llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp

4347 lines
177 KiB
C++

//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "legalizedag"
//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class SelectionDAGLegalize {
const TargetMachine &TM;
const TargetLowering &TLI;
SelectionDAG &DAG;
/// \brief The set of nodes which have already been legalized. We hold a
/// reference to it in order to update as necessary on node deletion.
SmallPtrSetImpl<SDNode *> &LegalizedNodes;
/// \brief A set of all the nodes updated during legalization.
SmallSetVector<SDNode *, 16> *UpdatedNodes;
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(*DAG.getContext(), VT);
}
// Libcall insertion helpers.
public:
SelectionDAGLegalize(SelectionDAG &DAG,
SmallPtrSetImpl<SDNode *> &LegalizedNodes,
SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
: TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
/// \brief Legalizes the given operation.
void LegalizeOp(SDNode *Node);
private:
SDValue OptimizeFloatStore(StoreSDNode *ST);
void LegalizeLoadOps(SDNode *Node);
void LegalizeStoreOps(SDNode *Node);
/// Some targets cannot handle a variable
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
SDValue Idx, SDLoc dl);
SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
SDValue Idx, SDLoc dl);
/// Return a vector shuffle operation which
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
SDValue N1, SDValue N2,
ArrayRef<int> Mask) const;
bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
bool &NeedInvert, SDLoc dl);
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
unsigned NumOps, bool isSigned, SDLoc dl);
std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
SDNode *Node, bool isSigned);
SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128);
SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
RTLIB::Libcall Call_I8,
RTLIB::Libcall Call_I16,
RTLIB::Libcall Call_I32,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128);
void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
SDValue ExpandBUILD_VECTOR(SDNode *Node);
SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
SmallVectorImpl<SDValue> &Results);
SDValue ExpandFCOPYSIGN(SDNode *Node);
SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
SDLoc dl);
SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
SDLoc dl);
SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
SDLoc dl);
SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
SDValue ExpandInsertToVectorThroughStack(SDValue Op);
SDValue ExpandVectorBuildThroughStack(SDNode* Node);
SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
void ExpandNode(SDNode *Node);
void PromoteNode(SDNode *Node);
public:
// Node replacement helpers
void ReplacedNode(SDNode *N) {
LegalizedNodes.erase(N);
if (UpdatedNodes)
UpdatedNodes->insert(N);
}
void ReplaceNode(SDNode *Old, SDNode *New) {
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
dbgs() << " with: "; New->dump(&DAG));
assert(Old->getNumValues() == New->getNumValues() &&
"Replacing one node with another that produces a different number "
"of values!");
DAG.ReplaceAllUsesWith(Old, New);
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
if (UpdatedNodes)
UpdatedNodes->insert(New);
ReplacedNode(Old);
}
void ReplaceNode(SDValue Old, SDValue New) {
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
dbgs() << " with: "; New->dump(&DAG));
DAG.ReplaceAllUsesWith(Old, New);
DAG.TransferDbgValues(Old, New);
if (UpdatedNodes)
UpdatedNodes->insert(New.getNode());
ReplacedNode(Old.getNode());
}
void ReplaceNode(SDNode *Old, const SDValue *New) {
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
DAG.ReplaceAllUsesWith(Old, New);
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
DEBUG(dbgs() << (i == 0 ? " with: "
: " and: ");
New[i]->dump(&DAG));
DAG.TransferDbgValues(SDValue(Old, i), New[i]);
if (UpdatedNodes)
UpdatedNodes->insert(New[i].getNode());
}
ReplacedNode(Old);
}
};
}
/// Return a vector shuffle operation which
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue
SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
SDValue N1, SDValue N2,
ArrayRef<int> Mask) const {
unsigned NumMaskElts = VT.getVectorNumElements();
unsigned NumDestElts = NVT.getVectorNumElements();
unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
if (NumEltsGrowth == 1)
return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
SmallVector<int, 8> NewMask;
for (unsigned i = 0; i != NumMaskElts; ++i) {
int Idx = Mask[i];
for (unsigned j = 0; j != NumEltsGrowth; ++j) {
if (Idx < 0)
NewMask.push_back(-1);
else
NewMask.push_back(Idx * NumEltsGrowth + j);
}
}
assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
}
/// Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
SDValue
SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
bool Extend = false;
SDLoc dl(CFP);
// If a FP immediate is precise when represented as a float and if the
// target can do an extending load from float to double, we put it into
// the constant pool as a float, even if it's is statically typed as a
// double. This shrinks FP constants and canonicalizes them for targets where
// an FP extending load is the same cost as a normal load (such as on the x87
// fp stack or PPC FP unit).
EVT VT = CFP->getValueType(0);
ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
if (!UseCP) {
assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
}
EVT OrigVT = VT;
EVT SVT = VT;
while (SVT != MVT::f32 && SVT != MVT::f16) {
SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
// Only do this if the target has a native EXTLOAD instruction from
// smaller type.
TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
TLI.ShouldShrinkFPConstant(OrigVT)) {
Type *SType = SVT.getTypeForEVT(*DAG.getContext());
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
VT = SVT;
Extend = true;
}
}
SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
if (Extend) {
SDValue Result =
DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
DAG.getEntryNode(),
CPIdx, MachinePointerInfo::getConstantPool(),
VT, false, false, false, Alignment);
return Result;
}
SDValue Result =
DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(), false, false, false,
Alignment);
return Result;
}
/// Expands an unaligned store to 2 half-size stores.
static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
const TargetLowering &TLI,
SelectionDAGLegalize *DAGLegalize) {
assert(ST->getAddressingMode() == ISD::UNINDEXED &&
"unaligned indexed stores not implemented!");
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDValue Val = ST->getValue();
EVT VT = Val.getValueType();
int Alignment = ST->getAlignment();
unsigned AS = ST->getAddressSpace();
SDLoc dl(ST);
if (ST->getMemoryVT().isFloatingPoint() ||
ST->getMemoryVT().isVector()) {
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (TLI.isTypeLegal(intVT)) {
// Expand to a bitconvert of the value to the integer type of the
// same size, then a (misaligned) int store.
// FIXME: Does not handle truncating floating point stores!
SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
ST->isVolatile(), ST->isNonTemporal(), Alignment);
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
return;
}
// Do a (aligned) store to a stack slot, then copy from the stack slot
// to the final destination using (unaligned) integer loads and stores.
EVT StoredVT = ST->getMemoryVT();
MVT RegVT =
TLI.getRegisterType(*DAG.getContext(),
EVT::getIntegerVT(*DAG.getContext(),
StoredVT.getSizeInBits()));
unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
// Make sure the stack slot is also aligned for the register type.
SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
// Perform the original store, only redirected to the stack slot.
SDValue Store = DAG.getTruncStore(Chain, dl,
Val, StackPtr, MachinePointerInfo(),
StoredVT, false, false, 0);
SDValue Increment = DAG.getConstant(RegBytes, dl, TLI.getPointerTy(AS));
SmallVector<SDValue, 8> Stores;
unsigned Offset = 0;
// Do all but one copies using the full register width.
for (unsigned i = 1; i < NumRegs; i++) {
// Load one integer register's worth from the stack slot.
SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
MachinePointerInfo(),
false, false, false, 0);
// Store it to the final location. Remember the store.
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
ST->getPointerInfo().getWithOffset(Offset),
ST->isVolatile(), ST->isNonTemporal(),
MinAlign(ST->getAlignment(), Offset)));
// Increment the pointers.
Offset += RegBytes;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
Increment);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
}
// The last store may be partial. Do a truncating store. On big-endian
// machines this requires an extending load from the stack slot to ensure
// that the bits are in the right place.
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8 * (StoredBytes - Offset));
// Load from the stack slot.
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
MachinePointerInfo(),
MemVT, false, false, false, 0);
Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
ST->getPointerInfo()
.getWithOffset(Offset),
MemVT, ST->isVolatile(),
ST->isNonTemporal(),
MinAlign(ST->getAlignment(), Offset),
ST->getAAInfo()));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
return;
}
assert(ST->getMemoryVT().isInteger() &&
!ST->getMemoryVT().isVector() &&
"Unaligned store of unknown type.");
// Get the half-size VT
EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
int NumBits = NewStoredVT.getSizeInBits();
int IncrementSize = NumBits / 8;
// Divide the stored value in two parts.
SDValue ShiftAmount = DAG.getConstant(NumBits, dl,
TLI.getShiftAmountTy(Val.getValueType()));
SDValue Lo = Val;
SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
// Store the two parts
SDValue Store1, Store2;
Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
ST->getPointerInfo(), NewStoredVT,
ST->isVolatile(), ST->isNonTemporal(), Alignment);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, TLI.getPointerTy(AS)));
Alignment = MinAlign(Alignment, IncrementSize);
Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
Alignment, ST->getAAInfo());
SDValue Result =
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
}
/// Expands an unaligned load to 2 half-size loads.
static void
ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
const TargetLowering &TLI,
SDValue &ValResult, SDValue &ChainResult) {
assert(LD->getAddressingMode() == ISD::UNINDEXED &&
"unaligned indexed loads not implemented!");
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
EVT VT = LD->getValueType(0);
EVT LoadedVT = LD->getMemoryVT();
SDLoc dl(LD);
if (VT.isFloatingPoint() || VT.isVector()) {
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
// Expand to a (misaligned) integer load of the same size,
// then bitconvert to floating point or vector.
SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
if (LoadedVT != VT)
Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
ISD::ANY_EXTEND, dl, VT, Result);
ValResult = Result;
ChainResult = Chain;
return;
}
// Copy the value to a (aligned) stack slot using (unaligned) integer
// loads and stores, then do a (aligned) load from the stack slot.
MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
// Make sure the stack slot is also aligned for the register type.
SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
SDValue Increment = DAG.getConstant(RegBytes, dl, TLI.getPointerTy());
SmallVector<SDValue, 8> Stores;
SDValue StackPtr = StackBase;
unsigned Offset = 0;
// Do all but one copies using the full register width.
for (unsigned i = 1; i < NumRegs; i++) {
// Load one integer register's worth from the original location.
SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo(), false, false, 0));
// Increment the pointers.
Offset += RegBytes;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
Increment);
}
// The last copy may be partial. Do an extending load.
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8 * (LoadedBytes - Offset));
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(Offset),
MemVT, LD->isVolatile(),
LD->isNonTemporal(),
LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
// On big-endian machines this requires a truncating store to ensure
// that the bits end up in the right place.
Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo(), MemVT,
false, false, 0));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
// Finally, perform the original load only redirected to the stack slot.
Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
MachinePointerInfo(), LoadedVT, false,false, false,
0);
// Callers expect a MERGE_VALUES node.
