llvm-project/compiler-rt/lib/asan/tests/asan_test.cc

1199 lines
32 KiB
C++

//===-- asan_test.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
NOINLINE void *malloc_fff(size_t size) {
void *res = malloc/**/(size); break_optimization(0); return res;}
NOINLINE void *malloc_eee(size_t size) {
void *res = malloc_fff(size); break_optimization(0); return res;}
NOINLINE void *malloc_ddd(size_t size) {
void *res = malloc_eee(size); break_optimization(0); return res;}
NOINLINE void *malloc_ccc(size_t size) {
void *res = malloc_ddd(size); break_optimization(0); return res;}
NOINLINE void *malloc_bbb(size_t size) {
void *res = malloc_ccc(size); break_optimization(0); return res;}
NOINLINE void *malloc_aaa(size_t size) {
void *res = malloc_bbb(size); break_optimization(0); return res;}
#ifndef __APPLE__
NOINLINE void *memalign_fff(size_t alignment, size_t size) {
void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
NOINLINE void *memalign_eee(size_t alignment, size_t size) {
void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
#endif // __APPLE__
NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
template<typename T>
NOINLINE void uaf_test(int size, int off) {
char *p = (char *)malloc_aaa(size);
free_aaa(p);
for (int i = 1; i < 100; i++)
free_aaa(malloc_aaa(i));
fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
(long)sizeof(T), p, off);
asan_write((T*)(p + off));
}
TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
#if defined(__has_feature) && __has_feature(address_sanitizer)
bool asan = 1;
#elif defined(__SANITIZE_ADDRESS__)
bool asan = 1;
#else
bool asan = 0;
#endif
EXPECT_EQ(true, asan);
}
TEST(AddressSanitizer, SimpleDeathTest) {
EXPECT_DEATH(exit(1), "");
}
TEST(AddressSanitizer, VariousMallocsTest) {
int *a = (int*)malloc(100 * sizeof(int));
a[50] = 0;
free(a);
int *r = (int*)malloc(10);
r = (int*)realloc(r, 2000 * sizeof(int));
r[1000] = 0;
free(r);
int *b = new int[100];
b[50] = 0;
delete [] b;
int *c = new int;
*c = 0;
delete c;
#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
int *pm;
int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
EXPECT_EQ(0, pm_res);
free(pm);
#endif
#if !defined(__APPLE__)
int *ma = (int*)memalign(kPageSize, kPageSize);
EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
ma[123] = 0;
free(ma);
#endif // __APPLE__
}
TEST(AddressSanitizer, CallocTest) {
int *a = (int*)calloc(100, sizeof(int));
EXPECT_EQ(0, a[10]);
free(a);
}
TEST(AddressSanitizer, VallocTest) {
void *a = valloc(100);
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
free(a);
}
#ifndef __APPLE__
TEST(AddressSanitizer, PvallocTest) {
char *a = (char*)pvalloc(kPageSize + 100);
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
a[kPageSize + 101] = 1; // we should not report an error here.
free(a);
a = (char*)pvalloc(0); // pvalloc(0) should allocate at least one page.
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
a[101] = 1; // we should not report an error here.
free(a);
}
#endif // __APPLE__
void *TSDWorker(void *test_key) {
if (test_key) {
pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
}
return NULL;
}
void TSDDestructor(void *tsd) {
// Spawning a thread will check that the current thread id is not -1.
pthread_t th;
PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
PTHREAD_JOIN(th, NULL);
}
// This tests triggers the thread-specific data destruction fiasco which occurs
// if we don't manage the TSD destructors ourselves. We create a new pthread
// key with a non-NULL destructor which is likely to be put after the destructor
// of AsanThread in the list of destructors.
// In this case the TSD for AsanThread will be destroyed before TSDDestructor
// is called for the child thread, and a CHECK will fail when we call
// pthread_create() to spawn the grandchild.
