forked from OSchip/llvm-project
755 lines
28 KiB
C++
755 lines
28 KiB
C++
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements routines for translating functions from LLVM IR into
|
|
// Machine IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "function-lowering-info"
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it, or used by a
|
|
/// switch or atomic instruction, which may expand to multiple basic blocks.
|
|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
|
|
if (I->use_empty()) return false;
|
|
if (isa<PHINode>(I)) return true;
|
|
const BasicBlock *BB = I->getParent();
|
|
for (const User *U : I->users())
|
|
if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static ISD::NodeType getPreferredExtendForValue(const Value *V) {
|
|
// For the users of the source value being used for compare instruction, if
|
|
// the number of signed predicate is greater than unsigned predicate, we
|
|
// prefer to use SIGN_EXTEND.
|
|
//
|
|
// With this optimization, we would be able to reduce some redundant sign or
|
|
// zero extension instruction, and eventually more machine CSE opportunities
|
|
// can be exposed.
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
|
|
unsigned NumOfSigned = 0, NumOfUnsigned = 0;
|
|
for (const User *U : V->users()) {
|
|
if (const auto *CI = dyn_cast<CmpInst>(U)) {
|
|
NumOfSigned += CI->isSigned();
|
|
NumOfUnsigned += CI->isUnsigned();
|
|
}
|
|
}
|
|
if (NumOfSigned > NumOfUnsigned)
|
|
ExtendKind = ISD::SIGN_EXTEND;
|
|
|
|
return ExtendKind;
|
|
}
|
|
|
|
namespace {
|
|
struct WinEHNumbering {
|
|
WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {}
|
|
|
|
WinEHFuncInfo &FuncInfo;
|
|
int NextState;
|
|
|
|
SmallVector<ActionHandler *, 4> HandlerStack;
|
|
SmallPtrSet<const Function *, 4> VisitedHandlers;
|
|
|
|
int currentEHNumber() const {
|
|
return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState();
|
|
}
|
|
|
|
void createUnwindMapEntry(int ToState, ActionHandler *AH);
|
|
void createTryBlockMapEntry(int TryLow, int TryHigh,
|
|
ArrayRef<CatchHandler *> Handlers);
|
|
void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS);
|
|
void calculateStateNumbers(const Function &F);
|
|
};
|
|
}
|
|
|
|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
|
|
SelectionDAG *DAG) {
|
|
Fn = &fn;
|
|
MF = &mf;
|
|
TLI = MF->getSubtarget().getTargetLowering();
|
|
RegInfo = &MF->getRegInfo();
|
|
MachineModuleInfo &MMI = MF->getMMI();
|
|
|
|
// Check whether the function can return without sret-demotion.
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
|
|
CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
|
|
Fn->isVarArg(), Outs, Fn->getContext());
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
Function::const_iterator BB = Fn->begin(), EB = Fn->end();
|
|
for (; BB != EB; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
|
|
// Static allocas can be folded into the initial stack frame adjustment.
|
|
if (AI->isStaticAlloca()) {
|
|
const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
|
|
Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
|
|
unsigned Align =
|
|
std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
|
|
AI->getAlignment());
|
|
|
|
TySize *= CUI->getZExtValue(); // Get total allocated size.
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
|
|
StaticAllocaMap[AI] =
|
|
MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
|
|
|
|
} else {
|
|
unsigned Align = std::max(
|
|
(unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
|
|
AI->getAllocatedType()),
|
|
AI->getAlignment());
|
|
unsigned StackAlign =
|
|
MF->getSubtarget().getFrameLowering()->getStackAlignment();
|
|
if (Align <= StackAlign)
|
|
Align = 0;
|
|
// Inform the Frame Information that we have variable-sized objects.