ValResult = Load;
ChainResult = TF;
return;
}
assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
"Unaligned load of unsupported type.");
// Compute the new VT that is half the size of the old one. This is an
// integer MVT.
unsigned NumBits = LoadedVT.getSizeInBits();
EVT NewLoadedVT;
NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
NumBits >>= 1;
unsigned Alignment = LD->getAlignment();
unsigned IncrementSize = NumBits / 8;
ISD::LoadExtType HiExtType = LD->getExtensionType();
// If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
if (HiExtType == ISD::NON_EXTLOAD)
HiExtType = ISD::ZEXTLOAD;
// Load the value in two parts
SDValue Lo, Hi;
if (TLI.isLittleEndian()) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
LD->isNonTemporal(), LD->isInvariant(), Alignment,
LD->getAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
LD->isNonTemporal(),LD->isInvariant(),
MinAlign(Alignment, IncrementSize), LD->getAAInfo());
} else {
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
LD->isNonTemporal(), LD->isInvariant(), Alignment,
LD->getAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
LD->isNonTemporal(), LD->isInvariant(),
MinAlign(Alignment, IncrementSize), LD->getAAInfo());
}
// aggregate the two parts
SDValue ShiftAmount = DAG.getConstant(NumBits, dl,
TLI.getShiftAmountTy(Hi.getValueType()));
SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
ValResult = Result;
ChainResult = TF;
}
/// Some target cannot handle a variable insertion index for the
/// INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue SelectionDAGLegalize::
PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
SDLoc dl) {
SDValue Tmp1 = Vec;
SDValue Tmp2 = Val;
SDValue Tmp3 = Idx;
// If the target doesn't support this, we have to spill the input vector
// to a temporary stack slot, update the element, then reload it. This is
// badness. We could also load the value into a vector register (either
// with a "move to register" or "extload into register" instruction, then
// permute it into place, if the idx is a constant and if the idx is
// supported by the target.
EVT VT = Tmp1.getValueType();
EVT EltVT = VT.getVectorElementType();
EVT IdxVT = Tmp3.getValueType();
EVT PtrVT = TLI.getPointerTy();
SDValue StackPtr = DAG.CreateStackTemporary(VT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
// Store the vector.
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
MachinePointerInfo::getFixedStack(SPFI),
false, false, 0);
// Truncate or zero extend offset to target pointer type.
unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
// Add the offset to the index.
unsigned EltSize = EltVT.getSizeInBits()/8;
Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
DAG.getConstant(EltSize, dl, IdxVT));
SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
// Store the scalar value.
Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
false, false, 0);
// Load the updated vector.
return DAG.getLoad(VT, dl, Ch, StackPtr,
MachinePointerInfo::getFixedStack(SPFI), false, false,
false, 0);
}
SDValue SelectionDAGLegalize::
ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
// SCALAR_TO_VECTOR requires that the type of the value being inserted
// match the element type of the vector being created, except for
// integers in which case the inserted value can be over width.
EVT EltVT = Vec.getValueType().getVectorElementType();
if (Val.getValueType() == EltVT ||
(EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Vec.getValueType(), Val);
unsigned NumElts = Vec.getValueType().getVectorNumElements();
// We generate a shuffle of InVec and ScVec, so the shuffle mask
// should be 0,1,2,3,4,5... with the appropriate element replaced with
// elt 0 of the RHS.
SmallVector<int, 8> ShufOps;
for (unsigned i = 0; i != NumElts; ++i)
ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
&ShufOps[0]);
}
}
return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
}
SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
// FIXME: We shouldn't do this for TargetConstantFP's.
// FIXME: move this to the DAG Combiner! Note that we can't regress due
// to phase ordering between legalized code and the dag combiner. This
// probably means that we need to integrate dag combiner and legalizer
// together.
// We generally can't do this one for long doubles.
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
AAMDNodes AAInfo = ST->getAAInfo();
SDLoc dl(ST);
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
if (CFP->getValueType(0) == MVT::f32 &&
TLI.isTypeLegal(MVT::i32)) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().
bitcastToAPInt().zextOrTrunc(32),
SDLoc(CFP), MVT::i32);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal, Alignment, AAInfo);
}
if (CFP->getValueType(0) == MVT::f64) {
// If this target supports 64-bit registers, do a single 64-bit store.
if (TLI.isTypeLegal(MVT::i64)) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
zextOrTrunc(64), SDLoc(CFP), MVT::i64);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal, Alignment, AAInfo);
}
if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
// Otherwise, if the target supports 32-bit registers, use 2 32-bit
// stores. If the target supports neither 32- nor 64-bits, this
// xform is certainly not worth it.
const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
if (TLI.isBigEndian()) std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
isNonTemporal, Alignment, AAInfo);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(4, dl, Ptr.getValueType()));
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
}
}
return SDValue(nullptr, 0);
}
void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDLoc dl(Node);
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
AAMDNodes AAInfo = ST->getAAInfo();
if (!ST->isTruncatingStore()) {
if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
ReplaceNode(ST, OptStore);
return;
}
{
SDValue Value = ST->getValue();
MVT VT = Value.getSimpleValueType();
switch (TLI.getOperationAction(ISD::STORE, VT)) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
// If this is an unaligned store and the target doesn't support it,
// expand it.
unsigned AS = ST->getAddressSpace();
unsigned Align = ST->getAlignment();
if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
if (Align < ABIAlignment)
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
}
break;
}
case TargetLowering::Custom: {
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res && Res != SDValue(Node, 0))
ReplaceNode(SDValue(Node, 0), Res);
return;
}
case TargetLowering::Promote: {
MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
"Can only promote stores to same size type");
Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr,
ST->getPointerInfo(), isVolatile,
isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
}
return;
}
} else {
SDValue Value = ST->getValue();
EVT StVT = ST->getMemoryVT();
unsigned StWidth = StVT.getSizeInBits();
if (StWidth != StVT.getStoreSizeInBits()) {
// Promote to a byte-sized store with upper bits zero if not
// storing an integral number of bytes. For example, promote
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
StVT.getStoreSizeInBits());
Value = DAG.getZeroExtendInReg(Value, dl, StVT);
SDValue Result =
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
} else if (StWidth & (StWidth - 1)) {
// If not storing a power-of-2 number of bits, expand as two stores.
assert(!StVT.isVector() && "Unsupported truncstore!");
unsigned RoundWidth = 1 << Log2_32(StWidth);
assert(RoundWidth < StWidth);
unsigned ExtraWidth = StWidth - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Store size not an integral number of bytes!");
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi;
unsigned IncrementSize;
if (TLI.isLittleEndian()) {
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
// Store the bottom RoundWidth bits.
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
RoundVT,
isVolatile, isNonTemporal, Alignment,
AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl,
Ptr.getValueType()));
Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
DAG.getConstant(RoundWidth, dl,
TLI.getShiftAmountTy(Value.getValueType())));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
MinAlign(Alignment, IncrementSize), AAInfo);
} else {
// Big endian - avoid unaligned stores.
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
// Store the top RoundWidth bits.
Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
DAG.getConstant(ExtraWidth, dl,
TLI.getShiftAmountTy(Value.getValueType())));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
RoundVT, isVolatile, isNonTemporal, Alignment,
AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl,
Ptr.getValueType()));
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
MinAlign(Alignment, IncrementSize), AAInfo);
}
// The order of the stores doesn't matter.
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
ReplaceNode(SDValue(Node, 0), Result);
} else {
switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
StVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
unsigned AS = ST->getAddressSpace();
unsigned Align = ST->getAlignment();
// If this is an unaligned store and the target doesn't support it,
// expand it.
if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
if (Align < ABIAlignment)
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
}
break;
}
case TargetLowering::Custom: {
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res && Res != SDValue(Node, 0))
ReplaceNode(SDValue(Node, 0), Res);
return;
}
case TargetLowering::Expand:
assert(!StVT.isVector() &&
"Vector Stores are handled in LegalizeVectorOps");
// TRUNCSTORE:i16 i32 -> STORE i16
assert(TLI.isTypeLegal(StVT) &&
"Do not know how to expand this store!");
Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
}
}
}
void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDValue Chain = LD->getChain(); // The chain.
SDValue Ptr = LD->getBasePtr(); // The base pointer.
SDValue Value; // The value returned by the load op.
SDLoc dl(Node);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
MVT VT = Node->getSimpleValueType(0);
SDValue RVal = SDValue(Node, 0);
SDValue RChain = SDValue(Node, 1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
unsigned AS = LD->getAddressSpace();
unsigned Align = LD->getAlignment();
// If this is an unaligned load and the target doesn't support it,
// expand it.
if (!TLI.allowsMisalignedMemoryAccesses(LD->getMemoryVT(), AS, Align)) {
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment =
TLI.getDataLayout()->getABITypeAlignment(Ty);
if (Align < ABIAlignment){
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
}
}
break;
}
case TargetLowering::Custom: {
SDValue Res = TLI.LowerOperation(RVal, DAG);
if (Res.getNode()) {
RVal = Res;
RChain = Res.getValue(1);
}
break;
}
case TargetLowering::Promote: {
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
"Can only promote loads to same size type");
SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
RChain = Res.getValue(1);
break;
}
}
if (RChain.getNode() != Node) {
assert(RVal.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
if (UpdatedNodes) {
UpdatedNodes->insert(RVal.getNode());
UpdatedNodes->insert(RChain.getNode());
}
ReplacedNode(Node);
}
return;
}
EVT SrcVT = LD->getMemoryVT();
unsigned SrcWidth = SrcVT.getSizeInBits();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
AAMDNodes AAInfo = LD->getAAInfo();
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
// Some targets pretend to have an i1 loading operation, and actually
// load an i8. This trick is correct for ZEXTLOAD because the top 7
// bits are guaranteed to be zero; it helps the optimizers understand
// that these bits are zero. It is also useful for EXTLOAD, since it
// tells the optimizers that those bits are undefined. It would be
// nice to have an effective generic way of getting these benefits...
// Until such a way is found, don't insist on promoting i1 here.
(SrcVT != MVT::i1 ||
TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
TargetLowering::Promote)) {
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
unsigned NewWidth = SrcVT.getStoreSizeInBits();
EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
SDValue Ch;
// The extra bits are guaranteed to be zero, since we stored them that
// way. A zext load from NVT thus automatically gives zext from SrcVT.
ISD::LoadExtType NewExtType =
ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
SDValue Result =
DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
AAInfo);
Ch = Result.getValue(1); // The chain.
if (ExtType == ISD::SEXTLOAD)
// Having the top bits zero doesn't help when sign extending.
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
// All the top bits are guaranteed to be zero - inform the optimizers.
Result = DAG.getNode(ISD::AssertZext, dl,
Result.getValueType(), Result,
DAG.getValueType(SrcVT));
Value = Result;
Chain = Ch;
} else if (SrcWidth & (SrcWidth - 1)) {
// If not loading a power-of-2 number of bits, expand as two loads.
assert(!SrcVT.isVector() && "Unsupported extload!");
unsigned RoundWidth = 1 << Log2_32(SrcWidth);
assert(RoundWidth < SrcWidth);
unsigned ExtraWidth = SrcWidth - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Load size not an integral number of bytes!");
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi, Ch;
unsigned IncrementSize;
if (TLI.isLittleEndian()) {
// EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
// Load the bottom RoundWidth bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
isNonTemporal, isInvariant, Alignment, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl,
Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal, isInvariant,
MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
DAG.getConstant(RoundWidth, dl,
TLI.getShiftAmountTy(Hi.getValueType())));
// Join the hi and lo parts.
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
} else {
// Big endian - avoid unaligned loads.
// EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
// Load the top RoundWidth bits.
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
isNonTemporal, isInvariant, Alignment, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl,
Ptr.getValueType()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal, isInvariant,
MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
DAG.getConstant(ExtraWidth, dl,
TLI.getShiftAmountTy(Hi.getValueType())));
// Join the hi and lo parts.
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
}
Chain = Ch;
} else {
bool isCustom = false;
switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
SrcVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal: {
Value = SDValue(Node, 0);
Chain = SDValue(Node, 1);
if (isCustom) {
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res.getNode()) {
Value = Res;
Chain = Res.getValue(1);
}
} else {
// If this is an unaligned load and the target doesn't support
// it, expand it.
