bool isSub=false) {
|
|
|
|
assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
|
|
op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
|
|
"Only fadd/fsub can be the root of an fmuladd.");
|
|
|
|
// Check whether this op is marked as fusable.
|
|
if (!op.FPFeatures.allowFPContractWithinStatement())
|
|
return nullptr;
|
|
|
|
// We have a potentially fusable op. Look for a mul on one of the operands.
|
|
// Also, make sure that the mul result isn't used directly. In that case,
|
|
// there's no point creating a muladd operation.
|
|
if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
|
|
if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
|
|
LHSBinOp->use_empty())
|
|
return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
|
|
}
|
|
if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
|
|
if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
|
|
RHSBinOp->use_empty())
|
|
return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
|
|
}
|
|
|
|
if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
|
|
if (LHSBinOp->getIntrinsicID() ==
|
|
llvm::Intrinsic::experimental_constrained_fmul &&
|
|
LHSBinOp->use_empty())
|
|
return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
|
|
}
|
|
if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
|
|
if (RHSBinOp->getIntrinsicID() ==
|
|
llvm::Intrinsic::experimental_constrained_fmul &&
|
|
RHSBinOp->use_empty())
|
|
return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
|
|
if (op.LHS->getType()->isPointerTy() ||
|
|
op.RHS->getType()->isPointerTy())
|
|
return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
|
|
|
|
if (op.Ty->isSignedIntegerOrEnumerationType()) {
|
|
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateAdd(op.LHS, op.RHS, "add");
|
|
case LangOptions::SOB_Undefined:
|
|
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
|
|
return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
|
|
LLVM_FALLTHROUGH;
|
|
case LangOptions::SOB_Trapping:
|
|
if (CanElideOverflowCheck(CGF.getContext(), op))
|
|
return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
|
|
return EmitOverflowCheckedBinOp(op);
|
|
}
|
|
}
|
|
|
|
if (op.Ty->isConstantMatrixType()) {
|
|
llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
|
|
return MB.CreateAdd(op.LHS, op.RHS);
|
|
}
|
|
|
|
if (op.Ty->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
|
|
!CanElideOverflowCheck(CGF.getContext(), op))
|
|
return EmitOverflowCheckedBinOp(op);
|
|
|
|
if (op.LHS->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
|
|
// Try to form an fmuladd.
|
|
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
|
|
return FMulAdd;
|
|
|
|
return Builder.CreateFAdd(op.LHS, op.RHS, "add");
|
|
}
|
|
|
|
if (op.isFixedPointOp())
|
|
return EmitFixedPointBinOp(op);
|
|
|
|
return Builder.CreateAdd(op.LHS, op.RHS, "add");
|
|
}
|
|
|
|
/// The resulting value must be calculated with exact precision, so the operands
|
|
/// may not be the same type.
|
|
Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
|
|
using llvm::APSInt;
|
|
using llvm::ConstantInt;
|
|
|
|
// This is either a binary operation where at least one of the operands is
|
|
// a fixed-point type, or a unary operation where the operand is a fixed-point
|
|
// type. The result type of a binary operation is determined by
|
|
// Sema::handleFixedPointConversions().
|
|
QualType ResultTy = op.Ty;
|
|
QualType LHSTy, RHSTy;
|
|
if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
|
|
RHSTy = BinOp->getRHS()->getType();
|
|
if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
|
|
// For compound assignment, the effective type of the LHS at this point
|
|
// is the computation LHS type, not the actual LHS type, and the final
|
|
// result type is not the type of the expression but rather the
|
|
// computation result type.
|
|
LHSTy = CAO->getComputationLHSType();
|
|
ResultTy = CAO->getComputationResultType();
|
|
} else
|
|
LHSTy = BinOp->getLHS()->getType();
|
|
} else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
|
|
LHSTy = UnOp->getSubExpr()->getType();
|
|
RHSTy = UnOp->getSubExpr()->getType();
|
|
}
|
|
ASTContext &Ctx = CGF.getContext();
|
|
Value *LHS = op.LHS;
|
|
Value *RHS = op.RHS;
|
|
|
|
auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
|
|
auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
|
|
auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
|
|
auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
|
|
|
|
// Perform the actual operation.
|
|
Value *Result;
|
|
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
|
|
switch (op.Opcode) {
|
|
case BO_AddAssign:
|
|
case BO_Add:
|
|
Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
break;
|
|
case BO_SubAssign:
|
|
case BO_Sub:
|
|
Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
break;
|
|
case BO_MulAssign:
|
|
case BO_Mul:
|
|
Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
break;
|
|
case BO_DivAssign:
|
|
case BO_Div:
|
|
Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
break;
|
|
case BO_ShlAssign:
|
|
case BO_Shl:
|
|
Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
|
|
break;
|
|
case BO_ShrAssign:
|
|
case BO_Shr:
|
|
Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
|
|
break;
|
|
case BO_LT:
|
|
return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_GT:
|
|
return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_LE:
|
|
return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_GE:
|
|
return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_EQ:
|
|
// For equality operations, we assume any padding bits on unsigned types are
|
|
// zero'd out. They could be overwritten through non-saturating operations
|
|
// that cause overflow, but this leads to undefined behavior.
|
|
return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_NE:
|
|
return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
|
|
case BO_Cmp:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
llvm_unreachable("Found unimplemented fixed point binary operation");
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_Rem:
|
|
case BO_Xor:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Assign:
|
|
case BO_RemAssign:
|
|
case BO_AndAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
case BO_Comma:
|
|
llvm_unreachable("Found unsupported binary operation for fixed point types.");
|
|
}
|
|
|
|
bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
|
|
BinaryOperator::isShiftAssignOp(op.Opcode);
|
|
// Convert to the result type.
|
|
return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
|
|
: CommonFixedSema,
|
|
ResultFixedSema);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
|
|
// The LHS is always a pointer if either side is.