|
|
MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
|
|
}
|
|
}
|
|
|
|
// Look for inline asm that clobbers the SP register.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
ImmutableCallSite CS(I);
|
|
if (isa<InlineAsm>(CS.getCalledValue())) {
|
|
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
std::vector<TargetLowering::AsmOperandInfo> Ops =
|
|
TLI->ParseConstraints(TRI, CS);
|
|
for (size_t I = 0, E = Ops.size(); I != E; ++I) {
|
|
TargetLowering::AsmOperandInfo &Op = Ops[I];
|
|
if (Op.Type == InlineAsm::isClobber) {
|
|
// Clobbers don't have SDValue operands, hence SDValue().
|
|
TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
|
|
std::pair<unsigned, const TargetRegisterClass *> PhysReg =
|
|
TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
|
|
Op.ConstraintVT);
|
|
if (PhysReg.first == SP)
|
|
MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for calls to the @llvm.va_start intrinsic. We can omit some
|
|
// prologue boilerplate for variadic functions that don't examine their
|
|
// arguments.
|
|
if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::vastart)
|
|
MF->getFrameInfo()->setHasVAStart(true);
|
|
}
|
|
|
|
// If we have a musttail call in a variadic funciton, we need to ensure we
|
|
// forward implicit register parameters.
|
|
if (const auto *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->isMustTailCall() && Fn->isVarArg())
|
|
MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
|
|
}
|
|
|
|
// Mark values used outside their block as exported, by allocating
|
|
// a virtual register for them.
|
|
if (isUsedOutsideOfDefiningBlock(I))
|
|
if (!isa<AllocaInst>(I) ||
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
InitializeRegForValue(I);
|
|
|
|
// Collect llvm.dbg.declare information. This is done now instead of
|
|
// during the initial isel pass through the IR so that it is done
|
|
// in a predictable order.
|
|
if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
|
|
assert(DI->getVariable() && "Missing variable");
|
|
assert(DI->getDebugLoc() && "Missing location");
|
|
if (MMI.hasDebugInfo()) {
|
|
// Don't handle byval struct arguments or VLAs, for example.
|
|
// Non-byval arguments are handled here (they refer to the stack
|
|
// temporary alloca at this point).
|
|
const Value *Address = DI->getAddress();
|
|
if (Address) {
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
|
|
Address = BCI->getOperand(0);
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
|
|
DenseMap<const AllocaInst *, int>::iterator SI =
|
|
StaticAllocaMap.find(AI);
|
|
if (SI != StaticAllocaMap.end()) { // Check for VLAs.
|
|
int FI = SI->second;
|
|
MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
|
|
FI, DI->getDebugLoc());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decide the preferred extend type for a value.
|
|
PreferredExtendType[I] = getPreferredExtendForValue(I);
|
|
}
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (BB = Fn->begin(); BB != EB; ++BB) {
|
|
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
|
|
MBBMap[BB] = MBB;
|
|
MF->push_back(MBB);
|
|
|
|
// Transfer the address-taken flag. This is necessary because there could
|
|
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
|
|
// the first one should be marked.
|
|
if (BB->hasAddressTaken())
|
|
MBB->setHasAddressTaken();
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
if (PN->use_empty()) continue;
|
|
|
|
// Skip empty types
|
|
if (PN->getType()->isEmptyTy())
|
|
continue;
|
|
|
|
DebugLoc DL = PN->getDebugLoc();
|
|
unsigned PHIReg = ValueMap[PN];
|
|
assert(PHIReg && "PHI node does not have an assigned virtual register!");
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
|
|
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
|
|
EVT VT = ValueVTs[vti];
|
|
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
for (unsigned i = 0; i != NumRegisters; ++i)
|
|
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
|
|
PHIReg += NumRegisters;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark landing pad blocks.
|
|
SmallVector<const LandingPadInst *, 4> LPads;
|
|
for (BB = Fn->begin(); BB != EB; ++BB) {
|
|
if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
|
|
MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
|
|
if (BB->isLandingPad())
|
|
LPads.push_back(BB->getLandingPadInst());
|
|
}
|
|
|
|
// If this is an MSVC EH personality, we need to do a bit more work.