EVT MemVT = LD->getMemoryVT();
unsigned AS = LD->getAddressSpace();
unsigned Align = LD->getAlignment();
if (!TLI.allowsMisalignedMemoryAccesses(MemVT, AS, Align)) {
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = TLI.getDataLayout()->getABITypeAlignment(Ty);
if (Align < ABIAlignment){
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
}
}
}
break;
}
case TargetLowering::Expand:
if (!TLI.isLoadExtLegal(ISD::EXTLOAD, Node->getValueType(0), SrcVT)) {
// If the source type is not legal, see if there is a legal extload to
// an intermediate type that we can then extend further.
EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
// If we are loading a legal type, this is a non-extload followed by a
// full extend.
ISD::LoadExtType MidExtType =
(LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
SrcVT, LD->getMemOperand());
unsigned ExtendOp =
ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
Chain = Load.getValue(1);
break;
}
}
assert(!SrcVT.isVector() &&
"Vector Loads are handled in LegalizeVectorOps");
// FIXME: This does not work for vectors on most targets. Sign-
// and zero-extend operations are currently folded into extending
// loads, whether they are legal or not, and then we end up here
// without any support for legalizing them.
assert(ExtType != ISD::EXTLOAD &&
"EXTLOAD should always be supported!");
// Turn the unsupported load into an EXTLOAD followed by an
// explicit zero/sign extend inreg.
SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
Node->getValueType(0),
Chain, Ptr, SrcVT,
LD->getMemOperand());
SDValue ValRes;
if (ExtType == ISD::SEXTLOAD)
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else
ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
Value = ValRes;
Chain = Result.getValue(1);
break;
}
}
// Since loads produce two values, make sure to remember that we legalized
// both of them.
if (Chain.getNode() != Node) {
assert(Value.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
if (UpdatedNodes) {
UpdatedNodes->insert(Value.getNode());
UpdatedNodes->insert(Chain.getNode());
}
ReplacedNode(Node);
}
}
/// Return a legal replacement for the given operation, with all legal operands.
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
return;
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
TargetLowering::TypeLegal &&
"Unexpected illegal type!");
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
assert((TLI.getTypeAction(*DAG.getContext(),
Node->getOperand(i).getValueType()) ==
TargetLowering::TypeLegal ||
Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
"Unexpected illegal type!");
// Figure out the correct action; the way to query this varies by opcode
TargetLowering::LegalizeAction Action = TargetLowering::Legal;
bool SimpleFinishLegalizing = true;
switch (Node->getOpcode()) {
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID:
case ISD::STACKSAVE:
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
break;
case ISD::VAARG:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0));
if (Action != TargetLowering::Promote)
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
break;
case ISD::FP_TO_FP16:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::EXTRACT_VECTOR_ELT:
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(0).getValueType());
break;
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG: {
EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
break;
}
case ISD::ATOMIC_STORE: {
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(2).getValueType());
break;
}
case ISD::SELECT_CC:
case ISD::SETCC:
case ISD::BR_CC: {
unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
Node->getOpcode() == ISD::SETCC ? 2 : 1;
unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
Action = TLI.getCondCodeAction(CCCode, OpVT);
if (Action == TargetLowering::Legal) {
if (Node->getOpcode() == ISD::SELECT_CC)
Action = TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0));
else
Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
}
break;
}
case ISD::LOAD:
case ISD::STORE:
// FIXME: Model these properly. LOAD and STORE are complicated, and
// STORE expects the unlegalized operand in some cases.
SimpleFinishLegalizing = false;
break;
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
// FIXME: This shouldn't be necessary. These nodes have special properties
// dealing with the recursive nature of legalization. Removing this
// special case should be done as part of making LegalizeDAG non-recursive.
SimpleFinishLegalizing = false;
break;
case ISD::EXTRACT_ELEMENT:
case ISD::FLT_ROUNDS_:
case ISD::FPOWI:
case ISD::MERGE_VALUES:
case ISD::EH_RETURN:
case ISD::FRAME_TO_ARGS_OFFSET:
case ISD::EH_SJLJ_SETJMP:
case ISD::EH_SJLJ_LONGJMP:
// These operations lie about being legal: when they claim to be legal,
// they should actually be expanded.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Legal)
Action = TargetLowering::Expand;
break;
case ISD::INIT_TRAMPOLINE:
case ISD::ADJUST_TRAMPOLINE:
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
// These operations lie about being legal: when they claim to be legal,
// they should actually be custom-lowered.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Legal)
Action = TargetLowering::Custom;
break;
case ISD::READ_REGISTER:
case ISD::WRITE_REGISTER:
// Named register is legal in the DAG, but blocked by register name
// selection if not implemented by target (to chose the correct register)
// They'll be converted to Copy(To/From)Reg.
Action = TargetLowering::Legal;
break;
case ISD::DEBUGTRAP:
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
if (Action == TargetLowering::Expand) {
// replace ISD::DEBUGTRAP with ISD::TRAP
SDValue NewVal;
NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
Node->getOperand(0));
ReplaceNode(Node, NewVal.getNode());
LegalizeOp(NewVal.getNode());
return;
}
break;
default:
if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
Action = TargetLowering::Legal;
} else {
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
}
break;
}
if (SimpleFinishLegalizing) {
SDNode *NewNode = Node;
switch (Node->getOpcode()) {
default: break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::ROTL:
case ISD::ROTR:
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
if (!Node->getOperand(1).getValueType().isVector()) {
SDValue SAO =
DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
Node->getOperand(1));
HandleSDNode Handle(SAO);
LegalizeOp(SAO.getNode());
NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
Handle.getValue());
}
break;
case ISD::SRL_PARTS:
case ISD::SRA_PARTS:
case ISD::SHL_PARTS:
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
if (!Node->getOperand(2).getValueType().isVector()) {
SDValue SAO =
DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
Node->getOperand(2));
HandleSDNode Handle(SAO);
LegalizeOp(SAO.getNode());
NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
Node->getOperand(1),
Handle.getValue());
}
break;
}
if (NewNode != Node) {
ReplaceNode(Node, NewNode);
Node = NewNode;
}
switch (Action) {
case TargetLowering::Legal:
return;
case TargetLowering::Custom: {
// FIXME: The handling for custom lowering with multiple results is
// a complete mess.
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res.getNode()) {
if (!(Res.getNode() != Node || Res.getResNo() != 0))
return;
if (Node->getNumValues() == 1) {
// We can just directly replace this node with the lowered value.
ReplaceNode(SDValue(Node, 0), Res);
return;
}
SmallVector<SDValue, 8> ResultVals;
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
ResultVals.push_back(Res.getValue(i));
ReplaceNode(Node, ResultVals.data());
return;
}
}
// FALL THROUGH
case TargetLowering::Expand:
ExpandNode(Node);
return;
case TargetLowering::Promote:
PromoteNode(Node);
return;
}
}
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "NODE: ";
Node->dump( &DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to legalize this operator!");
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
break;
case ISD::LOAD: {
return LegalizeLoadOps(Node);
}
case ISD::STORE: {
return LegalizeStoreOps(Node);
}
}
}
SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
SDLoc dl(Op);
// Before we generate a new store to a temporary stack slot, see if there is
// already one that we can use. There often is because when we scalarize
// vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
// series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
// the vector. If all are expanded here, we don't want one store per vector
// element.
SDValue StackPtr, Ch;
for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
if (ST->isIndexed() || ST->isTruncatingStore() ||
ST->getValue() != Vec)
continue;
// Make sure that nothing else could have stored into the destination of
// this store.
if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
continue;
StackPtr = ST->getBasePtr();
Ch = SDValue(ST, 0);
break;
}
}
if (!Ch.getNode()) {
// Store the value to a temporary stack slot, then LOAD the returned part.
StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
}
// Add the offset to the index.
unsigned EltSize =
Vec.getValueType().getVectorElementType().getSizeInBits()/8;
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
SDValue NewLoad;
if (Op.getValueType().isVector())
NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,
MachinePointerInfo(), false, false, false, 0);
else
NewLoad = DAG.getExtLoad(
ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(),
Vec.getValueType().getVectorElementType(), false, false, false, 0);
// Replace the chain going out of the store, by the one out of the load.
DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
// We introduced a cycle though, so update the loads operands, making sure
// to use the original store's chain as an incoming chain.
SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
NewLoad->op_end());
NewLoadOperands[0] = Ch;
NewLoad =
SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
return NewLoad;
}
SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
SDValue Vec = Op.getOperand(0);
SDValue Part = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
SDLoc dl(Op);
// Store the value to a temporary stack slot, then LOAD the returned part.
SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
// First store the whole vector.
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
false, false, 0);
// Then store the inserted part.
// Add the offset to the index.
unsigned EltSize =
Vec.getValueType().getVectorElementType().getSizeInBits()/8;
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
StackPtr);
// Store the subvector.
Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
MachinePointerInfo(), false, false, 0);
// Finally, load the updated vector.
return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
false, false, false, 0);
}
SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
// We can't handle this case efficiently. Allocate a sufficiently
// aligned object on the stack, store each element into it, then load
// the result as a vector.
// Create the stack frame object.
EVT VT = Node->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDLoc dl(Node);
SDValue FIPtr = DAG.CreateStackTemporary(VT);
int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
// Emit a store of each element to the stack slot.
SmallVector<SDValue, 8> Stores;
unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
// Store (in the right endianness) the elements to memory.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
// Ignore undef elements.
if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
unsigned Offset = TypeByteSize*i;
SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
// If the destination vector element type is narrower than the source
// element type, only store the bits necessary.
if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
Node->getOperand(i), Idx,
PtrInfo.getWithOffset(Offset),
EltVT, false, false, 0));
} else
Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
Node->getOperand(i), Idx,
PtrInfo.getWithOffset(Offset),
false, false, 0));
}
SDValue StoreChain;
if (!Stores.empty()) // Not all undef elements?
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
else
StoreChain = DAG.getEntryNode();
// Result is a load from the stack slot.
return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
false, false, false, 0);
}
SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
SDLoc dl(Node);
SDValue Tmp1 = Node->getOperand(0);
SDValue Tmp2 = Node->getOperand(1);
// Get the sign bit of the RHS. First obtain a value that has the same
// sign as the sign bit, i.e. negative if and only if the sign bit is 1.
SDValue SignBit;
EVT FloatVT = Tmp2.getValueType();
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
if (TLI.isTypeLegal(IVT)) {
// Convert to an integer with the same sign bit.
SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
} else {
// Store the float to memory, then load the sign part out as an integer.
MVT LoadTy = TLI.getPointerTy();
// First create a temporary that is aligned for both the load and store.
SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
// Then store the float to it.
SDValue Ch =
DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
false, false, 0);
if (TLI.isBigEndian()) {
assert(FloatVT.isByteSized() && "Unsupported floating point type!");
// Load out a legal integer with the same sign bit as the float.
SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
false, false, false, 0);
} else { // Little endian
SDValue LoadPtr = StackPtr;
// The float may be wider than the integer we are going to load. Advance
// the pointer so that the loaded integer will contain the sign bit.
unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), LoadPtr,
DAG.getConstant(ByteOffset, dl,
LoadPtr.getValueType()));
// Load a legal integer containing the sign bit.
SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
false, false, false, 0);
// Move the sign bit to the top bit of the loaded integer.
unsigned BitShift = LoadTy.getSizeInBits() -
(FloatVT.getSizeInBits() - 8 * ByteOffset);
assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
if (BitShift)
SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
DAG.getConstant(BitShift, dl,
TLI.getShiftAmountTy(SignBit.getValueType())));
}
}
// Now get the sign bit proper, by seeing whether the value is negative.
SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
SignBit,
DAG.getConstant(0, dl, SignBit.getValueType()),
ISD::SETLT);
// Get the absolute value of the result.
SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
// Select between the nabs and abs value based on the sign bit of
// the input.
return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
AbsVal);
}
void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
SmallVectorImpl<SDValue> &Results) {
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
SDValue Tmp1 = SDValue(Node, 0);
SDValue Tmp2 = SDValue(Node, 1);
SDValue Tmp3 = Node->getOperand(2);
SDValue Chain = Tmp1.getOperand(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
SDValue Size = Tmp2.getOperand(1);
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
unsigned StackAlign =
DAG.getSubtarget().getFrameLowering()->getStackAlignment();
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Align > StackAlign)
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
Results.push_back(Tmp1);
Results.push_back(Tmp2);
}
/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
/// target.
///
/// If the SETCC has been legalized using AND / OR, then the legalized node
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
/// will be set to false.
///
/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
/// then the values of LHS and RHS will be swapped, CC will be set to the
/// new condition, and NeedInvert will be set to false.
///
/// If the SETCC has been legalized using the inverse condcode, then LHS and
/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
/// will be set to true. The caller must invert the result of the SETCC with
/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
/// of a true/false result.
///
/// \returns true if the SetCC has been legalized, false if it hasn't.
bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
SDValue &LHS, SDValue &RHS,
SDValue &CC,
bool &NeedInvert,
SDLoc dl) {
MVT OpVT = LHS.getSimpleValueType();
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
NeedInvert = false;
switch (TLI.getCondCodeAction(CCCode, OpVT)) {
default: llvm_unreachable("Unknown condition code action!");
case TargetLowering::Legal:
// Nothing to do.
break;
case TargetLowering::Expand: {
ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
if (TLI.isCondCodeLegal(InvCC, OpVT)) {
std::swap(LHS, RHS);
CC = DAG.getCondCode(InvCC);
return true;
}
ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
unsigned Opc = 0;
switch (CCCode) {
default: llvm_unreachable("Don't know how to expand this condition!");
case ISD::SETO:
assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
== TargetLowering::Legal
&& "If SETO is expanded, SETOEQ must be legal!");
CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
case ISD::SETUO:
assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
== TargetLowering::Legal
&& "If SETUO is expanded, SETUNE must be legal!");
CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETUEQ:
case ISD::SETUNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE:
// If we are floating point, assign and break, otherwise fall through.
if (!OpVT.isInteger()) {
// We can use the 4th bit to tell if we are the unordered
// or ordered version of the opcode.
CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
break;
}
// Fallthrough if we are unsigned integer.
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETLT:
// We only support using the inverted operation, which is computed above
// and not a different manner of supporting expanding these cases.
llvm_unreachable("Don't know how to expand this condition!");
case ISD::SETNE:
case ISD::SETEQ:
// Try inverting the result of the inverse condition.
InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
if (TLI.isCondCodeLegal(InvCC, OpVT)) {
CC = DAG.getCondCode(InvCC);
NeedInvert = true;
return true;
}
// If inverting the condition didn't work then we have no means to expand
// the condition.
llvm_unreachable("Don't know how to expand this condition!");
}
SDValue SetCC1, SetCC2;
if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
// If we aren't the ordered or unorder operation,
// then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
} else {
// Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
}
LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
RHS = SDValue();
CC = SDValue();
return true;
}
}
return false;
}
/// Emit a store/load combination to the stack. This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
EVT SlotVT,
EVT DestVT,
SDLoc dl) {
// Create the stack frame object.
unsigned SrcAlign =
TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
getTypeForEVT(*DAG.getContext()));
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
int SPFI = StackPtrFI->getIndex();
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
// Emit a store to the stack slot. Use a truncstore if the input value is
// later than DestVT.
SDValue Store;
if (SrcSize > SlotSize)
Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
PtrInfo, SlotVT, false, false, SrcAlign);
else {
assert(SrcSize == SlotSize && "Invalid store");
Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
PtrInfo, false, false, SrcAlign);
}
// Result is a load from the stack slot.
if (SlotSize == DestSize)
return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
false, false, false, DestAlign);
assert(SlotSize < DestSize && "Unknown extension!");
return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
PtrInfo, SlotVT, false, false, false, DestAlign);
}
SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
SDLoc dl(Node);
// Create a vector sized/aligned stack slot, store the value to element #0,
// then load the whole vector back out.
SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
int SPFI = StackPtrFI->getIndex();
SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
StackPtr,
MachinePointerInfo::getFixedStack(SPFI),
Node->getValueType(0).getVectorElementType(),
false, false, 0);
return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
MachinePointerInfo::getFixedStack(SPFI),
false, false, false, 0);
}
static bool
ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
const TargetLowering &TLI, SDValue &Res) {
unsigned NumElems = Node->getNumOperands();
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
// Try to group the scalars into pairs, shuffle the pairs together, then
// shuffle the pairs of pairs together, etc. until the vector has
// been built. This will work only if all of the necessary shuffle masks
// are legal.
// We do this in two phases; first to check the legality of the shuffles,
// and next, assuming that all shuffles are legal, to create the new nodes.
for (int Phase = 0; Phase < 2; ++Phase) {
SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
NewIntermedVals;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
continue;
SDValue Vec;
if (Phase)
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
}
while (IntermedVals.size() > 2) {
NewIntermedVals.clear();
for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
// This vector and the next vector are shuffled together (simply to
// append the one to the other).
SmallVector<int, 16> ShuffleVec(NumElems, -1);
SmallVector<int, 16> FinalIndices;
FinalIndices.reserve(IntermedVals[i].second.size() +
IntermedVals[i+1].second.size());
int k = 0;
for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
++j, ++k) {
ShuffleVec[k] = j;
FinalIndices.push_back(IntermedVals[i].second[j]);
}
for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
++j, ++k) {
ShuffleVec[k] = NumElems + j;
FinalIndices.push_back(IntermedVals[i+1].second[j]);
}
SDValue Shuffle;
if (Phase)
Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
IntermedVals[i+1].first,
ShuffleVec.data());
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
NewIntermedVals.push_back(
std::make_pair(Shuffle, std::move(FinalIndices)));
}
// If we had an odd number of defined values, then append the last
// element to the array of new vectors.
if ((IntermedVals.size() & 1) != 0)
NewIntermedVals.push_back(IntermedVals.back());
IntermedVals.swap(NewIntermedVals);
}
assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
"Invalid number of intermediate vectors");
SDValue Vec1 = IntermedVals[0].first;
SDValue Vec2;
if (IntermedVals.size() > 1)
Vec2 = IntermedVals[1].first;
else if (Phase)
Vec2 = DAG.getUNDEF(VT);
SmallVector<int, 16> ShuffleVec(NumElems, -1);
for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
ShuffleVec[IntermedVals[0].second[i]] = i;
for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
if (Phase)
Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
}
return true;
}
/// Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
unsigned NumElems = Node->getNumOperands();
SDValue Value1, Value2;
SDLoc dl(Node);
EVT VT = Node->getValueType(0);
EVT OpVT = Node->getOperand(0).getValueType();
EVT EltVT = VT.getVectorElementType();
// If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
bool isOnlyLowElement = true;
bool MoreThanTwoValues = false;
bool isConstant = true;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
if (!Value1.getNode()) {
Value1 = V;
} else if (!Value2.getNode()) {
if (V != Value1)
Value2 = V;
} else if (V != Value1 && V != Value2) {
MoreThanTwoValues = true;
}
}
if (!Value1.getNode())
return DAG.getUNDEF(VT);
if (isOnlyLowElement)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
// If all elements are constants, create a load from the constant pool.
if (isConstant) {
SmallVector<Constant*, 16> CV;
for (unsigned i = 0, e = NumElems; i != e; ++i) {
if (ConstantFPSDNode *V =
dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
} else if (ConstantSDNode *V =
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
if (OpVT==EltVT)
CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
else {
// If OpVT and EltVT don't match, EltVT is not legal and the
// element values have been promoted/truncated earlier. Undo this;
// we don't want a v16i8 to become a v16i32 for example.
const ConstantInt *CI = V->getConstantIntValue();
CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
CI->getZExtValue()));
}
} else {
assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
CV.push_back(UndefValue::get(OpNTy));
}
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, Alignment);
}
SmallSet<SDValue, 16> DefinedValues;
for (unsigned i = 0; i < NumElems; ++i) {
if (Node->getOperand(i).getOpcode() == ISD::UNDEF)
continue;
DefinedValues.insert(Node->getOperand(i));
}
if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
if (!MoreThanTwoValues) {
SmallVector<int, 8> ShuffleVec(NumElems, -1);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
continue;
ShuffleVec[i] = V == Value1 ? 0 : NumElems;
}
if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
// Get the splatted value into the low element of a vector register.
SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
SDValue Vec2;
if (Value2.getNode())
Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
else
Vec2 = DAG.getUNDEF(VT);
// Return shuffle(LowValVec, undef, <0,0,0,0>)
return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
}
} else {
SDValue Res;
if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
return Res;
}
}
// Otherwise, we can't handle this case efficiently.
return ExpandVectorBuildThroughStack(Node);
}
// Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
bool isSigned) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
EVT ArgVT = Node->getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
// By default, the input chain to this libcall is the entry node of the
// function. If the libcall is going to be emitted as a tail call then
// TLI.isUsedByReturnOnly will change it to the right chain if the return
// node which is being folded has a non-entry input chain.
SDValue InChain = DAG.getEntryNode();
// isTailCall may be true since the callee does not reference caller stack
// frame. Check if it's in the right position.
SDValue TCChain = InChain;
bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
if (isTailCall)
InChain = TCChain;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
.setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
if (!CallInfo.second.getNode())
// It's a tailcall, return the chain (which is the DAG root).
return DAG.getRoot();
return CallInfo.first;
}
/// Generate a libcall taking the given operands as arguments
/// and returning a result of type RetVT.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps,
bool isSigned, SDLoc dl) {
TargetLowering::ArgListTy Args;
Args.reserve(NumOps);
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
.setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
return CallInfo.first;
}
// Expand a node into a call to a libcall. Similar to
// ExpandLibCall except that the first operand is the in-chain.
std::pair<SDValue, SDValue>
SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
SDNode *Node,
bool isSigned) {
SDValue InChain = Node->getOperand(0);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
EVT ArgVT = Node->getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Node->getOperand(i);
Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
.setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
return CallInfo;
}
SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_F128,
RTLIB::Libcall Call_PPCF128) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = Call_F32; break;
case MVT::f64: LC = Call_F64; break;
case MVT::f80: LC = Call_F80; break;
case MVT::f128: LC = Call_F128; break;
case MVT::ppcf128: LC = Call_PPCF128; break;
}
return ExpandLibCall(LC, Node, false);
}
SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
RTLIB::Libcall Call_I8,
RTLIB::Libcall Call_I16,
RTLIB::Libcall Call_I32,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC = Call_I8; break;
case MVT::i16: LC = Call_I16; break;
case MVT::i32: LC = Call_I32; break;
case MVT::i64: LC = Call_I64; break;
case MVT::i128: LC = Call_I128; break;
}
return ExpandLibCall(LC, Node, isSigned);
}
/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Only issue divrem libcall if both quotient and remainder are needed.
static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
// The other use might have been replaced with a divrem already.