|
|
if (!op.LHS->getType()->isPointerTy()) {
|
|
if (op.Ty->isSignedIntegerOrEnumerationType()) {
|
|
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
|
|
case LangOptions::SOB_Defined:
|
|
return Builder.CreateSub(op.LHS, op.RHS, "sub");
|
|
case LangOptions::SOB_Undefined:
|
|
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
|
|
return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
|
|
LLVM_FALLTHROUGH;
|
|
case LangOptions::SOB_Trapping:
|
|
if (CanElideOverflowCheck(CGF.getContext(), op))
|
|
return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
|
|
return EmitOverflowCheckedBinOp(op);
|
|
}
|
|
}
|
|
|
|
if (op.Ty->isConstantMatrixType()) {
|
|
llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
|
|
return MB.CreateSub(op.LHS, op.RHS);
|
|
}
|
|
|
|
if (op.Ty->isUnsignedIntegerType() &&
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
|
|
!CanElideOverflowCheck(CGF.getContext(), op))
|
|
return EmitOverflowCheckedBinOp(op);
|
|
|
|
if (op.LHS->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
|
|
// Try to form an fmuladd.
|
|
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
|
|
return FMulAdd;
|
|
return Builder.CreateFSub(op.LHS, op.RHS, "sub");
|
|
}
|
|
|
|
if (op.isFixedPointOp())
|
|
return EmitFixedPointBinOp(op);
|
|
|
|
return Builder.CreateSub(op.LHS, op.RHS, "sub");
|
|
}
|
|
|
|
// If the RHS is not a pointer, then we have normal pointer
|
|
// arithmetic.
|
|
if (!op.RHS->getType()->isPointerTy())
|
|
return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
|
|
|
|
// Otherwise, this is a pointer subtraction.
|
|
|
|
// Do the raw subtraction part.
|
|
llvm::Value *LHS
|
|
= Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
|
|
llvm::Value *RHS
|
|
= Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
|
|
Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
|
|
|
|
// Okay, figure out the element size.
|
|
const BinaryOperator *expr = cast<BinaryOperator>(op.E);
|
|
QualType elementType = expr->getLHS()->getType()->getPointeeType();
|
|
|
|
llvm::Value *divisor = nullptr;
|
|
|
|
// For a variable-length array, this is going to be non-constant.
|
|
if (const VariableArrayType *vla
|
|
= CGF.getContext().getAsVariableArrayType(elementType)) {
|
|
auto VlaSize = CGF.getVLASize(vla);
|
|
elementType = VlaSize.Type;
|
|
divisor = VlaSize.NumElts;
|
|
|
|
// Scale the number of non-VLA elements by the non-VLA element size.
|
|
CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
|
|
if (!eltSize.isOne())
|
|
divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
|
|
|
|
// For everything elese, we can just compute it, safe in the
|
|
// assumption that Sema won't let anything through that we can't
|
|
// safely compute the size of.
|
|
} else {
|
|
CharUnits elementSize;
|
|
// Handle GCC extension for pointer arithmetic on void* and
|
|
// function pointer types.
|
|
if (elementType->isVoidType() || elementType->isFunctionType())
|
|
elementSize = CharUnits::One();
|
|
else
|
|
elementSize = CGF.getContext().getTypeSizeInChars(elementType);
|
|
|
|
// Don't even emit the divide for element size of 1.
|
|
if (elementSize.isOne())
|
|
return diffInChars;
|
|
|
|
divisor = CGF.CGM.getSize(elementSize);
|
|
}
|
|
|
|
// Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
|
|
// pointer difference in C is only defined in the case where both operands
|
|
// are pointing to elements of an array.
|
|
return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
|
|
llvm::IntegerType *Ty;
|
|
if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
|
|
Ty = cast<llvm::IntegerType>(VT->getElementType());
|
|
else
|
|
Ty = cast<llvm::IntegerType>(LHS->getType());
|
|
return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
|
|
const Twine &Name) {
|
|
llvm::IntegerType *Ty;
|
|
if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
|
|
Ty = cast<llvm::IntegerType>(VT->getElementType());
|
|
else
|
|
Ty = cast<llvm::IntegerType>(LHS->getType());
|
|
|
|
if (llvm::isPowerOf2_64(Ty->getBitWidth()))
|
|
return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
|
|
|
|
return Builder.CreateURem(
|
|
RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
|
|
// TODO: This misses out on the sanitizer check below.
|
|
if (Ops.isFixedPointOp())
|
|
return EmitFixedPointBinOp(Ops);
|
|
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
|
|
Ops.Ty->hasSignedIntegerRepresentation() &&
|
|
!CGF.getLangOpts().isSignedOverflowDefined() &&
|
|
!CGF.getLangOpts().CPlusPlus20;
|
|
bool SanitizeUnsignedBase =
|
|
CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
|
|
Ops.Ty->hasUnsignedIntegerRepresentation();
|
|
bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
|
|
bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
|
|
// OpenCL 6.3j: shift values are effectively % word size of LHS.
|
|
if (CGF.getLangOpts().OpenCL)
|
|
RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
|
|
else if ((SanitizeBase || SanitizeExponent) &&
|
|
isa<llvm::IntegerType>(Ops.LHS->getType())) {
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
|
|
llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
|
|
llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
|
|
|
|
if (SanitizeExponent) {
|
|
Checks.push_back(
|
|
std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
|
|
}
|
|
|
|
if (SanitizeBase) {
|
|
// Check whether we are shifting any non-zero bits off the top of the
|
|
// integer. We only emit this check if exponent is valid - otherwise
|
|
// instructions below will have undefined behavior themselves.
|
|
llvm::BasicBlock *Orig = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
|
|
llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
|
|
Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
|
|
llvm::Value *PromotedWidthMinusOne =
|
|
(RHS == Ops.RHS) ? WidthMinusOne
|
|
: GetWidthMinusOneValue(Ops.LHS, RHS);
|
|
CGF.EmitBlock(CheckShiftBase);
|
|
llvm::Value *BitsShiftedOff = Builder.CreateLShr(
|
|
Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
|
|
/*NUW*/ true, /*NSW*/ true),
|
|
"shl.check");
|
|
if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
|
|
// In C99, we are not permitted to shift a 1 bit into the sign bit.
|
|
// Under C++11's rules, shifting a 1 bit into the sign bit is
|
|
// OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
|
|
// define signed left shifts, so we use the C99 and C++11 rules there).
|
|
// Unsigned shifts can always shift into the top bit.