|
|
EHPersonality Personality = EHPersonality::Unknown;
|
|
if (!LPads.empty())
|
|
Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
|
|
if (!isMSVCEHPersonality(Personality))
|
|
return;
|
|
|
|
WinEHFuncInfo *EHInfo = nullptr;
|
|
if (Personality == EHPersonality::MSVC_Win64SEH) {
|
|
addSEHHandlersForLPads(LPads);
|
|
} else if (Personality == EHPersonality::MSVC_CXX) {
|
|
const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
|
|
EHInfo = &MMI.getWinEHFuncInfo(WinEHParentFn);
|
|
if (EHInfo->LandingPadStateMap.empty()) {
|
|
WinEHNumbering Num(*EHInfo);
|
|
Num.calculateStateNumbers(*WinEHParentFn);
|
|
// Pop everything on the handler stack.
|
|
Num.processCallSite(None, ImmutableCallSite());
|
|
}
|
|
|
|
// Copy the state numbers to LandingPadInfo for the current function, which
|
|
// could be a handler or the parent.
|
|
for (const LandingPadInst *LP : LPads) {
|
|
MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
|
|
MMI.addWinEHState(LPadMBB, EHInfo->LandingPadStateMap[LP]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FunctionLoweringInfo::addSEHHandlersForLPads(
|
|
ArrayRef<const LandingPadInst *> LPads) {
|
|
MachineModuleInfo &MMI = MF->getMMI();
|
|
|
|
// Iterate over all landing pads with llvm.eh.actions calls.
|
|
for (const LandingPadInst *LP : LPads) {
|
|
const IntrinsicInst *ActionsCall =
|
|
dyn_cast<IntrinsicInst>(LP->getNextNode());
|
|
if (!ActionsCall ||
|
|
ActionsCall->getIntrinsicID() != Intrinsic::eh_actions)
|
|
continue;
|
|
|
|
// Parse the llvm.eh.actions call we found.
|
|
MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
|
|
SmallVector<ActionHandler *, 4> Actions;
|
|
parseEHActions(ActionsCall, Actions);
|
|
|
|
// Iterate EH actions from most to least precedence, which means
|
|
// iterating in reverse.
|
|
for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) {
|
|
ActionHandler *Action = *I;
|
|
if (auto *CH = dyn_cast<CatchHandler>(Action)) {
|
|
const auto *Filter =
|
|
dyn_cast<Function>(CH->getSelector()->stripPointerCasts());
|
|
assert((Filter || CH->getSelector()->isNullValue()) &&
|
|
"expected function or catch-all");
|
|
const auto *RecoverBA =
|
|
cast<BlockAddress>(CH->getHandlerBlockOrFunc());
|
|
MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA);
|
|
} else {
|
|
assert(isa<CleanupHandler>(Action));
|
|
const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc());
|
|
MMI.addSEHCleanupHandler(LPadMBB, Fini);
|
|
}
|
|
}
|
|
DeleteContainerPointers(Actions);
|
|
}
|
|
}
|
|
|
|
void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
|
|
WinEHUnwindMapEntry UME;
|
|
UME.ToState = ToState;
|
|
if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
|
|
UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
|
|
else
|
|
UME.Cleanup = nullptr;
|
|
FuncInfo.UnwindMap.push_back(UME);
|
|
}
|
|
|
|
void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
|
|
ArrayRef<CatchHandler *> Handlers) {
|
|
WinEHTryBlockMapEntry TBME;
|
|
TBME.TryLow = TryLow;
|
|
TBME.TryHigh = TryHigh;
|
|
assert(TBME.TryLow <= TBME.TryHigh);
|
|
for (CatchHandler *CH : Handlers) {
|
|
WinEHHandlerType HT;
|
|
if (CH->getSelector()->isNullValue()) {
|
|
HT.Adjectives = 0x40;
|
|
HT.TypeDescriptor = nullptr;
|
|
} else {
|
|
auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
|
|
// Selectors are always pointers to GlobalVariables with 'struct' type.