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
unsigned OtherOpcode = 0;
if (isSigned)
OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
else
OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node)
continue;
if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
User->getOperand(0) == Op0 &&
User->getOperand(1) == Op1)
return true;
}
return false;
}
/// Issue libcalls to __{u}divmod to compute div / rem pairs.
void
SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
unsigned Opcode = Node->getOpcode();
bool isSigned = Opcode == ISD::SDIVREM;
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDValue InChain = DAG.getEntryNode();
EVT RetVT = Node->getValueType(0);
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
EVT ArgVT = Node->getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
// Also pass the return address of the remainder.
SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = FIPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
SDLoc dl(Node);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain)
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
.setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
// Remainder is loaded back from the stack frame.
SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
MachinePointerInfo(), false, false, false, 0);
Results.push_back(CallInfo.first);
Results.push_back(Rem);
}
/// Return true if sincos libcall is available.
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Return true if sincos libcall is available and can be used to combine sin
/// and cos.
static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
const TargetMachine &TM) {
if (!isSinCosLibcallAvailable(Node, TLI))
return false;
// GNU sin/cos functions set errno while sincos does not. Therefore
// combining sin and cos is only safe if unsafe-fpmath is enabled.
bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
if (isGNU && !TM.Options.UnsafeFPMath)
return false;
return true;
}
/// Only issue sincos libcall if both sin and cos are needed.
static bool useSinCos(SDNode *Node) {
unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
? ISD::FCOS : ISD::FSIN;
SDValue Op0 = Node->getOperand(0);
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User == Node)
continue;
// The other user might have been turned into sincos already.
if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
return true;
}
return false;
}
/// Issue libcalls to sincos to compute sin / cos pairs.
void
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
}
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDValue InChain = DAG.getEntryNode();
EVT RetVT = Node->getValueType(0);
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
// Pass the argument.
Entry.Node = Node->getOperand(0);
Entry.Ty = RetTy;
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
// Pass the return address of sin.
SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = SinPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
// Also pass the return address of the cos.
SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
Entry.Node = CosPtr;
Entry.Ty = RetTy->getPointerTo();
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
SDLoc dl(Node);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain)
.setCallee(TLI.getLibcallCallingConv(LC),
Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
MachinePointerInfo(), false, false, false, 0));
Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
MachinePointerInfo(), false, false, false, 0));
}
/// This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it. At this point, we know that the result and operand types are
/// legal for the target.
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue Op0,
EVT DestVT,
SDLoc dl) {
if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// Get the stack frame index of a 8 byte buffer.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
SDValue WordOff = DAG.getConstant(sizeof(int), dl,
StackSlot.getValueType());
// set up Hi and Lo (into buffer) address based on endian
SDValue Hi = StackSlot;
SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
StackSlot, WordOff);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDValue Op0Mapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
} else {
Op0Mapped = Op0;
}
// store the lo of the constructed double - based on integer input
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
Op0Mapped, Lo, MachinePointerInfo(),
false, false, 0);
// initial hi portion of constructed double
SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
// store the hi of the constructed double - biased exponent
SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
MachinePointerInfo(),
false, false, 0);
// load the constructed double
SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
MachinePointerInfo(), false, false, false, 0);
// FP constant to bias correct the final result
SDValue Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL) :
BitsToDouble(0x4330000000000000ULL),
dl, MVT::f64);
// subtract the bias
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
// final result
SDValue Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else if (DestVT.bitsLT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
DAG.getIntPtrConstant(0, dl));
} else if (DestVT.bitsGT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
}
return Result;
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
// Code below here assumes !isSigned without checking again.
// Implementation of unsigned i64 to f64 following the algorithm in
// __floatundidf in compiler_rt. This implementation has the advantage
// of performing rounding correctly, both in the default rounding mode
// and in all alternate rounding modes.
// TODO: Generalize this for use with other types.
if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
SDValue TwoP52 =
DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64);
SDValue TwoP84PlusTwoP52 =
DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl,
MVT::f64);
SDValue TwoP84 =
DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64);
SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
DAG.getConstant(32, dl, MVT::i64));
SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
TwoP84PlusTwoP52);
return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
}
// Implementation of unsigned i64 to f32.
// TODO: Generalize this for use with other types.
if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
// For unsigned conversions, convert them to signed conversions using the
// algorithm from the x86_64 __floatundidf in compiler_rt.
if (!isSigned) {
SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
SDValue ShiftConst =
DAG.getConstant(1, dl, TLI.getShiftAmountTy(Op0.getValueType()));
SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
SDValue AndConst = DAG.getConstant(1, dl, MVT::i64);
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
// TODO: This really should be implemented using a branch rather than a
// select. We happen to get lucky and machinesink does the right
// thing most of the time. This would be a good candidate for a
//pseudo-op, or, even better, for whole-function isel.
SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
}
// Otherwise, implement the fully general conversion.
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64));
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
DAG.getConstant(UINT64_C(0x800), dl, MVT::i64));
SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64));
SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2,
DAG.getConstant(UINT64_C(0), dl, MVT::i64),
ISD::SETNE);
SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0,
DAG.getConstant(UINT64_C(0x0020000000000000), dl,
MVT::i64),
ISD::SETUGE);
SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
DAG.getConstant(32, dl, SHVT));
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
SDValue TwoP32 =
DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl,
MVT::f64);
SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
DAG.getIntPtrConstant(0, dl));
}
SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
Op0,
DAG.getConstant(0, dl, Op0.getValueType()),
ISD::SETLT);
SDValue Zero = DAG.getIntPtrConstant(0, dl),
Four = DAG.getIntPtrConstant(4, dl);
SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (Op0.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
Constant *FudgeFactor = ConstantInt::get(
Type::getInt64Ty(*DAG.getContext()), FF);
SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
Alignment = std::min(Alignment, 4u);
SDValue FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, Alignment);
else {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
MVT::f32, false, false, false, Alignment);
HandleSDNode Handle(Load);
LegalizeOp(Load.getNode());
FudgeInReg = Handle.getValue();
}
return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
}
/// This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
EVT DestVT,
bool isSigned,
SDLoc dl) {
// First step, figure out the appropriate *INT_TO_FP operation to use.
EVT NewInTy = LegalOp.getValueType();
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
assert(NewInTy.isInteger() && "Ran out of possibilities!");
// If the target supports SINT_TO_FP of this type, use it.
if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
OpToUse = ISD::SINT_TO_FP;
break;
}
if (isSigned) continue;
// If the target supports UINT_TO_FP of this type, use it.
if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
OpToUse = ISD::UINT_TO_FP;
break;
}
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use. Zero extend our input to the
// desired type then run the operation on it.
return DAG.getNode(OpToUse, dl, DestVT,
DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, NewInTy, LegalOp));
}
/// This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
EVT DestVT,
bool isSigned,
SDLoc dl) {
// First step, figure out the appropriate FP_TO*INT operation to use.
EVT NewOutTy = DestVT;
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
// A larger signed type can hold all unsigned values of the requested type,
// so using FP_TO_SINT is valid
if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
OpToUse = ISD::FP_TO_SINT;
break;
}
// However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
OpToUse = ISD::FP_TO_UINT;
break;
}
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use.
SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
// Truncate the result of the extended FP_TO_*INT operation to the desired
// size.
return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
}
/// Open code the operations for BSWAP of the specified operation.
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
EVT VT = Op.getValueType();
EVT SHVT = TLI.getShiftAmountTy(VT);
SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled Expand type in BSWAP!");
case MVT::i16:
Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
case MVT::i32:
Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
DAG.getConstant(0xFF0000, dl, VT));
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
case MVT::i64:
Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
DAG.getConstant(255ULL<<48, dl, VT));
Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
DAG.getConstant(255ULL<<40, dl, VT));
Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
DAG.getConstant(255ULL<<32, dl, VT));
Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
DAG.getConstant(255ULL<<24, dl, VT));
Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
DAG.getConstant(255ULL<<16, dl, VT));
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
DAG.getConstant(255ULL<<8 , dl, VT));
Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
}
}
/// Expand the specified bitcount instruction into operations.
SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
SDLoc dl) {
switch (Opc) {
default: llvm_unreachable("Cannot expand this yet!");
case ISD::CTPOP: {
EVT VT = Op.getValueType();
EVT ShVT = TLI.getShiftAmountTy(VT);
unsigned Len = VT.getSizeInBits();
assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
"CTPOP not implemented for this type.");
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)),
dl, VT);
SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)),
dl, VT);
SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)),
dl, VT);
SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)),
dl, VT);
// v = v - ((v >> 1) & 0x55555555...)
Op = DAG.getNode(ISD::SUB, dl, VT, Op,
DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(1, dl, ShVT)),
Mask55));
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
Op = DAG.getNode(ISD::ADD, dl, VT,
DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(2, dl, ShVT)),
Mask33));
// v = (v + (v >> 4)) & 0x0F0F0F0F...
Op = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::ADD, dl, VT, Op,
DAG.getNode(ISD::SRL, dl, VT, Op,
DAG.getConstant(4, dl, ShVT))),
Mask0F);
// v = (v * 0x01010101...) >> (Len - 8)
Op = DAG.getNode(ISD::SRL, dl, VT,
DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
DAG.getConstant(Len - 8, dl, ShVT));
return Op;
}
case ISD::CTLZ_ZERO_UNDEF:
// This trivially expands to CTLZ.
return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
case ISD::CTLZ: {
// for now, we do this:
// x = x | (x >> 1);
// x = x | (x >> 2);
// ...
// x = x | (x >>16);
// x = x | (x >>32); // for 64-bit input
// return popcount(~x);
//
// Ref: "Hacker's Delight" by Henry Warren
EVT VT = Op.getValueType();
EVT ShVT = TLI.getShiftAmountTy(VT);
unsigned len = VT.getSizeInBits();
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT);
Op = DAG.getNode(ISD::OR, dl, VT, Op,
DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
}
Op = DAG.getNOT(dl, Op, VT);
return DAG.getNode(ISD::CTPOP, dl, VT, Op);
}
case ISD::CTTZ_ZERO_UNDEF:
// This trivially expands to CTTZ.
return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
case ISD::CTTZ: {
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// Ref: "Hacker's Delight" by Henry Warren
EVT VT = Op.getValueType();
SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNOT(dl, Op, VT),
DAG.getNode(ISD::SUB, dl, VT, Op,
DAG.getConstant(1, dl, VT)));
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
return DAG.getNode(ISD::SUB, dl, VT,
DAG.getConstant(VT.getSizeInBits(), dl, VT),
DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
}
}
}
std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
unsigned Opc = Node->getOpcode();
MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
return ExpandChainLibCall(LC, Node, false);
}
void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
SmallVector<SDValue, 8> Results;
SDLoc dl(Node);
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
bool NeedInvert;
switch (Node->getOpcode()) {
case ISD::CTPOP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
Results.push_back(Tmp1);
break;
case ISD::BSWAP:
Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
case ISD::FRAME_TO_ARGS_OFFSET:
Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
break;
case ISD::FLT_ROUNDS_:
Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
break;
case ISD::EH_RETURN:
case ISD::EH_LABEL:
case ISD::PREFETCH:
case ISD::VAEND:
case ISD::EH_SJLJ_LONGJMP:
// If the target didn't expand these, there's nothing to do, so just
// preserve the chain and be done.