TEST(AddressSanitizer, DISABLED_TSDTest) {
pthread_t th;
pthread_key_t test_key;
pthread_key_create(&test_key, TSDDestructor);
PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
PTHREAD_JOIN(th, NULL);
pthread_key_delete(test_key);
}
TEST(AddressSanitizer, UAF_char) {
const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
}
TEST(AddressSanitizer, UAF_long_double) {
if (sizeof(long double) == sizeof(double)) return;
long double *p = Ident(new long double[10]);
EXPECT_DEATH(Ident(p)[12] = 0, "WRITE of size 10");
EXPECT_DEATH(Ident(p)[0] = Ident(p)[12], "READ of size 10");
delete [] Ident(p);
}
struct Packed5 {
int x;
char c;
} __attribute__((packed));
TEST(AddressSanitizer, UAF_Packed5) {
Packed5 *p = Ident(new Packed5[2]);
EXPECT_DEATH(p[0] = p[3], "READ of size 5");
EXPECT_DEATH(p[3] = p[0], "WRITE of size 5");
delete [] Ident(p);
}
#if ASAN_HAS_BLACKLIST
TEST(AddressSanitizer, IgnoreTest) {
int *x = Ident(new int);
delete Ident(x);
*x = 0;
}
#endif // ASAN_HAS_BLACKLIST
struct StructWithBitField {
int bf1:1;
int bf2:1;
int bf3:1;
int bf4:29;
};
TEST(AddressSanitizer, BitFieldPositiveTest) {
StructWithBitField *x = new StructWithBitField;
delete Ident(x);
EXPECT_DEATH(x->bf1 = 0, "use-after-free");
EXPECT_DEATH(x->bf2 = 0, "use-after-free");
EXPECT_DEATH(x->bf3 = 0, "use-after-free");
EXPECT_DEATH(x->bf4 = 0, "use-after-free");
}
struct StructWithBitFields_8_24 {
int a:8;
int b:24;
};
TEST(AddressSanitizer, BitFieldNegativeTest) {
StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
x->a = 0;
x->b = 0;
delete Ident(x);
}
TEST(AddressSanitizer, OutOfMemoryTest) {
size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
EXPECT_EQ(0, realloc(0, size));
EXPECT_EQ(0, realloc(0, ~Ident(0)));
EXPECT_EQ(0, malloc(size));
EXPECT_EQ(0, malloc(~Ident(0)));
EXPECT_EQ(0, calloc(1, size));
EXPECT_EQ(0, calloc(1, ~Ident(0)));
}
#if ASAN_NEEDS_SEGV
namespace {
const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
TEST(AddressSanitizer, WildAddressTest) {
char *c = (char*)0x123;
EXPECT_DEATH(*c = 0, kUnknownCrash);
}
void my_sigaction_sighandler(int, siginfo_t*, void*) {
fprintf(stderr, kOverriddenHandler);
exit(1);
}
void my_signal_sighandler(int signum) {
fprintf(stderr, kOverriddenHandler);
exit(1);
}
TEST(AddressSanitizer, SignalTest) {
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_sigaction = my_sigaction_sighandler;
sigact.sa_flags = SA_SIGINFO;
// ASan should silently ignore sigaction()...
EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
#ifdef __APPLE__
EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
#endif
char *c = (char*)0x123;
EXPECT_DEATH(*c = 0, kUnknownCrash);
// ... and signal().
EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
EXPECT_DEATH(*c = 0, kUnknownCrash);
}
} // namespace
#endif
static void TestLargeMalloc(size_t size) {
char buff[1024];
sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
}
TEST(AddressSanitizer, LargeMallocTest) {
const int max_size = (SANITIZER_WORDSIZE == 32) ? 1 << 26 : 1 << 28;
for (int i = 113; i < max_size; i = i * 2 + 13) {
TestLargeMalloc(i);
}
}
TEST(AddressSanitizer, HugeMallocTest) {
if (SANITIZER_WORDSIZE != 64) return;
size_t n_megs = 4100;
TestLargeMalloc(n_megs << 20);
}
#ifndef __APPLE__
void MemalignRun(size_t align, size_t size, int idx) {
char *p = (char *)memalign(align, size);
Ident(p)[idx] = 0;
free(p);
}
TEST(AddressSanitizer, memalign) {
for (int align = 16; align <= (1 << 23); align *= 2) {
size_t size = align * 5;
EXPECT_DEATH(MemalignRun(align, size, -1),
"is located 1 bytes to the left");
EXPECT_DEATH(MemalignRun(align, size, size + 1),
"is located 1 bytes to the right");
}
}
#endif
void *ManyThreadsWorker(void *a) {
for (int iter = 0; iter < 100; iter++) {
for (size_t size = 100; size < 2000; size *= 2) {
free(Ident(malloc(size)));
}
}
return 0;
}
TEST(AddressSanitizer, ManyThreadsTest) {
const size_t kNumThreads =
(SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
pthread_t t[kNumThreads];
for (size_t i = 0; i < kNumThreads; i++) {
PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
}
for (size_t i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);
}
}
TEST(AddressSanitizer, ReallocTest) {
const int kMinElem = 5;
int *ptr = (int*)malloc(sizeof(int) * kMinElem);
ptr[3] = 3;
for (int i = 0; i < 10000; i++) {
ptr = (int*)realloc(ptr,
(my_rand() % 1000 + kMinElem) * sizeof(int));
EXPECT_EQ(3, ptr[3]);
}
free(ptr);
// Realloc pointer returned by malloc(0).
int *ptr2 = Ident((int*)malloc(0));
ptr2 = Ident((int*)realloc(ptr2, sizeof(*ptr2)));
*ptr2 = 42;
EXPECT_EQ(42, *ptr2);
free(ptr2);
}
TEST(AddressSanitizer, ZeroSizeMallocTest) {
// Test that malloc(0) and similar functions don't return NULL.
void *ptr = Ident(malloc(0));
EXPECT_TRUE(NULL != ptr);
free(ptr);
#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
int pm_res = posix_memalign(&ptr, 1<<20, 0);
EXPECT_EQ(0, pm_res);
EXPECT_TRUE(NULL != ptr);
free(ptr);
#endif
int *int_ptr = new int[0];
int *int_ptr2 = new int[0];
EXPECT_TRUE(NULL != int_ptr);
EXPECT_TRUE(NULL != int_ptr2);
EXPECT_NE(int_ptr, int_ptr2);
delete[] int_ptr;
delete[] int_ptr2;
}
#ifndef __APPLE__
static const char *kMallocUsableSizeErrorMsg =
"AddressSanitizer: attempting to call malloc_usable_size()";
TEST(AddressSanitizer, MallocUsableSizeTest) {
const size_t kArraySize = 100;
char *array = Ident((char*)malloc(kArraySize));
int *int_ptr = Ident(new int);
EXPECT_EQ(0U, malloc_usable_size(NULL));
EXPECT_EQ(kArraySize, malloc_usable_size(array));
EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
kMallocUsableSizeErrorMsg);
free(array);
EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
}
#endif
void WrongFree() {
int *x = (int*)malloc(100 * sizeof(int));
// Use the allocated memory, otherwise Clang will optimize it out.