|
|
llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
|
|
BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
|
|
}
|
|
llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
|
|
llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
|
|
CGF.EmitBlock(Cont);
|
|
llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
|
|
BaseCheck->addIncoming(Builder.getTrue(), Orig);
|
|
BaseCheck->addIncoming(ValidBase, CheckShiftBase);
|
|
Checks.push_back(std::make_pair(
|
|
BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
|
|
: SanitizerKind::UnsignedShiftBase));
|
|
}
|
|
|
|
assert(!Checks.empty());
|
|
EmitBinOpCheck(Checks, Ops);
|
|
}
|
|
|
|
return Builder.CreateShl(Ops.LHS, RHS, "shl");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
|
|
// TODO: This misses out on the sanitizer check below.
|
|
if (Ops.isFixedPointOp())
|
|
return EmitFixedPointBinOp(Ops);
|
|
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
// OpenCL 6.3j: shift values are effectively % word size of LHS.
|
|
if (CGF.getLangOpts().OpenCL)
|
|
RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
|
|
else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
|
|
isa<llvm::IntegerType>(Ops.LHS->getType())) {
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
llvm::Value *Valid =
|
|
Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
|
|
EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
|
|
}
|
|
|
|
if (Ops.Ty->hasUnsignedIntegerRepresentation())
|
|
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
|
|
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
|
|
}
|
|
|
|
enum IntrinsicType { VCMPEQ, VCMPGT };
|
|
// return corresponding comparison intrinsic for given vector type
|
|
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
|
|
BuiltinType::Kind ElemKind) {
|
|
switch (ElemKind) {
|
|
default: llvm_unreachable("unexpected element type");
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
|
|
case BuiltinType::UShort:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
|
|
case BuiltinType::Short:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
|
|
case BuiltinType::UInt:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
|
|
case BuiltinType::Int:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::ULongLong:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
|
|
case BuiltinType::Long:
|
|
case BuiltinType::LongLong:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
|
|
case BuiltinType::Float:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
|
|
llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
|
|
case BuiltinType::Double:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
|
|
llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
|
|
case BuiltinType::UInt128:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
|
|
: llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
|
|
case BuiltinType::Int128:
|
|
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
|
|
: llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
|
|
}
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
|
|
llvm::CmpInst::Predicate UICmpOpc,
|
|
llvm::CmpInst::Predicate SICmpOpc,
|
|
llvm::CmpInst::Predicate FCmpOpc,
|
|
bool IsSignaling) {
|
|
TestAndClearIgnoreResultAssign();
|
|
Value *Result;
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
QualType RHSTy = E->getRHS()->getType();
|
|
if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
|
|
assert(E->getOpcode() == BO_EQ ||
|
|
E->getOpcode() == BO_NE);
|
|
Value *LHS = CGF.EmitScalarExpr(E->getLHS());
|
|
Value *RHS = CGF.EmitScalarExpr(E->getRHS());
|
|
Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
|
|
CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
|
|
} else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
|
|
BinOpInfo BOInfo = EmitBinOps(E);
|
|
Value *LHS = BOInfo.LHS;
|
|
Value *RHS = BOInfo.RHS;
|
|
|
|
// If AltiVec, the comparison results in a numeric type, so we use
|
|
// intrinsics comparing vectors and giving 0 or 1 as a result
|
|
if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
|
|
// constants for mapping CR6 register bits to predicate result
|
|
enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
|
|
|
|
llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
|
|
|
|
// in several cases vector arguments order will be reversed
|
|
Value *FirstVecArg = LHS,
|
|
*SecondVecArg = RHS;
|
|
|
|
QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
|
|
BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
|
|
|
|
switch(E->getOpcode()) {
|
|
default: llvm_unreachable("is not a comparison operation");
|
|
case BO_EQ:
|
|
CR6 = CR6_LT;
|
|
ID = GetIntrinsic(VCMPEQ, ElementKind);
|
|
break;
|
|
case BO_NE:
|
|
CR6 = CR6_EQ;
|
|
ID = GetIntrinsic(VCMPEQ, ElementKind);
|
|
break;
|
|
case BO_LT:
|
|
CR6 = CR6_LT;
|
|
ID = GetIntrinsic(VCMPGT, ElementKind);
|
|
std::swap(FirstVecArg, SecondVecArg);
|
|
break;
|
|
case BO_GT:
|
|
CR6 = CR6_LT;
|
|
ID = GetIntrinsic(VCMPGT, ElementKind);
|
|
break;
|
|
case BO_LE:
|
|
if (ElementKind == BuiltinType::Float) {
|
|
CR6 = CR6_LT;
|
|
ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
|
|
std::swap(FirstVecArg, SecondVecArg);
|
|
}
|
|
else {
|
|
CR6 = CR6_EQ;
|
|
ID = GetIntrinsic(VCMPGT, ElementKind);
|
|
}
|
|
break;
|
|
case BO_GE:
|
|
if (ElementKind == BuiltinType::Float) {
|
|
CR6 = CR6_LT;
|
|
ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
|
|
}
|
|
else {
|
|
CR6 = CR6_EQ;
|
|
ID = GetIntrinsic(VCMPGT, ElementKind);
|
|
std::swap(FirstVecArg, SecondVecArg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
Value *CR6Param = Builder.getInt32(CR6);
|
|
llvm::Function *F = CGF.CGM.getIntrinsic(ID);
|
|
Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
|
|
|
|
// The result type of intrinsic may not be same as E->getType().
|
|
// If E->getType() is not BoolTy, EmitScalarConversion will do the
|
|
// conversion work. If E->getType() is BoolTy, EmitScalarConversion will
|
|
// do nothing, if ResultTy is not i1 at the same time, it will cause
|
|
// crash later.
|
|
llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
|
|
if (ResultTy->getBitWidth() > 1 &&
|
|
E->getType() == CGF.getContext().BoolTy)
|
|
Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
|
|
return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
if (BOInfo.isFixedPointOp()) {
|
|
Result = EmitFixedPointBinOp(BOInfo);
|
|
} else if (LHS->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
|
|
if (!IsSignaling)
|
|
Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
|
|
else
|
|
Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
|
|
} else if (LHSTy->hasSignedIntegerRepresentation()) {
|
|
Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
|
|
} else {
|
|
// Unsigned integers and pointers.