Results.push_back(Node->getOperand(0));
break;
case ISD::EH_SJLJ_SETJMP:
// If the target didn't expand this, just return 'zero' and preserve the
// chain.
Results.push_back(DAG.getConstant(0, dl, MVT::i32));
Results.push_back(Node->getOperand(0));
break;
case ISD::ATOMIC_FENCE: {
// If the target didn't lower this, lower it to '__sync_synchronize()' call
// FIXME: handle "fence singlethread" more efficiently.
TargetLowering::ArgListTy Args;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("__sync_synchronize",
TLI.getPointerTy()), std::move(Args), 0);
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
Results.push_back(CallResult.second);
break;
}
case ISD::ATOMIC_LOAD: {
// There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
SDValue Swap = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Zero, Zero,
cast<AtomicSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
Results.push_back(Swap.getValue(0));
Results.push_back(Swap.getValue(1));
break;
}
case ISD::ATOMIC_STORE: {
// There is no libcall for atomic store; fake it with ATOMIC_SWAP.
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
cast<AtomicSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
Results.push_back(Swap.getValue(1));
break;
}
// By default, atomic intrinsics are marked Legal and lowered. Targets
// which don't support them directly, however, may want libcalls, in which
// case they mark them Expand, and we get here.
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_CMP_SWAP: {
std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
Results.push_back(Tmp.first);
Results.push_back(Tmp.second);
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
// Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
// splits out the success value as a comparison. Expanding the resulting
// ATOMIC_CMP_SWAP will produce a libcall.
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getSuccessOrdering(),
cast<AtomicSDNode>(Node)->getFailureOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1),
Res, Node->getOperand(2), ISD::SETEQ);
Results.push_back(Res.getValue(0));
Results.push_back(Success);
Results.push_back(Res.getValue(1));
break;
}
case ISD::DYNAMIC_STACKALLOC:
ExpandDYNAMIC_STACKALLOC(Node, Results);
break;
case ISD::MERGE_VALUES:
for (unsigned i = 0; i < Node->getNumValues(); i++)
Results.push_back(Node->getOperand(i));
break;
case ISD::UNDEF: {
EVT VT = Node->getValueType(0);
if (VT.isInteger())
Results.push_back(DAG.getConstant(0, dl, VT));
else {
assert(VT.isFloatingPoint() && "Unknown value type!");
Results.push_back(DAG.getConstantFP(0, dl, VT));
}
break;
}
case ISD::TRAP: {
// If this operation is not supported, lower it to 'abort()' call
TargetLowering::ArgListTy Args;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("abort", TLI.getPointerTy()),
std::move(Args), 0);
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
Results.push_back(CallResult.second);
break;
}
case ISD::FP_ROUND:
case ISD::BITCAST:
Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
Node->getValueType(0), dl);
Results.push_back(Tmp1);
break;
case ISD::FP_EXTEND:
Tmp1 = EmitStackConvert(Node->getOperand(0),
Node->getOperand(0).getValueType(),
Node->getValueType(0), dl);
Results.push_back(Tmp1);
break;
case ISD::SIGN_EXTEND_INREG: {
// NOTE: we could fall back on load/store here too for targets without
// SAR. However, it is doubtful that any exist.
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
EVT VT = Node->getValueType(0);
EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
if (VT.isVector())
ShiftAmountTy = VT;
unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
ExtraVT.getScalarType().getSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
Results.push_back(Tmp1);
break;
}
case ISD::FP_ROUND_INREG: {
// The only way we can lower this is to turn it into a TRUNCSTORE,
// EXTLOAD pair, targeting a temporary location (a stack slot).
// NOTE: there is a choice here between constantly creating new stack
// slots and always reusing the same one. We currently always create
// new ones, as reuse may inhibit scheduling.
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
Node->getValueType(0), dl);
Results.push_back(Tmp1);
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
Node->getOperand(0), Node->getValueType(0), dl);
Results.push_back(Tmp1);
break;
case ISD::FP_TO_SINT:
if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
Results.push_back(Tmp1);
break;
case ISD::FP_TO_UINT: {
SDValue True, False;
EVT VT = Node->getOperand(0).getValueType();
EVT NVT = Node->getValueType(0);
APFloat apf(DAG.EVTToAPFloatSemantics(VT),
APInt::getNullValue(VT.getSizeInBits()));
APInt x = APInt::getSignBit(NVT.getSizeInBits());
(void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
Tmp1 = DAG.getConstantFP(apf, dl, VT);
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
Node->getOperand(0),
Tmp1, ISD::SETLT);
True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
DAG.getNode(ISD::FSUB, dl, VT,
Node->getOperand(0), Tmp1));
False = DAG.getNode(ISD::XOR, dl, NVT, False,
DAG.getConstant(x, dl, NVT));
Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
Results.push_back(Tmp1);
break;
}
case ISD::VAARG: {
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
EVT VT = Node->getValueType(0);
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
unsigned Align = Node->getConstantOperandVal(3);
SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
MachinePointerInfo(V),
false, false, false, 0);
SDValue VAList = VAListLoad;
if (Align > TLI.getMinStackArgumentAlignment()) {
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
DAG.getConstant(Align - 1, dl,
VAList.getValueType()));
VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
DAG.getConstant(-(int64_t)Align, dl,
VAList.getValueType()));
}
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
DAG.getConstant(TLI.getDataLayout()->
getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
dl,
VAList.getValueType()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
MachinePointerInfo(V), false, false, 0);
// Load the actual argument out of the pointer VAList
Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
false, false, false, 0));
Results.push_back(Results[0].getValue(1));
break;
}
case ISD::VACOPY: {
// This defaults to loading a pointer from the input and storing it to the
// output, returning the chain.
const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
Node->getOperand(2), MachinePointerInfo(VS),
false, false, false, 0);
Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
MachinePointerInfo(VD), false, false, 0);
Results.push_back(Tmp1);
break;
}
case ISD::EXTRACT_VECTOR_ELT:
if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
// This must be an access of the only element. Return it.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
Node->getOperand(0));
else
Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
Results.push_back(Tmp1);
break;
case ISD::EXTRACT_SUBVECTOR:
Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
break;
case ISD::INSERT_SUBVECTOR:
Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
break;
case ISD::CONCAT_VECTORS: {
Results.push_back(ExpandVectorBuildThroughStack(Node));
break;
}
case ISD::SCALAR_TO_VECTOR:
Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
break;
case ISD::INSERT_VECTOR_ELT:
Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
Node->getOperand(1),
Node->getOperand(2), dl));
break;
case ISD::VECTOR_SHUFFLE: {
SmallVector<int, 32> NewMask;
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
EVT VT = Node->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
if (!TLI.isTypeLegal(EltVT)) {
EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
// BUILD_VECTOR operands are allowed to be wider than the element type.
// But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
// it.
if (NewEltVT.bitsLT(EltVT)) {
// Convert shuffle node.
// If original node was v4i64 and the new EltVT is i32,
// cast operands to v8i32 and re-build the mask.
// Calculate new VT, the size of the new VT should be equal to original.
EVT NewVT =
EVT::getVectorVT(*DAG.getContext(), NewEltVT,
VT.getSizeInBits() / NewEltVT.getSizeInBits());
assert(NewVT.bitsEq(VT));
// cast operands to new VT
Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
// Convert the shuffle mask
unsigned int factor =
NewVT.getVectorNumElements()/VT.getVectorNumElements();
// EltVT gets smaller
assert(factor > 0);
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
if (Mask[i] < 0) {
for (unsigned fi = 0; fi < factor; ++fi)
NewMask.push_back(Mask[i]);
}
else {
for (unsigned fi = 0; fi < factor; ++fi)
NewMask.push_back(Mask[i]*factor+fi);
}
}
Mask = NewMask;
VT = NewVT;
}
EltVT = NewEltVT;
}
unsigned NumElems = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0; i != NumElems; ++i) {
if (Mask[i] < 0) {
Ops.push_back(DAG.getUNDEF(EltVT));
continue;
}
unsigned Idx = Mask[i];
if (Idx < NumElems)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
Op0,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy())));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
Op1,
DAG.getConstant(Idx - NumElems, dl,
TLI.getVectorIdxTy())));
}
Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
// We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
Results.push_back(Tmp1);
break;
}
case ISD::EXTRACT_ELEMENT: {
EVT OpTy = Node->getOperand(0).getValueType();
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
// 1 -> Hi
Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
DAG.getConstant(OpTy.getSizeInBits()/2, dl,
TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
} else {
// 0 -> Lo
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
Node->getOperand(0));
}
Results.push_back(Tmp1);
break;
}
case ISD::STACKSAVE:
// Expand to CopyFromReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
Node->getValueType(0)));
Results.push_back(Results[0].getValue(1));
} else {
Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
Results.push_back(Node->getOperand(0));
}
break;
case ISD::STACKRESTORE:
// Expand to CopyToReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
Node->getOperand(1)));
} else {
Results.push_back(Node->getOperand(0));
}
break;
case ISD::FCOPYSIGN:
Results.push_back(ExpandFCOPYSIGN(Node));
break;
case ISD::FNEG:
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
Node->getOperand(0));
Results.push_back(Tmp1);
break;
case ISD::FABS: {
// Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
EVT VT = Node->getValueType(0);
Tmp1 = Node->getOperand(0);
Tmp2 = DAG.getConstantFP(0.0, dl, VT);
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
Tmp1, Tmp2, ISD::SETUGT);
Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
Results.push_back(Tmp1);
break;
}
case ISD::FMINNUM:
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
RTLIB::FMIN_F80, RTLIB::FMIN_F128,
RTLIB::FMIN_PPCF128));
break;
case ISD::FMAXNUM:
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
RTLIB::FMAX_F80, RTLIB::FMAX_F128,
RTLIB::FMAX_PPCF128));
break;
case ISD::FSQRT:
Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_F128,
RTLIB::SQRT_PPCF128));
break;
case ISD::FSIN:
case ISD::FCOS: {
EVT VT = Node->getValueType(0);
bool isSIN = Node->getOpcode() == ISD::FSIN;
// Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
// fcos which share the same operand and both are used.
if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
canCombineSinCosLibcall(Node, TLI, TM))
&& useSinCos(Node)) {
SDVTList VTs = DAG.getVTList(VT, VT);
Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
if (!isSIN)
Tmp1 = Tmp1.getValue(1);
Results.push_back(Tmp1);
} else if (isSIN) {
Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_F128,
RTLIB::SIN_PPCF128));
} else {
Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_F128,
RTLIB::COS_PPCF128));
}
break;
}
case ISD::FSINCOS:
// Expand into sincos libcall.