Ident(x);
free(x + 1);
}
TEST(AddressSanitizer, WrongFreeTest) {
EXPECT_DEATH(WrongFree(), ASAN_PCRE_DOTALL
"ERROR: AddressSanitizer: attempting free.*not malloc"
".*is located 4 bytes inside of 400-byte region"
".*allocated by thread");
}
void DoubleFree() {
int *x = (int*)malloc(100 * sizeof(int));
fprintf(stderr, "DoubleFree: x=%p\n", x);
free(x);
free(x);
fprintf(stderr, "should have failed in the second free(%p)\n", x);
abort();
}
TEST(AddressSanitizer, DoubleFreeTest) {
EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
"ERROR: AddressSanitizer: attempting double-free"
".*is located 0 bytes inside of 400-byte region"
".*freed by thread T0 here"
".*previously allocated by thread T0 here");
}
template<int kSize>
NOINLINE void SizedStackTest() {
char a[kSize];
char *A = Ident((char*)&a);
for (size_t i = 0; i < kSize; i++)
A[i] = i;
EXPECT_DEATH(A[-1] = 0, "");
EXPECT_DEATH(A[-20] = 0, "");
EXPECT_DEATH(A[-31] = 0, "");
EXPECT_DEATH(A[kSize] = 0, "");
EXPECT_DEATH(A[kSize + 1] = 0, "");
EXPECT_DEATH(A[kSize + 10] = 0, "");
EXPECT_DEATH(A[kSize + 31] = 0, "");
}
TEST(AddressSanitizer, SimpleStackTest) {
SizedStackTest<1>();
SizedStackTest<2>();
SizedStackTest<3>();
SizedStackTest<4>();
SizedStackTest<5>();
SizedStackTest<6>();
SizedStackTest<7>();
SizedStackTest<16>();
SizedStackTest<25>();
SizedStackTest<34>();
SizedStackTest<43>();
SizedStackTest<51>();
SizedStackTest<62>();
SizedStackTest<64>();
SizedStackTest<128>();
}
TEST(AddressSanitizer, ManyStackObjectsTest) {
char XXX[10];
char YYY[20];
char ZZZ[30];
Ident(XXX);
Ident(YYY);
EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
}
#if 0 // This test requires online symbolizer.
// Moved to lit_tests/stack-oob-frames.cc.
// Reenable here once we have online symbolizer by default.
NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
char d[4] = {0};
char *D = Ident(d);
switch (frame) {
case 3: a[5]++; break;
case 2: b[5]++; break;
case 1: c[5]++; break;
case 0: D[5]++; break;
}
}
NOINLINE static void Frame1(int frame, char *a, char *b) {
char c[4] = {0}; Frame0(frame, a, b, c);
break_optimization(0);
}
NOINLINE static void Frame2(int frame, char *a) {
char b[4] = {0}; Frame1(frame, a, b);
break_optimization(0);
}
NOINLINE static void Frame3(int frame) {
char a[4] = {0}; Frame2(frame, a);
break_optimization(0);
}
TEST(AddressSanitizer, GuiltyStackFrame0Test) {
EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
}
TEST(AddressSanitizer, GuiltyStackFrame1Test) {
EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
}
TEST(AddressSanitizer, GuiltyStackFrame2Test) {
EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
}
TEST(AddressSanitizer, GuiltyStackFrame3Test) {
EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
}
#endif
NOINLINE void LongJmpFunc1(jmp_buf buf) {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
longjmp(buf, 1);
}
NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
__builtin_longjmp((void**)buf, 1);
}
NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
_longjmp(buf, 1);
}
NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
siglongjmp(buf, 1);
}
NOINLINE void TouchStackFunc() {
int a[100]; // long array will intersect with redzones from LongJmpFunc1.
int *A = Ident(a);
for (int i = 0; i < 100; i++)
A[i] = i*i;
}
// Test that we handle longjmp and do not report fals positives on stack.
TEST(AddressSanitizer, LongJmpTest) {
static jmp_buf buf;
if (!setjmp(buf)) {
LongJmpFunc1(buf);
} else {
TouchStackFunc();
}
}
#if not defined(__ANDROID__)
TEST(AddressSanitizer, BuiltinLongJmpTest) {
static jmp_buf buf;
if (!__builtin_setjmp((void**)buf)) {
BuiltinLongJmpFunc1(buf);
} else {
TouchStackFunc();
}
}
#endif // not defined(__ANDROID__)
TEST(AddressSanitizer, UnderscopeLongJmpTest) {
static jmp_buf buf;
if (!_setjmp(buf)) {
UnderscopeLongJmpFunc1(buf);
} else {
TouchStackFunc();
}
}
TEST(AddressSanitizer, SigLongJmpTest) {
static sigjmp_buf buf;
if (!sigsetjmp(buf, 1)) {
SigLongJmpFunc1(buf);
} else {
TouchStackFunc();
}
}
#ifdef __EXCEPTIONS
NOINLINE void ThrowFunc() {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
ASAN_THROW(1);
}
TEST(AddressSanitizer, CxxExceptionTest) {
if (ASAN_UAR) return;
// TODO(kcc): this test crashes on 32-bit for some reason...