|
|
// The struct has two fields, adjectives and a type descriptor.
|
|
auto *CS = cast<ConstantStruct>(GV->getInitializer());
|
|
HT.Adjectives =
|
|
cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
|
|
HT.TypeDescriptor =
|
|
cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
|
|
}
|
|
HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
|
|
HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
|
|
TBME.HandlerArray.push_back(HT);
|
|
}
|
|
FuncInfo.TryBlockMap.push_back(TBME);
|
|
}
|
|
|
|
static void print_name(const Value *V) {
|
|
#ifndef NDEBUG
|
|
if (!V) {
|
|
DEBUG(dbgs() << "null");
|
|
return;
|
|
}
|
|
|
|
if (const auto *F = dyn_cast<Function>(V))
|
|
DEBUG(dbgs() << F->getName());
|
|
else
|
|
DEBUG(V->dump());
|
|
#endif
|
|
}
|
|
|
|
void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions,
|
|
ImmutableCallSite CS) {
|
|
int FirstMismatch = 0;
|
|
for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
|
|
++FirstMismatch) {
|
|
if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
|
|
Actions[FirstMismatch]->getHandlerBlockOrFunc())
|
|
break;
|
|
delete Actions[FirstMismatch];
|
|
}
|
|
|
|
bool EnteringScope = (int)Actions.size() > FirstMismatch;
|
|
|
|
// Don't recurse while we are looping over the handler stack. Instead, defer
|
|
// the numbering of the catch handlers until we are done popping.
|
|
SmallVector<CatchHandler *, 4> PoppedCatches;
|
|
for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
|
|
if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) {
|
|
PoppedCatches.push_back(CH);
|
|
} else {
|
|
// Delete cleanup handlers
|
|
delete HandlerStack.back();
|
|
}
|
|
HandlerStack.pop_back();
|
|
}
|
|
|
|
// We need to create a new state number if we are exiting a try scope and we
|
|
// will not push any more actions.
|
|
int TryHigh = NextState - 1;
|
|
if (!EnteringScope && !PoppedCatches.empty()) {
|
|
createUnwindMapEntry(currentEHNumber(), nullptr);
|
|
++NextState;
|
|
}
|
|
|
|
int LastTryLowIdx = 0;
|
|
for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
|
|
CatchHandler *CH = PoppedCatches[I];
|
|
if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
|
|
int TryLow = CH->getEHState();
|
|
auto Handlers =
|
|
makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
|
|
createTryBlockMapEntry(TryLow, TryHigh, Handlers);
|
|
LastTryLowIdx = I + 1;
|
|
}
|
|
}
|
|
|
|
for (CatchHandler *CH : PoppedCatches) {
|
|
if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc()))
|
|
calculateStateNumbers(*F);
|
|
delete CH;
|
|
}
|
|
|
|
bool LastActionWasCatch = false;
|
|
for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
|
|
// We can reuse eh states when pushing two catches for the same invoke.
|
|
bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]);
|
|
// FIXME: Reenable this optimization!
|
|
if (CurrActionIsCatch && LastActionWasCatch && false) {
|
|
Actions[I]->setEHState(currentEHNumber());
|
|
} else {
|
|
createUnwindMapEntry(currentEHNumber(), Actions[I]);
|
|
Actions[I]->setEHState(NextState);
|
|
NextState++;
|
|
DEBUG(dbgs() << "Creating unwind map entry for: (");
|
|
print_name(Actions[I]->getHandlerBlockOrFunc());
|
|
DEBUG(dbgs() << ", " << currentEHNumber() << ")\n");
|
|
}
|
|
HandlerStack.push_back(Actions[I]);
|
|
LastActionWasCatch = CurrActionIsCatch;
|
|
}
|
|
|
|
DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
|
|
print_name(CS ? CS.getCalledValue() : nullptr);
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
void WinEHNumbering::calculateStateNumbers(const Function &F) {
|
|
auto I = VisitedHandlers.insert(&F);
|
|
if (!I.second)
|
|
return; // We've already visited this handler, don't renumber it.