ExpandSinCosLibCall(Node, Results);
break;
case ISD::FLOG:
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
RTLIB::LOG_F80, RTLIB::LOG_F128,
RTLIB::LOG_PPCF128));
break;
case ISD::FLOG2:
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
RTLIB::LOG2_F80, RTLIB::LOG2_F128,
RTLIB::LOG2_PPCF128));
break;
case ISD::FLOG10:
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
RTLIB::LOG10_F80, RTLIB::LOG10_F128,
RTLIB::LOG10_PPCF128));
break;
case ISD::FEXP:
Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
RTLIB::EXP_F80, RTLIB::EXP_F128,
RTLIB::EXP_PPCF128));
break;
case ISD::FEXP2:
Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
RTLIB::EXP2_F80, RTLIB::EXP2_F128,
RTLIB::EXP2_PPCF128));
break;
case ISD::FTRUNC:
Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
RTLIB::TRUNC_PPCF128));
break;
case ISD::FFLOOR:
Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
RTLIB::FLOOR_PPCF128));
break;
case ISD::FCEIL:
Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_F128,
RTLIB::CEIL_PPCF128));
break;
case ISD::FRINT:
Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_F128,
RTLIB::RINT_PPCF128));
break;
case ISD::FNEARBYINT:
Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80,
RTLIB::NEARBYINT_F128,
RTLIB::NEARBYINT_PPCF128));
break;
case ISD::FROUND:
Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
RTLIB::ROUND_F64,
RTLIB::ROUND_F80,
RTLIB::ROUND_F128,
RTLIB::ROUND_PPCF128));
break;
case ISD::FPOWI:
Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
RTLIB::POWI_F80, RTLIB::POWI_F128,
RTLIB::POWI_PPCF128));
break;
case ISD::FPOW:
Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
RTLIB::POW_F80, RTLIB::POW_F128,
RTLIB::POW_PPCF128));
break;
case ISD::FDIV:
Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
RTLIB::DIV_F80, RTLIB::DIV_F128,
RTLIB::DIV_PPCF128));
break;
case ISD::FREM:
Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
RTLIB::REM_F80, RTLIB::REM_F128,
RTLIB::REM_PPCF128));
break;
case ISD::FMA:
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
RTLIB::FMA_F80, RTLIB::FMA_F128,
RTLIB::FMA_PPCF128));
break;
case ISD::FMAD:
llvm_unreachable("Illegal fmad should never be formed");
case ISD::FADD:
Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
RTLIB::ADD_F80, RTLIB::ADD_F128,
RTLIB::ADD_PPCF128));
break;
case ISD::FMUL:
Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
RTLIB::MUL_F80, RTLIB::MUL_F128,
RTLIB::MUL_PPCF128));
break;
case ISD::FP16_TO_FP: {
if (Node->getValueType(0) == MVT::f32) {
Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
break;
}
// We can extend to types bigger than f32 in two steps without changing the
// result. Since "f16 -> f32" is much more commonly available, give CodeGen
// the option of emitting that before resorting to a libcall.
SDValue Res =
DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
Results.push_back(
DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
break;
}
case ISD::FP_TO_FP16: {
if (!TM.Options.UseSoftFloat && TM.Options.UnsafeFPMath) {
SDValue Op = Node->getOperand(0);
MVT SVT = Op.getSimpleValueType();
if ((SVT == MVT::f64 || SVT == MVT::f80) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
// Under fastmath, we can expand this node into a fround followed by
// a float-half conversion.
SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
DAG.getIntPtrConstant(0, dl));
Results.push_back(
DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, FloatVal));
break;
}
}
RTLIB::Libcall LC =
RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
Results.push_back(ExpandLibCall(LC, Node, false));
break;
}
case ISD::ConstantFP: {
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
// Check to see if this FP immediate is already legal.
// If this is a legal constant, turn it into a TargetConstantFP node.
if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
Results.push_back(ExpandConstantFP(CFP, true));
break;
}
case ISD::FSUB: {
EVT VT = Node->getValueType(0);
if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
Results.push_back(Tmp1);
} else {
Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
RTLIB::SUB_F80, RTLIB::SUB_F128,
RTLIB::SUB_PPCF128));
}
break;
}
case ISD::SUB: {
EVT VT = Node->getValueType(0);
assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
"Don't know how to expand this subtraction!");
Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
VT));
Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
break;
}
case ISD::UREM:
case ISD::SREM: {
EVT VT = Node->getValueType(0);
bool isSigned = Node->getOpcode() == ISD::SREM;
unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
Tmp2 = Node->getOperand(0);
Tmp3 = Node->getOperand(1);
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
(isDivRemLibcallAvailable(Node, isSigned, TLI) &&
// If div is legal, it's better to do the normal expansion
!TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
useDivRem(Node, isSigned, false))) {
SDVTList VTs = DAG.getVTList(VT, VT);
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
} else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
// X % Y -> X-X/Y*Y
Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
} else if (isSigned)
Tmp1 = ExpandIntLibCall(Node, true,
RTLIB::SREM_I8,
RTLIB::SREM_I16, RTLIB::SREM_I32,
RTLIB::SREM_I64, RTLIB::SREM_I128);
else
Tmp1 = ExpandIntLibCall(Node, false,
RTLIB::UREM_I8,
RTLIB::UREM_I16, RTLIB::UREM_I32,
RTLIB::UREM_I64, RTLIB::UREM_I128);
Results.push_back(Tmp1);
break;
}
case ISD::UDIV:
case ISD::SDIV: {
bool isSigned = Node->getOpcode() == ISD::SDIV;
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
(isDivRemLibcallAvailable(Node, isSigned, TLI) &&
useDivRem(Node, isSigned, true)))
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
else if (isSigned)
Tmp1 = ExpandIntLibCall(Node, true,
RTLIB::SDIV_I8,
RTLIB::SDIV_I16, RTLIB::SDIV_I32,
RTLIB::SDIV_I64, RTLIB::SDIV_I128);
else
Tmp1 = ExpandIntLibCall(Node, false,
RTLIB::UDIV_I8,
RTLIB::UDIV_I16, RTLIB::UDIV_I32,
RTLIB::UDIV_I64, RTLIB::UDIV_I128);
Results.push_back(Tmp1);
break;
}
case ISD::MULHU:
case ISD::MULHS: {
unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
ISD::SMUL_LOHI;
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
"If this wasn't legal, it shouldn't have been created!");
Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
Results.push_back(Tmp1.getValue(1));
break;
}
case ISD::SDIVREM:
case ISD::UDIVREM:
// Expand into divrem libcall
ExpandDivRemLibCall(Node, Results);
break;
case ISD::MUL: {
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
// See if multiply or divide can be lowered using two-result operations.
// We just need the low half of the multiply; try both the signed
// and unsigned forms. If the target supports both SMUL_LOHI and
// UMUL_LOHI, form a preference by checking which forms of plain
// MULH it supports.
bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
unsigned OpToUse = 0;
if (HasSMUL_LOHI && !HasMULHS) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI && !HasMULHU) {
OpToUse = ISD::UMUL_LOHI;
} else if (HasSMUL_LOHI) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI) {
OpToUse = ISD::UMUL_LOHI;
}
if (OpToUse) {
Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
Node->getOperand(1)));
break;
}
SDValue Lo, Hi;
EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
SDValue Shift = DAG.getConstant(HalfType.getSizeInBits(), dl,
TLI.getShiftAmountTy(HalfType));
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
break;
}
Tmp1 = ExpandIntLibCall(Node, false,
RTLIB::MUL_I8,
RTLIB::MUL_I16, RTLIB::MUL_I32,
RTLIB::MUL_I64, RTLIB::MUL_I128);
Results.push_back(Tmp1);
break;
}
case ISD::SADDO:
case ISD::SSUBO: {
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
LHS, RHS);
Results.push_back(Sum);
EVT ResultType = Node->getValueType(1);
EVT OType = getSetCCResultType(Node->getValueType(0));
SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
// LHSSign -> LHS >= 0
// RHSSign -> RHS >= 0
// SumSign -> Sum >= 0
//
// Add:
// Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
// Sub:
// Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
//
SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
Node->getOpcode() == ISD::SADDO ?
ISD::SETEQ : ISD::SETNE);
SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
break;
}
case ISD::UADDO:
case ISD::USUBO: {
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
LHS, RHS);
Results.push_back(Sum);
EVT ResultType = Node->getValueType(1);
EVT SetCCType = getSetCCResultType(Node->getValueType(0));
ISD::CondCode CC
= Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
break;
}
case ISD::UMULO:
case ISD::SMULO: {
EVT VT = Node->getValueType(0);
EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDValue BottomHalf;
SDValue TopHalf;
static const unsigned Ops[2][3] =
{ { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
{ ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
bool isSigned = Node->getOpcode() == ISD::SMULO;
if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
} else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
RHS);
TopHalf = BottomHalf.getValue(1);
} else if (TLI.isTypeLegal(WideVT)) {
LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
DAG.getIntPtrConstant(0, dl));
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
DAG.getIntPtrConstant(1, dl));
} else {
// We can fall back to a libcall with an illegal type for the MUL if we
// have a libcall big enough.
// Also, we can fall back to a division in some cases, but that's a big
// performance hit in the general case.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (WideVT == MVT::i16)
LC = RTLIB::MUL_I16;
else if (WideVT == MVT::i32)
LC = RTLIB::MUL_I32;
else if (WideVT == MVT::i64)
LC = RTLIB::MUL_I64;
else if (WideVT == MVT::i128)
LC = RTLIB::MUL_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
// The high part is obtained by SRA'ing all but one of the bits of low
// part.
unsigned LoSize = VT.getSizeInBits();
SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
DAG.getConstant(LoSize - 1, dl,
TLI.getPointerTy()));
SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
DAG.getConstant(LoSize - 1, dl,
TLI.getPointerTy()));
// Here we're passing the 2 arguments explicitly as 4 arguments that are
// pre-lowered to the correct types. This all depends upon WideVT not
// being a legal type for the architecture and thus has to be split to
// two arguments.
SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
DAG.getIntPtrConstant(0, dl));
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
DAG.getIntPtrConstant(1, dl));
// Ret is a node with an illegal type. Because such things are not
// generally permitted during this phase of legalization, make sure the
// node has no more uses. The above EXTRACT_ELEMENT nodes should have been
// folded.
assert(Ret->use_empty() &&
"Unexpected uses of illegally type from expanded lib call.");
}
if (isSigned) {
Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, dl,
TLI.getShiftAmountTy(BottomHalf.getValueType()));
Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
ISD::SETNE);
} else {
TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
DAG.getConstant(0, dl, VT), ISD::SETNE);
}
Results.push_back(BottomHalf);
Results.push_back(TopHalf);
break;
}
case ISD::BUILD_PAIR: {
EVT PairTy = Node->getValueType(0);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
DAG.getConstant(PairTy.getSizeInBits()/2, dl,
TLI.getShiftAmountTy(PairTy)));
Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
break;
}
case ISD::SELECT:
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
if (Tmp1.getOpcode() == ISD::SETCC) {
Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
Tmp2, Tmp3,
cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
} else {
Tmp1 = DAG.getSelectCC(dl, Tmp1,
DAG.getConstant(0, dl, Tmp1.getValueType()),
Tmp2, Tmp3, ISD::SETNE);
}
Results.push_back(Tmp1);
break;
case ISD::BR_JT: {
SDValue Chain = Node->getOperand(0);
SDValue Table = Node->getOperand(1);
SDValue Index = Node->getOperand(2);
EVT PTy = TLI.getPointerTy();
const DataLayout &TD = *TLI.getDataLayout();
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
DAG.getConstant(EntrySize, dl, Index.getValueType()));
SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
Index, Table);
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(), MemVT,
false, false, false, 0);
Addr = LD;
if (TM.getRelocationModel() == Reloc::PIC_) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
TLI.getPICJumpTableRelocBase(Table, DAG));
}
Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
Results.push_back(Tmp1);
break;
}
case ISD::BRCOND:
// Expand brcond's setcc into its constituent parts and create a BR_CC
// Node.