if (SANITIZER_WORDSIZE == 32) return;
try {
ThrowFunc();
} catch(...) {}
TouchStackFunc();
}
#endif
void *ThreadStackReuseFunc1(void *unused) {
// create three red zones for these two stack objects.
int a;
int b;
int *A = Ident(&a);
int *B = Ident(&b);
*A = *B;
pthread_exit(0);
return 0;
}
void *ThreadStackReuseFunc2(void *unused) {
TouchStackFunc();
return 0;
}
TEST(AddressSanitizer, ThreadStackReuseTest) {
pthread_t t;
PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
PTHREAD_JOIN(t, 0);
PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
PTHREAD_JOIN(t, 0);
}
#if defined(__i386__) || defined(__x86_64__)
TEST(AddressSanitizer, Store128Test) {
char *a = Ident((char*)malloc(Ident(12)));
char *p = a;
if (((uintptr_t)a % 16) != 0)
p = a + 8;
assert(((uintptr_t)p % 16) == 0);
__m128i value_wide = _mm_set1_epi16(0x1234);
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
"AddressSanitizer: heap-buffer-overflow");
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
"WRITE of size 16");
EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
"located 0 bytes to the right of 12-byte");
free(a);
}
#endif
string RightOOBErrorMessage(int oob_distance, bool is_write) {
assert(oob_distance >= 0);
char expected_str[100];
sprintf(expected_str, ASAN_PCRE_DOTALL
"buffer-overflow.*%s.*located %d bytes to the right",
is_write ? "WRITE" : "READ", oob_distance);
return string(expected_str);
}
string RightOOBWriteMessage(int oob_distance) {
return RightOOBErrorMessage(oob_distance, /*is_write*/true);
}
string RightOOBReadMessage(int oob_distance) {
return RightOOBErrorMessage(oob_distance, /*is_write*/false);
}
string LeftOOBErrorMessage(int oob_distance, bool is_write) {
assert(oob_distance > 0);
char expected_str[100];
sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left",
is_write ? "WRITE" : "READ", oob_distance);
return string(expected_str);
}
string LeftOOBWriteMessage(int oob_distance) {
return LeftOOBErrorMessage(oob_distance, /*is_write*/true);
}
string LeftOOBReadMessage(int oob_distance) {
return LeftOOBErrorMessage(oob_distance, /*is_write*/false);
}
string LeftOOBAccessMessage(int oob_distance) {
assert(oob_distance > 0);
char expected_str[100];
sprintf(expected_str, "located %d bytes to the left", oob_distance);
return string(expected_str);
}
char* MallocAndMemsetString(size_t size, char ch) {
char *s = Ident((char*)malloc(size));
memset(s, ch, size);
return s;
}
char* MallocAndMemsetString(size_t size) {
return MallocAndMemsetString(size, 'z');
}
#if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
#define READ_TEST(READ_N_BYTES) \
char *x = new char[10]; \
int fd = open("/proc/self/stat", O_RDONLY); \
ASSERT_GT(fd, 0); \
EXPECT_DEATH(READ_N_BYTES, \
ASAN_PCRE_DOTALL \
"AddressSanitizer: heap-buffer-overflow" \
".* is located 0 bytes to the right of 10-byte region"); \
close(fd); \
delete [] x; \
TEST(AddressSanitizer, pread) {
READ_TEST(pread(fd, x, 15, 0));
}
TEST(AddressSanitizer, pread64) {
READ_TEST(pread64(fd, x, 15, 0));
}
TEST(AddressSanitizer, read) {
READ_TEST(read(fd, x, 15));
}
#endif // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
// This test case fails
// Clang optimizes memcpy/memset calls which lead to unaligned access
TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
int size = Ident(4096);
char *s = Ident((char*)malloc(size));
EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0));
free(s);
}
// TODO(samsonov): Add a test with malloc(0)
// TODO(samsonov): Add tests for str* and mem* functions.