|
|
|
|
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
!isa<llvm::ConstantPointerNull>(LHS) &&
|
|
!isa<llvm::ConstantPointerNull>(RHS)) {
|
|
|
|
// Dynamic information is required to be stripped for comparisons,
|
|
// because it could leak the dynamic information. Based on comparisons
|
|
// of pointers to dynamic objects, the optimizer can replace one pointer
|
|
// with another, which might be incorrect in presence of invariant
|
|
// groups. Comparison with null is safe because null does not carry any
|
|
// dynamic information.
|
|
if (LHSTy.mayBeDynamicClass())
|
|
LHS = Builder.CreateStripInvariantGroup(LHS);
|
|
if (RHSTy.mayBeDynamicClass())
|
|
RHS = Builder.CreateStripInvariantGroup(RHS);
|
|
}
|
|
|
|
Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
|
|
}
|
|
|
|
// If this is a vector comparison, sign extend the result to the appropriate
|
|
// vector integer type and return it (don't convert to bool).
|
|
if (LHSTy->isVectorType())
|
|
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
|
|
|
|
} else {
|
|
// Complex Comparison: can only be an equality comparison.
|
|
CodeGenFunction::ComplexPairTy LHS, RHS;
|
|
QualType CETy;
|
|
if (auto *CTy = LHSTy->getAs<ComplexType>()) {
|
|
LHS = CGF.EmitComplexExpr(E->getLHS());
|
|
CETy = CTy->getElementType();
|
|
} else {
|
|
LHS.first = Visit(E->getLHS());
|
|
LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
|
|
CETy = LHSTy;
|
|
}
|
|
if (auto *CTy = RHSTy->getAs<ComplexType>()) {
|
|
RHS = CGF.EmitComplexExpr(E->getRHS());
|
|
assert(CGF.getContext().hasSameUnqualifiedType(CETy,
|
|
CTy->getElementType()) &&
|
|
"The element types must always match.");
|
|
(void)CTy;
|
|
} else {
|
|
RHS.first = Visit(E->getRHS());
|
|
RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
|
|
assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
|
|
"The element types must always match.");
|
|
}
|
|
|
|
Value *ResultR, *ResultI;
|
|
if (CETy->isRealFloatingType()) {
|
|
// As complex comparisons can only be equality comparisons, they
|
|
// are never signaling comparisons.
|
|
ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
|
|
} else {
|
|
// Complex comparisons can only be equality comparisons. As such, signed
|
|
// and unsigned opcodes are the same.
|
|
ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
|
|
}
|
|
|
|
if (E->getOpcode() == BO_EQ) {
|
|
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
|
|
} else {
|
|
assert(E->getOpcode() == BO_NE &&
|
|
"Complex comparison other than == or != ?");
|
|
Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
|
|
}
|
|
}
|
|
|
|
return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
bool Ignore = TestAndClearIgnoreResultAssign();
|
|
|
|
Value *RHS;
|
|
LValue LHS;
|
|
|
|
switch (E->getLHS()->getType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_Strong:
|
|
std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
|
|
break;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
|
|
break;
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
RHS = Visit(E->getRHS());
|
|
LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
|
|
RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
|
|
break;
|
|
|
|
case Qualifiers::OCL_None:
|
|
// __block variables need to have the rhs evaluated first, plus
|
|
// this should improve codegen just a little.
|
|
RHS = Visit(E->getRHS());
|
|
LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
|
|
|
|
// Store the value into the LHS. Bit-fields are handled specially
|
|
// because the result is altered by the store, i.e., [C99 6.5.16p1]
|
|
// 'An assignment expression has the value of the left operand after
|
|
// the assignment...'.
|
|
if (LHS.isBitField()) {
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
|
|
} else {
|
|
CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
|
|
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
|
|
}
|
|
}
|
|
|
|
// If the result is clearly ignored, return now.
|
|
if (Ignore)
|
|
return nullptr;
|
|
|
|
// The result of an assignment in C is the assigned r-value.
|
|
if (!CGF.getLangOpts().CPlusPlus)
|
|
return RHS;
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LHS.isVolatileQualified())
|
|
return RHS;
|
|
|
|
// Otherwise, reload the value.
|
|
return EmitLoadOfLValue(LHS, E->getExprLoc());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
|
|
// Perform vector logical and on comparisons with zero vectors.
|
|
if (E->getType()->isVectorType()) {
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
Value *LHS = Visit(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
|
|
if (LHS->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
|
|
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
|
|
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
|
|
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
|
|
} else {
|
|
LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
|
|
RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
|
|
}
|
|
Value *And = Builder.CreateAnd(LHS, RHS);
|
|
return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
|
|
}
|
|
|
|
bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
|
|
llvm::Type *ResTy = ConvertType(E->getType());
|
|
|
|
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
|
|
// If we have 1 && X, just emit X without inserting the control flow.
|
|
bool LHSCondVal;
|
|
if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
|
|
if (LHSCondVal) { // If we have 1 && X, just emit X.
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
// If we're generating for profiling or coverage, generate a branch to a
|
|
// block that increments the RHS counter needed to track branch condition
|
|
// coverage. In this case, use "FBlock" as both the final "TrueBlock" and
|
|
// "FalseBlock" after the increment is done.
|
|
if (InstrumentRegions &&
|
|
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
|
|
llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
|
|
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
|
|
Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
|
|
CGF.EmitBlock(RHSBlockCnt);
|
|
CGF.incrementProfileCounter(E->getRHS());
|
|
CGF.EmitBranch(FBlock);
|
|
CGF.EmitBlock(FBlock);
|
|
}
|
|
|
|
// ZExt result to int or bool.
|
|
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
|
|
}
|
|
|
|
// 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::Constant::getNullValue(ResTy);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
|
|
|
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
|
|
|
// Branch on the LHS first. If it is false, go to the failure (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
|
|
CGF.getProfileCount(E->getRHS()));
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be false. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
|
|
"", ContBlock);
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
|
|
|
|
eval.begin(CGF);
|
|
CGF.EmitBlock(RHSBlock);
|
|
CGF.incrementProfileCounter(E);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
eval.end(CGF);
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// If we're generating for profiling or coverage, generate a branch on the
|
|
// RHS to a block that increments the RHS true counter needed to track branch
|
|
// condition coverage.
|
|
if (InstrumentRegions &&
|
|
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
|
|
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
|
|
Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
|
|
CGF.EmitBlock(RHSBlockCnt);
|
|
CGF.incrementProfileCounter(E->getRHS());
|
|
CGF.EmitBranch(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlockCnt);
|
|
}
|
|
|
|
// Emit an unconditional branch from this block to ContBlock.
|
|
{
|
|
// There is no need to emit line number for unconditional branch.
|
|
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ContBlock);
|
|
}
|
|
// Insert an entry into the phi node for the edge with the value of RHSCond.