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
if (Tmp2.getOpcode() == ISD::SETCC) {
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
Tmp1, Tmp2.getOperand(2),
Tmp2.getOperand(0), Tmp2.getOperand(1),
Node->getOperand(2));
} else {
// We test only the i1 bit. Skip the AND if UNDEF.
Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
DAG.getConstant(1, dl, Tmp2.getValueType()));
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
DAG.getCondCode(ISD::SETNE), Tmp3,
DAG.getConstant(0, dl, Tmp3.getValueType()),
Node->getOperand(2));
}
Results.push_back(Tmp1);
break;
case ISD::SETCC: {
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
Tmp3, NeedInvert, dl);
if (Legalized) {
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
// condition code, create a new SETCC node.
if (Tmp3.getNode())
Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
Tmp1, Tmp2, Tmp3);
// If we expanded the SETCC by inverting the condition code, then wrap
// the existing SETCC in a NOT to restore the intended condition.
if (NeedInvert)
Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
Results.push_back(Tmp1);
break;
}
// Otherwise, SETCC for the given comparison type must be completely
// illegal; expand it into a SELECT_CC.
EVT VT = Node->getValueType(0);
int TrueValue;
switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
TrueValue = 1;
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
TrueValue = -1;
break;
}
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
DAG.getConstant(TrueValue, dl, VT),
DAG.getConstant(0, dl, VT),
Tmp3);
Results.push_back(Tmp1);
break;
}
case ISD::SELECT_CC: {
Tmp1 = Node->getOperand(0); // LHS
Tmp2 = Node->getOperand(1); // RHS
Tmp3 = Node->getOperand(2); // True
Tmp4 = Node->getOperand(3); // False
EVT VT = Node->getValueType(0);
SDValue CC = Node->getOperand(4);
ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
// If the condition code is legal, then we need to expand this
// node using SETCC and SELECT.
EVT CmpVT = Tmp1.getValueType();
assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
"Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
"expanded.");
EVT CCVT = TLI.getSetCCResultType(*DAG.getContext(), CmpVT);
SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
break;
}
// SELECT_CC is legal, so the condition code must not be.
bool Legalized = false;
// Try to legalize by inverting the condition. This is for targets that
// might support an ordered version of a condition, but not the unordered
// version (or vice versa).
ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
Tmp1.getValueType().isInteger());
if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
// Use the new condition code and swap true and false
Legalized = true;
Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
} else {
// If The inverse is not legal, then try to swap the arguments using
// the inverse condition code.
ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
// The swapped inverse condition is legal, so swap true and false,
// lhs and rhs.
Legalized = true;
Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
}
}
if (!Legalized) {
Legalized = LegalizeSetCCCondCode(
getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
dl);
assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
// If we expanded the SETCC by inverting the condition code, then swap
// the True/False operands to match.
if (NeedInvert)
std::swap(Tmp3, Tmp4);
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
// condition code, create a new SELECT_CC node.
if (CC.getNode()) {
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
Tmp1, Tmp2, Tmp3, Tmp4, CC);
} else {
Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
CC = DAG.getCondCode(ISD::SETNE);
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
Tmp2, Tmp3, Tmp4, CC);
}
}
Results.push_back(Tmp1);
break;
}
case ISD::BR_CC: {
Tmp1 = Node->getOperand(0); // Chain
Tmp2 = Node->getOperand(2); // LHS
Tmp3 = Node->getOperand(3); // RHS
Tmp4 = Node->getOperand(1); // CC
bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
(void)Legalized;
assert(Legalized && "Can't legalize BR_CC with legal condition!");
// If we expanded the SETCC by inverting the condition code, then wrap
// the existing SETCC in a NOT to restore the intended condition.
if (NeedInvert)
Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
// If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
// node.
if (Tmp4.getNode()) {
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
Tmp4, Tmp2, Tmp3, Node->getOperand(4));
} else {
Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
Tmp4 = DAG.getCondCode(ISD::SETNE);
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
Tmp2, Tmp3, Node->getOperand(4));
}
Results.push_back(Tmp1);
break;
}
case ISD::BUILD_VECTOR:
Results.push_back(ExpandBUILD_VECTOR(Node));
break;
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: {
// Scalarize vector SRA/SRL/SHL.
EVT VT = Node->getValueType(0);
assert(VT.isVector() && "Unable to legalize non-vector shift");
assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
unsigned NumElem = VT.getVectorNumElements();
SmallVector<SDValue, 8> Scalars;
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
VT.getScalarType(),
Node->getOperand(0),
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy()));
SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
VT.getScalarType(),
Node->getOperand(1),
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy()));
Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
VT.getScalarType(), Ex, Sh));
}
SDValue Result =
DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
case ISD::GLOBAL_OFFSET_TABLE:
case ISD::GlobalAddress:
case ISD::GlobalTLSAddress:
case ISD::ExternalSymbol:
case ISD::ConstantPool:
case ISD::JumpTable:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID:
// FIXME: Custom lowering for these operations shouldn't return null!
break;
}
// Replace the original node with the legalized result.
if (!Results.empty())
ReplaceNode(Node, Results.data());
}
void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
SmallVector<SDValue, 8> Results;
MVT OVT = Node->getSimpleValueType(0);
if (Node->getOpcode() == ISD::UINT_TO_FP ||
Node->getOpcode() == ISD::SINT_TO_FP ||
Node->getOpcode() == ISD::SETCC) {
OVT = Node->getOperand(0).getSimpleValueType();
}
if (Node->getOpcode() == ISD::BR_CC)
OVT = Node->getOperand(2).getSimpleValueType();
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
SDLoc dl(Node);
SDValue Tmp1, Tmp2, Tmp3;
switch (Node->getOpcode()) {
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
// Zero extend the argument.
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
// Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
// already the correct result.
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
if (Node->getOpcode() == ISD::CTTZ) {
// FIXME: This should set a bit in the zero extended value instead.
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
Tmp1, DAG.getConstant(NVT.getSizeInBits(), dl, NVT),
ISD::SETEQ);
Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
DAG.getConstant(OVT.getSizeInBits(), dl, NVT), Tmp1);
} else if (Node->getOpcode() == ISD::CTLZ ||
Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
// Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
DAG.getConstant(NVT.getSizeInBits() -
OVT.getSizeInBits(), dl, NVT));
}
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
break;
case ISD::BSWAP: {
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
DAG.getConstant(DiffBits, dl,
TLI.getShiftAmountTy(NVT)));
Results.push_back(Tmp1);
break;
}
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
Node->getOpcode() == ISD::FP_TO_SINT, dl);
Results.push_back(Tmp1);
break;
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
Node->getOpcode() == ISD::SINT_TO_FP, dl);
Results.push_back(Tmp1);
break;
case ISD::VAARG: {
SDValue Chain = Node->getOperand(0); // Get the chain.
SDValue Ptr = Node->getOperand(1); // Get the pointer.
unsigned TruncOp;
if (OVT.isVector()) {
TruncOp = ISD::BITCAST;
} else {
assert(OVT.isInteger()
&& "VAARG promotion is supported only for vectors or integer types");
TruncOp = ISD::TRUNCATE;
}
// Perform the larger operation, then convert back
Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
Node->getConstantOperandVal(3));
Chain = Tmp1.getValue(1);
Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
// Modified the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
if (UpdatedNodes) {
UpdatedNodes->insert(Tmp2.getNode());
UpdatedNodes->insert(Chain.getNode());
}
ReplacedNode(Node);
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
unsigned ExtOp, TruncOp;
if (OVT.isVector()) {
ExtOp = ISD::BITCAST;
TruncOp = ISD::BITCAST;
} else {
assert(OVT.isInteger() && "Cannot promote logic operation");
ExtOp = ISD::ANY_EXTEND;
TruncOp = ISD::TRUNCATE;
}
// Promote each of the values to the new type.
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
// Perform the larger operation, then convert back
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
break;
}
case ISD::SELECT: {
unsigned ExtOp, TruncOp;
if (Node->getValueType(0).isVector() ||
Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
ExtOp = ISD::BITCAST;
TruncOp = ISD::BITCAST;
} else if (Node->getValueType(0).isInteger()) {
ExtOp = ISD::ANY_EXTEND;
TruncOp = ISD::TRUNCATE;
} else {
ExtOp = ISD::FP_EXTEND;
TruncOp = ISD::FP_ROUND;
}
Tmp1 = Node->getOperand(0);
// Promote each of the values to the new type.
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
// Perform the larger operation, then round down.
Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
if (TruncOp != ISD::FP_ROUND)
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
else
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Tmp1);
break;
}
case ISD::VECTOR_SHUFFLE: {
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
// Cast the two input vectors.
Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
// Convert the shuffle mask to the right # elements.
Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
Results.push_back(Tmp1);
break;
}
case ISD::SETCC: {
unsigned ExtOp = ISD::FP_EXTEND;
if (NVT.isInteger()) {
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(2))->get();
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
Tmp1, Tmp2, Node->getOperand(2)));
break;
}
case ISD::BR_CC: {
unsigned ExtOp = ISD::FP_EXTEND;
if (NVT.isInteger()) {
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(1))->get();
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
Node->getOperand(0), Node->getOperand(1),
Tmp1, Tmp2, Node->getOperand(4)));
break;
}
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FCOPYSIGN:
case ISD::FPOW: {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp3, DAG.getIntPtrConstant(0, dl)));
break;
}
case ISD::FMA: {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
Results.push_back(
DAG.getNode(ISD::FP_ROUND, dl, OVT,
DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
DAG.getIntPtrConstant(0, dl)));
break;
}
case ISD::FPOWI: {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = Node->getOperand(1);
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp3, DAG.getIntPtrConstant(0, dl)));
break;
}
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FTRUNC:
case ISD::FNEG:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FABS:
case ISD::FEXP:
case ISD::FEXP2: {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
Tmp2, DAG.getIntPtrConstant(0, dl)));
break;
}
}
// Replace the original node with the legalized result.
if (!Results.empty())
ReplaceNode(Node, Results.data());
}
/// This is the entry point for the file.
void SelectionDAG::Legalize() {
AssignTopologicalOrder();
SmallPtrSet<SDNode *, 16> LegalizedNodes;
SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
// Visit all the nodes. We start in topological order, so that we see
// nodes with their original operands intact. Legalization can produce
// new nodes which may themselves need to be legalized. Iterate until all
// nodes have been legalized.
for (;;) {
bool AnyLegalized = false;
for (auto NI = allnodes_end(); NI != allnodes_begin();) {
--NI;
SDNode *N = NI;
if (N->use_empty() && N != getRoot().getNode()) {
++NI;
DeleteNode(N);
continue;
}
if (LegalizedNodes.insert(N).second) {
AnyLegalized = true;
Legalizer.LegalizeOp(N);
if (N->use_empty() && N != getRoot().getNode()) {
++NI;
DeleteNode(N);
}
}
}
if (!AnyLegalized)
break;
}
// Remove dead nodes now.
RemoveDeadNodes();
}
bool SelectionDAG::LegalizeOp(SDNode *N,
SmallSetVector<SDNode *, 16> &UpdatedNodes) {
SmallPtrSet<SDNode *, 16> LegalizedNodes;
SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
// Directly insert the node in question, and legalize it. This will recurse
// as needed through operands.
LegalizedNodes.insert(N);
Legalizer.LegalizeOp(N);
return LegalizedNodes.count(N);
}