NOINLINE static int LargeFunction(bool do_bad_access) {
int *x = new int[100];
x[0]++;
x[1]++;
x[2]++;
x[3]++;
x[4]++;
x[5]++;
x[6]++;
x[7]++;
x[8]++;
x[9]++;
x[do_bad_access ? 100 : 0]++; int res = __LINE__;
x[10]++;
x[11]++;
x[12]++;
x[13]++;
x[14]++;
x[15]++;
x[16]++;
x[17]++;
x[18]++;
x[19]++;
delete x;
return res;
}
// Test the we have correct debug info for the failing instruction.
// This test requires the in-process symbolizer to be enabled by default.
TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
int failing_line = LargeFunction(false);
char expected_warning[128];
sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
EXPECT_DEATH(LargeFunction(true), expected_warning);
}
// Check that we unwind and symbolize correctly.
TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
int *a = (int*)malloc_aaa(sizeof(int));
*a = 1;
free_aaa(a);
EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
"malloc_fff.*malloc_eee.*malloc_ddd");
}
static bool TryToSetThreadName(const char *name) {
#if defined(__linux__) && defined(PR_SET_NAME)
return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
#else
return false;
#endif
}
void *ThreadedTestAlloc(void *a) {
EXPECT_EQ(true, TryToSetThreadName("AllocThr"));
int **p = (int**)a;
*p = new int;
return 0;
}
void *ThreadedTestFree(void *a) {
EXPECT_EQ(true, TryToSetThreadName("FreeThr"));
int **p = (int**)a;
delete *p;
return 0;
}
void *ThreadedTestUse(void *a) {
EXPECT_EQ(true, TryToSetThreadName("UseThr"));
int **p = (int**)a;
**p = 1;
return 0;
}
void ThreadedTestSpawn() {
pthread_t t;
int *x;
PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
PTHREAD_JOIN(t, 0);
PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
PTHREAD_JOIN(t, 0);
PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
PTHREAD_JOIN(t, 0);
}
TEST(AddressSanitizer, ThreadedTest) {
EXPECT_DEATH(ThreadedTestSpawn(),
ASAN_PCRE_DOTALL
"Thread T.*created"
".*Thread T.*created"
".*Thread T.*created");
}
void *ThreadedTestFunc(void *unused) {
// Check if prctl(PR_SET_NAME) is supported. Return if not.
if (!TryToSetThreadName("TestFunc"))
return 0;
EXPECT_DEATH(ThreadedTestSpawn(),
ASAN_PCRE_DOTALL
"WRITE .*thread T. .UseThr."
".*freed by thread T. .FreeThr. here:"
".*previously allocated by thread T. .AllocThr. here:"
".*Thread T. .UseThr. created by T.*TestFunc"
".*Thread T. .FreeThr. created by T"
".*Thread T. .AllocThr. created by T"
"");
return 0;
}
TEST(AddressSanitizer, ThreadNamesTest) {
// Run ThreadedTestFunc in a separate thread because it tries to set a
// thread name and we don't want to change the main thread's name.
pthread_t t;
PTHREAD_CREATE(&t, 0, ThreadedTestFunc, 0);
PTHREAD_JOIN(t, 0);
}
#if ASAN_NEEDS_SEGV
TEST(AddressSanitizer, ShadowGapTest) {
#if SANITIZER_WORDSIZE == 32
char *addr = (char*)0x22000000;
#else
char *addr = (char*)0x0000100000080000;
#endif
EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
}
#endif // ASAN_NEEDS_SEGV
extern "C" {
NOINLINE static void UseThenFreeThenUse() {
char *x = Ident((char*)malloc(8));
*x = 1;
free_aaa(x);
*x = 2;
}
}
TEST(AddressSanitizer, UseThenFreeThenUseTest) {
EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
}
TEST(AddressSanitizer, StrDupTest) {
free(strdup(Ident("123")));
}
// Currently we create and poison redzone at right of global variables.