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// Artificial location to preserve the scope information
|
|
{
|
|
auto NL = ApplyDebugLocation::CreateArtificial(CGF);
|
|
PN->setDebugLoc(Builder.getCurrentDebugLocation());
|
|
}
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
|
|
// Perform vector logical or on comparisons with zero vectors.
|
|
if (E->getType()->isVectorType()) {
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
Value *LHS = Visit(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
|
|
if (LHS->getType()->isFPOrFPVectorTy()) {
|
|
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
|
|
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
|
|
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
|
|
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
|
|
} else {
|
|
LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
|
|
RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
|
|
}
|
|
Value *Or = Builder.CreateOr(LHS, RHS);
|
|
return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
|
|
}
|
|
|
|
bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
|
|
llvm::Type *ResTy = ConvertType(E->getType());
|
|
|
|
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
|
|
// If we have 0 || X, just emit X without inserting the control flow.
|
|
bool LHSCondVal;
|
|
if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
|
|
if (!LHSCondVal) { // If we have 0 || X, just emit X.
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
// If we're generating for profiling or coverage, generate a branch to a
|
|
// block that increments the RHS counter need to track branch condition
|
|
// coverage. In this case, use "FBlock" as both the final "TrueBlock" and
|
|
// "FalseBlock" after the increment is done.
|
|
if (InstrumentRegions &&
|
|
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
|
|
llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
|
|
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
|
|
Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
|
|
CGF.EmitBlock(RHSBlockCnt);
|
|
CGF.incrementProfileCounter(E->getRHS());
|
|
CGF.EmitBranch(FBlock);
|
|
CGF.EmitBlock(FBlock);
|
|
}
|
|
|
|
// ZExt result to int or bool.
|
|
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
|
|
}
|
|
|
|
// 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::ConstantInt::get(ResTy, 1);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
|
|
|
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
|
|
|
// Branch on the LHS first. If it is true, go to the success (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
|
|
CGF.getCurrentProfileCount() -
|
|
CGF.getProfileCount(E->getRHS()));
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be true. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
|
|
"", ContBlock);
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
|
|
|
|
eval.begin(CGF);
|
|
|
|
// Emit the RHS condition as a bool value.
|
|
CGF.EmitBlock(RHSBlock);
|
|
CGF.incrementProfileCounter(E);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
eval.end(CGF);
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// If we're generating for profiling or coverage, generate a branch on the
|
|
// RHS to a block that increments the RHS true counter needed to track branch
|
|
// condition coverage.
|
|
if (InstrumentRegions &&
|
|
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
|
|
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
|
|
Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
|
|
CGF.EmitBlock(RHSBlockCnt);
|
|
CGF.incrementProfileCounter(E->getRHS());
|
|
CGF.EmitBranch(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlockCnt);
|
|
}
|
|
|
|
// Emit an unconditional branch from this block to ContBlock. Insert an entry
|
|
// into the phi node for the edge with the value of RHSCond.
|
|
CGF.EmitBlock(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitIgnoredExpr(E->getLHS());
|
|
CGF.EnsureInsertPoint();
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
|
|
/// expression is cheap enough and side-effect-free enough to evaluate
|
|
/// unconditionally instead of conditionally. This is used to convert control
|
|
/// flow into selects in some cases.
|
|
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
|
|
CodeGenFunction &CGF) {
|
|
// Anything that is an integer or floating point constant is fine.
|
|
return E->IgnoreParens()->isEvaluatable(CGF.getContext());
|
|
|
|
// Even non-volatile automatic variables can't be evaluated unconditionally.
|
|
// Referencing a thread_local may cause non-trivial initialization work to
|
|
// occur. If we're inside a lambda and one of the variables is from the scope
|
|
// outside the lambda, that function may have returned already. Reading its
|
|
// locals is a bad idea. Also, these reads may introduce races there didn't
|
|
// exist in the source-level program.
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::
|
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
|
|
TestAndClearIgnoreResultAssign();
|
|
|
|
// Bind the common expression if necessary.
|
|
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
|
|
|
|
Expr *condExpr = E->getCond();
|
|
Expr *lhsExpr = E->getTrueExpr();
|
|
Expr *rhsExpr = E->getFalseExpr();
|
|
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm.
|
|
bool CondExprBool;
|
|
if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
|
|
Expr *live = lhsExpr, *dead = rhsExpr;
|
|
if (!CondExprBool) std::swap(live, dead);
|
|
|
|
// If the dead side doesn't have labels we need, just emit the Live part.
|
|
if (!CGF.ContainsLabel(dead)) {
|
|
if (CondExprBool)
|
|
CGF.incrementProfileCounter(E);
|
|
Value *Result = Visit(live);
|
|
|
|
// If the live part is a throw expression, it acts like it has a void
|
|
// type, so evaluating it returns a null Value*. However, a conditional
|
|
// with non-void type must return a non-null Value*.
|
|
if (!Result && !E->getType()->isVoidType())
|
|
Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// OpenCL: If the condition is a vector, we can treat this condition like
|
|
// the select function.
|
|
if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
|
|
condExpr->getType()->isExtVectorType()) {
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
|
|
llvm::Value *LHS = Visit(lhsExpr);
|
|
llvm::Value *RHS = Visit(rhsExpr);
|
|
|
|
llvm::Type *condType = ConvertType(condExpr->getType());
|
|
auto *vecTy = cast<llvm::FixedVectorType>(condType);
|
|
|
|
unsigned numElem = vecTy->getNumElements();
|
|
llvm::Type *elemType = vecTy->getElementType();
|
|
|
|
llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
|
|
llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
|
|
llvm::Value *tmp = Builder.CreateSExt(
|
|
TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
|
|
llvm::Value *tmp2 = Builder.CreateNot(tmp);
|
|
|
|
// Cast float to int to perform ANDs if necessary.