static char static110[110];
const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
static const char StaticConstGlob[3] = {9, 8, 7};
TEST(AddressSanitizer, GlobalTest) {
static char func_static15[15];
static char fs1[10];
static char fs2[10];
static char fs3[10];
glob5[Ident(0)] = 0;
glob5[Ident(1)] = 0;
glob5[Ident(2)] = 0;
glob5[Ident(3)] = 0;
glob5[Ident(4)] = 0;
EXPECT_DEATH(glob5[Ident(5)] = 0,
"0 bytes to the right of global variable.*glob5.* size 5");
EXPECT_DEATH(glob5[Ident(5+6)] = 0,
"6 bytes to the right of global variable.*glob5.* size 5");
Ident(static110); // avoid optimizations
static110[Ident(0)] = 0;
static110[Ident(109)] = 0;
EXPECT_DEATH(static110[Ident(110)] = 0,
"0 bytes to the right of global variable");
EXPECT_DEATH(static110[Ident(110+7)] = 0,
"7 bytes to the right of global variable");
Ident(func_static15); // avoid optimizations
func_static15[Ident(0)] = 0;
EXPECT_DEATH(func_static15[Ident(15)] = 0,
"0 bytes to the right of global variable");
EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
"9 bytes to the right of global variable");
Ident(fs1);
Ident(fs2);
Ident(fs3);
// We don't create left redzones, so this is not 100% guaranteed to fail.
// But most likely will.
EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
"is located 1 bytes to the right of .*ConstGlob");
EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
"is located 2 bytes to the right of .*StaticConstGlob");
// call stuff from another file.
GlobalsTest(0);
}
TEST(AddressSanitizer, GlobalStringConstTest) {
static const char *zoo = "FOOBAR123";
const char *p = Ident(zoo);
EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
}
TEST(AddressSanitizer, FileNameInGlobalReportTest) {
static char zoo[10];
const char *p = Ident(zoo);
// The file name should be present in the report.
EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
}
int *ReturnsPointerToALocalObject() {
int a = 0;
return Ident(&a);
}
#if ASAN_UAR == 1
TEST(AddressSanitizer, LocalReferenceReturnTest) {
int *(*f)() = Ident(ReturnsPointerToALocalObject);
int *p = f();
// Call 'f' a few more times, 'p' should still be poisoned.
for (int i = 0; i < 32; i++)
f();
EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
}
#endif
template <int kSize>
NOINLINE static void FuncWithStack() {
char x[kSize];
Ident(x)[0] = 0;
Ident(x)[kSize-1] = 0;
}
static void LotsOfStackReuse() {
int LargeStack[10000];
Ident(LargeStack)[0] = 0;
for (int i = 0; i < 10000; i++) {
FuncWithStack<128 * 1>();
FuncWithStack<128 * 2>();
FuncWithStack<128 * 4>();
FuncWithStack<128 * 8>();
FuncWithStack<128 * 16>();
FuncWithStack<128 * 32>();
FuncWithStack<128 * 64>();
FuncWithStack<128 * 128>();
FuncWithStack<128 * 256>();
FuncWithStack<128 * 512>();
Ident(LargeStack)[0] = 0;
}
}
TEST(AddressSanitizer, StressStackReuseTest) {
LotsOfStackReuse();
}
TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
const int kNumThreads = 20;
pthread_t t[kNumThreads];
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
}
for (int i = 0; i < kNumThreads; i++) {
PTHREAD_JOIN(t[i], 0);
}
}
static void *PthreadExit(void *a) {
pthread_exit(0);
return 0;
}
TEST(AddressSanitizer, PthreadExitTest) {
pthread_t t;
for (int i = 0; i < 1000; i++) {
PTHREAD_CREATE(&t, 0, PthreadExit, 0);
PTHREAD_JOIN(t, 0);
}
}
#ifdef __EXCEPTIONS
NOINLINE static void StackReuseAndException() {
int large_stack[1000];
Ident(large_stack);
ASAN_THROW(1);
}
// TODO(kcc): support exceptions with use-after-return.
TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
for (int i = 0; i < 10000; i++) {
try {
StackReuseAndException();
} catch(...) {
}
}
}
#endif
TEST(AddressSanitizer, MlockTest) {
EXPECT_EQ(0, mlockall(MCL_CURRENT));
EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
EXPECT_EQ(0, munlockall());
EXPECT_EQ(0, munlock((void*)0x987, 0x654));
}
struct LargeStruct {
int foo[100];
};
// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
// Struct copy should not cause asan warning even if lhs == rhs.
TEST(AddressSanitizer, LargeStructCopyTest) {
LargeStruct a;
*Ident(&a) = *Ident(&a);
}
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
static void NoAddressSafety() {
char *foo = new char[10];
Ident(foo)[10] = 0;
delete [] foo;
}
TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
Ident(NoAddressSafety)();
}
// It doesn't work on Android, as calls to new/delete go through malloc/free.
#if !defined(ANDROID) && !defined(__ANDROID__)
static string MismatchStr(const string &str) {
return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str;
}
TEST(AddressSanitizer, AllocDeallocMismatch) {
EXPECT_DEATH(free(Ident(new int)),
MismatchStr("operator new vs free"));
EXPECT_DEATH(free(Ident(new int[2])),
MismatchStr("operator new \\[\\] vs free"));
EXPECT_DEATH(delete (Ident(new int[2])),
MismatchStr("operator new \\[\\] vs operator delete"));
EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))),
MismatchStr("malloc vs operator delete"));
EXPECT_DEATH(delete [] (Ident(new int)),
MismatchStr("operator new vs operator delete \\[\\]"));
EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))),
MismatchStr("malloc vs operator delete \\[\\]"));
}
#endif
// ------------------ demo tests; run each one-by-one -------------
// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
ThreadedTestSpawn();
}
void *SimpleBugOnSTack(void *x = 0) {
char a[20];
Ident(a)[20] = 0;
return 0;
}
TEST(AddressSanitizer, DISABLED_DemoStackTest) {
SimpleBugOnSTack();
}
TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
pthread_t t;
PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
PTHREAD_JOIN(t, 0);
}
TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
uaf_test<U1>(10, 0);
}
TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
uaf_test<U1>(10, -2);
}
TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
uaf_test<U1>(10, 10);
}
TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
uaf_test<U1>(kLargeMalloc, 0);
}
TEST(AddressSanitizer, DISABLED_DemoOOM) {
size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
printf("%p\n", malloc(size));
}
TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
DoubleFree();
}
TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
int *a = 0;
Ident(a)[10] = 0;
}
TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
static char a[100];
static char b[100];
static char c[100];
Ident(a);
Ident(b);
Ident(c);
Ident(a)[5] = 0;
Ident(b)[105] = 0;
Ident(a)[5] = 0;
}
TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
const size_t kAllocSize = (1 << 28) - 1024;
size_t total_size = 0;
while (true) {
char *x = (char*)malloc(kAllocSize);
memset(x, 0, kAllocSize);
total_size += kAllocSize;
fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
}
}
// http://code.google.com/p/address-sanitizer/issues/detail?id=66
TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
for (int i = 0; i < 1000000; i++) {
delete [] (Ident(new char [8644]));
}
char *x = new char[8192];
EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
delete [] Ident(x);
}
// Test that instrumentation of stack allocations takes into account
// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
TEST(AddressSanitizer, LongDoubleNegativeTest) {
long double a, b;
static long double c;
memcpy(Ident(&a), Ident(&b), sizeof(long double));
memcpy(Ident(&c), Ident(&b), sizeof(long double));
}