|
|
llvm::Value *RHSTmp = RHS;
|
|
llvm::Value *LHSTmp = LHS;
|
|
bool wasCast = false;
|
|
llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
|
|
if (rhsVTy->getElementType()->isFloatingPointTy()) {
|
|
RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
|
|
LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
|
|
wasCast = true;
|
|
}
|
|
|
|
llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
|
|
llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
|
|
llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
|
|
if (wasCast)
|
|
tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
|
|
|
|
return tmp5;
|
|
}
|
|
|
|
if (condExpr->getType()->isVectorType()) {
|
|
CGF.incrementProfileCounter(E);
|
|
|
|
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
|
|
llvm::Value *LHS = Visit(lhsExpr);
|
|
llvm::Value *RHS = Visit(rhsExpr);
|
|
|
|
llvm::Type *CondType = ConvertType(condExpr->getType());
|
|
auto *VecTy = cast<llvm::VectorType>(CondType);
|
|
llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
|
|
|
|
CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
|
|
return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
|
|
}
|
|
|
|
// If this is a really simple expression (like x ? 4 : 5), emit this as a
|
|
// select instead of as control flow. We can only do this if it is cheap and
|
|
// safe to evaluate the LHS and RHS unconditionally.
|
|
if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
|
|
isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
|
|
llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
|
|
llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
|
|
|
|
CGF.incrementProfileCounter(E, StepV);
|
|
|
|
llvm::Value *LHS = Visit(lhsExpr);
|
|
llvm::Value *RHS = Visit(rhsExpr);
|
|
if (!LHS) {
|
|
// If the conditional has void type, make sure we return a null Value*.
|
|
assert(!RHS && "LHS and RHS types must match");
|
|
return nullptr;
|
|
}
|
|
return Builder.CreateSelect(CondV, LHS, RHS, "cond");
|
|
}
|
|
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
|
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
|
CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
|
|
CGF.getProfileCount(lhsExpr));
|
|
|
|
CGF.EmitBlock(LHSBlock);
|
|
CGF.incrementProfileCounter(E);
|
|
eval.begin(CGF);
|
|
Value *LHS = Visit(lhsExpr);
|
|
eval.end(CGF);
|
|
|
|
LHSBlock = Builder.GetInsertBlock();
|
|
Builder.CreateBr(ContBlock);
|
|
|
|
CGF.EmitBlock(RHSBlock);
|
|
eval.begin(CGF);
|
|
Value *RHS = Visit(rhsExpr);
|
|
eval.end(CGF);
|
|
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
// If the LHS or RHS is a throw expression, it will be legitimately null.
|
|
if (!LHS)
|
|
return RHS;
|
|
if (!RHS)
|
|
return LHS;
|
|
|
|
// Create a PHI node for the real part.
|
|
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
|
|
PN->addIncoming(LHS, LHSBlock);
|
|
PN->addIncoming(RHS, RHSBlock);
|
|
return PN;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
|
|
return Visit(E->getChosenSubExpr());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
|
QualType Ty = VE->getType();
|
|
|
|
if (Ty->isVariablyModifiedType())
|
|
CGF.EmitVariablyModifiedType(Ty);
|
|
|
|
Address ArgValue = Address::invalid();
|
|
Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
|
|
|
|
llvm::Type *ArgTy = ConvertType(VE->getType());
|
|
|
|
// If EmitVAArg fails, emit an error.
|
|
if (!ArgPtr.isValid()) {
|
|
CGF.ErrorUnsupported(VE, "va_arg expression");
|
|
return llvm::UndefValue::get(ArgTy);
|
|
}
|
|
|
|
// FIXME Volatility.
|
|
llvm::Value *Val = Builder.CreateLoad(ArgPtr);
|
|
|
|
// If EmitVAArg promoted the type, we must truncate it.
|
|
if (ArgTy != Val->getType()) {
|
|
if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
|
|
Val = Builder.CreateIntToPtr(Val, ArgTy);
|
|
else
|
|
Val = Builder.CreateTrunc(Val, ArgTy);
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
|
|
return CGF.EmitBlockLiteral(block);
|
|
}
|
|
|
|
// Convert a vec3 to vec4, or vice versa.
|
|
static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
|
|
Value *Src, unsigned NumElementsDst) {
|
|
static constexpr int Mask[] = {0, 1, 2, -1};
|
|
return Builder.CreateShuffleVector(Src,
|
|
llvm::makeArrayRef(Mask, NumElementsDst));
|
|
}
|
|
|
|
// Create cast instructions for converting LLVM value \p Src to LLVM type \p
|
|
// DstTy. \p Src has the same size as \p DstTy. Both are single value types
|
|
// but could be scalar or vectors of different lengths, and either can be
|
|
// pointer.
|
|
// There are 4 cases:
|
|
// 1. non-pointer -> non-pointer : needs 1 bitcast
|
|
// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
|
|
// 3. pointer -> non-pointer
|
|
// a) pointer -> intptr_t : needs 1 ptrtoint
|
|
// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
|
|
// 4. non-pointer -> pointer
|
|
// a) intptr_t -> pointer : needs 1 inttoptr
|
|
// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
|
|
// Note: for cases 3b and 4b two casts are required since LLVM casts do not
|
|
// allow casting directly between pointer types and non-integer non-pointer
|
|
// types.
|
|
static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
|
|
const llvm::DataLayout &DL,
|
|
Value *Src, llvm::Type *DstTy,
|
|
StringRef Name = "") {
|
|
auto SrcTy = Src->getType();
|
|
|
|
// Case 1.
|
|
if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
|
|
return Builder.CreateBitCast(Src, DstTy, Name);
|
|
|
|
// Case 2.
|
|
if (SrcTy->isPointerTy() && DstTy->isPointerTy())
|
|
return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
|
|
|
|
// Case 3.
|
|
if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
|
|
// Case 3b.
|
|
if (!DstTy->isIntegerTy())
|
|
Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
|
|
// Cases 3a and 3b.
|
|
return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
|
|
}
|
|
|
|
// Case 4b.
|
|
if (!SrcTy->isIntegerTy())
|
|
Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
|
|
// Cases 4a and 4b.
|
|
return Builder.CreateIntToPtr(Src, DstTy, Name);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
|
|
Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
|
|
llvm::Type *DstTy = ConvertType(E->getType());
|
|
|
|
llvm::Type *SrcTy = Src->getType();
|
|
unsigned NumElementsSrc =
|
|
isa<llvm::VectorType>(SrcTy)
|
|
? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
|
|
: 0;
|
|
unsigned NumElementsDst =
|
|
isa<llvm::VectorType>(DstTy)
|
|
? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
|
|
: 0;
|
|
|
|
// Going from vec3 to non-vec3 is a special case and requires a shuffle
|
|
// vector to get a vec4, then a bitcast if the target type is different.
|
|
if (NumElementsSrc == 3 && NumElementsDst != 3) {
|
|
Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
|
|
Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
|
|
DstTy);
|
|
|
|
Src->setName("astype");
|
|
return Src;
|
|
}
|
|
|
|
// Going from non-vec3 to vec3 is a special case and requires a bitcast
|
|
// to vec4 if the original type is not vec4, then a shuffle vector to
|
|
// get a vec3.
|
|
if (NumElementsSrc != 3 && NumElementsDst == 3) {
|
|
auto *Vec4Ty = llvm::FixedVectorType::get(
|
|
cast<llvm::VectorType>(DstTy)->getElementType(), 4);
|
|
Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
|
|
Vec4Ty);
|
|
|
|
Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
|
|
Src->setName("astype");
|
|
return Src;
|
|
}
|
|
|
|
return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
|
|
Src, DstTy, "astype");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
|
|
return CGF.EmitAtomicExpr(E).getScalarVal();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Point into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Emit the computation of the specified expression of scalar type, ignoring
|
|
/// the result.
|
|
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
|
|
assert(E && hasScalarEvaluationKind(E->getType()) &&
|
|
"Invalid scalar expression to emit");
|
|
|
|
return ScalarExprEmitter(*this, IgnoreResultAssign)
|
|
.Visit(const_cast<Expr *>(E));
|
|
}
|
|
|
|
/// Emit a conversion from the specified type to the specified destination type,
|
|
/// both of which are LLVM scalar types.
|
|
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
|
|
QualType DstTy,
|
|
SourceLocation Loc) {
|
|
assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
|
|
"Invalid scalar expression to emit");
|
|
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
|
|
}
|
|
|
|
/// Emit a conversion from the specified complex type to the specified
|
|
/// destination type, where the destination type is an LLVM scalar type.
|
|
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
|
|
QualType SrcTy,
|
|
QualType DstTy,
|
|
SourceLocation Loc) {
|
|
assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
|
|
"Invalid complex -> scalar conversion");
|
|
return ScalarExprEmitter(*this)
|
|
.EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
|
|
}
|
|
|
|
|
|
llvm::Value *CodeGenFunction::
|
|
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
|
|
// object->isa or (*object).isa
|
|
// Generate code as for: *(Class*)object
|
|
|
|
Expr *BaseExpr = E->getBase();
|
|
Address Addr = Address::invalid();
|
|
if (BaseExpr->isPRValue()) {
|
|
Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
|
|
} else {
|
|
Addr = EmitLValue(BaseExpr).getAddress(*this);
|
|
}
|
|
|
|
// Cast the address to Class*.
|
|
Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
|
|
return MakeAddrLValue(Addr, E->getType());
|
|
}
|
|
|
|
|
|
LValue CodeGenFunction::EmitCompoundAssignmentLValue(
|
|
const CompoundAssignOperator *E) {
|
|
ScalarExprEmitter Scalar(*this);
|
|
Value *Result = nullptr;
|
|
switch (E->getOpcode()) {
|
|
#define COMPOUND_OP(Op) \
|
|
case BO_##Op##Assign: \
|
|
return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
|
|
Result)
|
|
COMPOUND_OP(Mul);
|
|
COMPOUND_OP(Div);
|
|
COMPOUND_OP(Rem);
|
|
COMPOUND_OP(Add);
|
|
COMPOUND_OP(Sub);
|
|
COMPOUND_OP(Shl);
|
|
COMPOUND_OP(Shr);
|
|
COMPOUND_OP(And);
|
|
COMPOUND_OP(Xor);
|
|
COMPOUND_OP(Or);
|
|
#undef COMPOUND_OP
|
|
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_Cmp:
|
|
case BO_And:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
case BO_Assign:
|
|
case BO_Comma:
|
|
llvm_unreachable("Not valid compound assignment operators");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled compound assignment operator");
|
|
}
|
|
|
|
struct GEPOffsetAndOverflow {
|
|
// The total (signed) byte offset for the GEP.
|
|
llvm::Value *TotalOffset;
|
|
// The offset overflow flag - true if the total offset overflows.
|
|
llvm::Value *OffsetOverflows;
|
|
};
|
|
|
|
/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
|
|
/// and compute the total offset it applies from it's base pointer BasePtr.
|
|
/// Returns offset in bytes and a boolean flag whether an overflow happened
|
|
/// during evaluation.
|
|
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
|
|
llvm::LLVMContext &VMContext,
|
|
CodeGenModule &CGM,
|
|
CGBuilderTy &Builder) {
|
|
const auto &DL = CGM.getDataLayout();
|
|
|
|
// The total (signed) byte offset for the GEP.
|
|
llvm::Value *TotalOffset = nullptr;
|
|
|
|
// Was the GEP already reduced to a constant?
|
|
if (isa<llvm::Constant>(GEPVal)) {
|
|
// Compute the offset by casting both pointers to integers and subtracting:
|
|
// GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
|
|
Value *BasePtr_int =
|
|
Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
|
|
Value *GEPVal_int =
|
|
Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
|
|
TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
|
|
return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
|
|
}
|
|
|
|
auto *GEP = cast<llvm::GEPOperator>(GEPVal);
|
|
assert(GEP->getPointerOperand() == BasePtr &&
|
|
"BasePtr must be the base of the GEP.");
|
|
assert(GEP->isInBounds() && "Expected inbounds GEP");
|
|
|
|
auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
|
|
|
|
// Grab references to the signed add/mul overflow intrinsics for intptr_t.
|
|
auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
|
|
auto *SAddIntrinsic =
|
|
CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
|
|
auto *SMulIntrinsic =
|
|
CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
|
|
|
|
// The offset overflow flag - true if the total offset overflows.
|
|
llvm::Value *OffsetOverflows = Builder.getFalse();
|
|
|
|
/// Return the result of the given binary operation.
|
|
auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
|
|
llvm::Value *RHS) -> llvm::Value * {
|
|
assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
|
|
|
|
// If the operands are constants, return a constant result.
|
|
if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
|
|
if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
|
|
llvm::APInt N;
|
|
bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
|
|
/*Signed=*/true, N);
|
|
if (HasOverflow)
|
|
OffsetOverflows = Builder.getTrue();
|
|
return llvm::ConstantInt::get(VMContext, N);
|
|
}
|
|
}
|
|
|
|
// Otherwise, compute the result with checked arithmetic.
|
|
auto *ResultAndOverflow = Builder.CreateCall(
|
|
(Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
|
|
OffsetOverflows = Builder.CreateOr(
|
|
Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
|
|
return Builder.CreateExtractValue(ResultAndOverflow, 0);
|
|
};
|
|
|
|
// Determine the total byte offset by looking at each GEP operand.
|
|
for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
|
|
GTI != GTE; ++GTI) {
|
|
llvm::Value *LocalOffset;
|
|
auto *Index = GTI.getOperand();
|
|
// Compute the local offset contributed by this indexing step:
|
|
if (auto *STy = GTI.getStructTypeOrNull()) {
|
|
// For struct indexing, the local offset is the byte position of the
|
|
// specified field.
|
|
unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
|
|
LocalOffset = llvm::ConstantInt::get(
|
|
IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
|
|
} else {
|
|
// Otherwise this is array-like indexing. The local offset is the index
|
|
// multiplied by the element size.
|
|
auto *ElementSize = llvm::ConstantInt::get(
|
|
IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
|
|
auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
|
|
LocalOffset = eval(BO_Mul, ElementSize, IndexS);
|
|
}
|
|
|
|
// If this is the first offset, set it as the total offset. Otherwise, add
|
|
// the local offset into the running total.
|
|
if (!TotalOffset || TotalOffset == Zero)
|
|
TotalOffset = LocalOffset;
|
|
else
|
|
TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
|
|
}
|
|
|
|
return {TotalOffset, OffsetOverflows};
|
|
}
|
|
|
|
Value *
|
|
CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
bool SignedIndices, bool IsSubtraction,
|
|
SourceLocation Loc, const Twine &Name) {
|
|
llvm::Type *PtrTy = Ptr->getType();
|
|
Value *GEPVal = Builder.CreateInBoundsGEP(
|
|
PtrTy->getPointerElementType(), Ptr, IdxList, Name);
|
|
|
|
// If the pointer overflow sanitizer isn't enabled, do nothing.
|
|
if (!SanOpts.has(SanitizerKind::PointerOverflow))
|
|
return GEPVal;
|
|
|
|
// Perform nullptr-and-offset check unless the nullptr is defined.
|
|
bool PerformNullCheck = !NullPointerIsDefined(
|
|
Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
|
|
// Check for overflows unless the GEP got constant-folded,
|
|
// and only in the default address space
|
|
bool PerformOverflowCheck =
|
|
!isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
|
|
|
|
if (!(PerformNullCheck || PerformOverflowCheck))
|
|
return GEPVal;
|
|
|
|
const auto &DL = CGM.getDataLayout();
|
|
|
|
SanitizerScope SanScope(this);
|
|
llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
|
|
|
|
GEPOffsetAndOverflow EvaluatedGEP =
|
|
EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
|
|
|
|
assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
|
|
EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
|
|
"If the offset got constant-folded, we don't expect that there was an "
|
|
"overflow.");
|
|
|
|
auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
|
|
|
|
// Common case: if the total offset is zero, and we are using C++ semantics,
|
|
// where nullptr+0 is defined, don't emit a check.
|
|
if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
|
|
return GEPVal;
|
|
|
|
// Now that we've computed the total offset, add it to the base pointer (with
|
|
// wrapping semantics).
|
|
auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
|
|
auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
|
|
|
|
llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
|
|
|
|
if (PerformNullCheck) {
|
|
// In C++, if the base pointer evaluates to a null pointer value,
|
|
// the only valid pointer this inbounds GEP can produce is also
|
|
// a null pointer, so the offset must also evaluate to zero.
|
|
// Likewise, if we have non-zero base pointer, we can not get null pointer
|
|
// as a result, so the offset can not be -intptr_t(BasePtr).
|
|
// In other words, both pointers are either null, or both are non-null,
|
|
// or the behaviour is undefined.
|
|
//
|
|
// C, however, is more strict in this regard, and gives more
|
|
// optimization opportunities: in C, additionally, nullptr+0 is undefined.
|
|
// So both the input to the 'gep inbounds' AND the output must not be null.
|
|
auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
|
|
auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
|
|
auto *Valid =
|
|
CGM.getLangOpts().CPlusPlus
|
|
? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
|
|
: Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
|
|
Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
|
|
}
|
|
|
|
if (PerformOverflowCheck) {
|
|
// The GEP is valid if:
|
|
// 1) The total offset doesn't overflow, and
|
|
// 2) The sign of the difference between the computed address and the base
|
|
// pointer matches the sign of the total offset.
|
|
llvm::Value *ValidGEP;
|
|
auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
|
|
if (SignedIndices) {
|
|
// GEP is computed as `unsigned base + signed offset`, therefore:
|
|
// * If offset was positive, then the computed pointer can not be
|
|
// [unsigned] less than the base pointer, unless it overflowed.
|
|
// * If offset was negative, then the computed pointer can not be
|
|
// [unsigned] greater than the bas pointere, unless it overflowed.
|
|
auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
|
|
auto *PosOrZeroOffset =
|
|
Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
|
|
llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
|
|
ValidGEP =
|
|
Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
|
|
} else if (!IsSubtraction) {
|
|
// GEP is computed as `unsigned base + unsigned offset`, therefore the
|
|
// computed pointer can not be [unsigned] less than base pointer,
|
|
// unless there was an overflow.
|
|
// Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
|
|
ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
|
|
} else {
|
|
// GEP is computed as `unsigned base - unsigned offset`, therefore the
|
|
// computed pointer can not be [unsigned] greater than base pointer,
|
|
// unless there was an overflow.
|
|
// Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
|
|
ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
|
|
}
|
|
ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
|
|
Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
|
|
}
|
|
|
|
assert(!Checks.empty() && "Should have produced some checks.");
|
|
|
|
llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
|
|
// Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
|
|
llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
|
|
EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
|
|
|
|
return GEPVal;
|
|
}
|