|
|
|
|
DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
|
|
SmallVector<ActionHandler *, 4> ActionList;
|
|
for (const BasicBlock &BB : F) {
|
|
for (const Instruction &I : BB) {
|
|
const auto *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI || CI->doesNotThrow())
|
|
continue;
|
|
processCallSite(None, CI);
|
|
}
|
|
const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
|
|
if (!II)
|
|
continue;
|
|
const LandingPadInst *LPI = II->getLandingPadInst();
|
|
auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
|
|
if (!ActionsCall)
|
|
continue;
|
|
assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
|
|
parseEHActions(ActionsCall, ActionList);
|
|
processCallSite(ActionList, II);
|
|
ActionList.clear();
|
|
FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
|
|
}
|
|
|
|
FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
|
|
}
|
|
|
|
/// clear - Clear out all the function-specific state. This returns this
|
|
/// FunctionLoweringInfo to an empty state, ready to be used for a
|
|
/// different function.
|
|
void FunctionLoweringInfo::clear() {
|
|
assert(CatchInfoFound.size() == CatchInfoLost.size() &&
|
|
"Not all catch info was assigned to a landing pad!");
|
|
|
|
MBBMap.clear();
|
|
ValueMap.clear();
|
|
StaticAllocaMap.clear();
|
|
#ifndef NDEBUG
|
|
CatchInfoLost.clear();
|
|
CatchInfoFound.clear();
|
|
#endif
|
|
LiveOutRegInfo.clear();
|
|
VisitedBBs.clear();
|
|
ArgDbgValues.clear();
|
|
ByValArgFrameIndexMap.clear();
|
|
RegFixups.clear();
|
|
StatepointStackSlots.clear();
|
|
PreferredExtendType.clear();
|
|
}
|
|
|
|
/// CreateReg - Allocate a single virtual register for the given type.
|
|
unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
|
|
return RegInfo->createVirtualRegister(
|
|
MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
|
|
}
|
|
|
|
/// CreateRegs - Allocate the appropriate number of virtual registers of
|
|
/// the correctly promoted or expanded types. Assign these registers
|
|
/// consecutive vreg numbers and return the first assigned number.
|
|
///
|
|
/// In the case that the given value has struct or array type, this function
|
|
/// will assign registers for each member or element.
|
|
///
|
|
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
|
|
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(*TLI, Ty, ValueVTs);
|
|
|
|
unsigned FirstReg = 0;
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT ValueVT = ValueVTs[Value];
|
|
MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
|
|
|
|
unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
unsigned R = CreateReg(RegisterVT);
|
|
if (!FirstReg) FirstReg = R;
|
|
}
|
|
}
|
|
return FirstReg;
|
|
}
|
|
|
|
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
|
|
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
|
|
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
|
|
/// the larger bit width by zero extension. The bit width must be no smaller
|
|
/// than the LiveOutInfo's existing bit width.
|
|
const FunctionLoweringInfo::LiveOutInfo *
|
|
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
|
|
if (!LiveOutRegInfo.inBounds(Reg))
|
|
return nullptr;
|
|
|
|
LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
|
|
if (!LOI->IsValid)
|
|
return nullptr;
|
|
|
|
if (BitWidth > LOI->KnownZero.getBitWidth()) {
|
|
LOI->NumSignBits = 1;
|
|
LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
|
|
LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
|
|
}
|
|
|
|
return LOI;
|
|
}
|
|
|
|
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
|
|
/// register based on the LiveOutInfo of its operands.
|
|
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
|
|
Type *Ty = PN->getType();
|
|
if (!Ty->isIntegerTy() || Ty->isVectorTy())
|
|
return;
|
|
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(*TLI, Ty, ValueVTs);
|
|
assert(ValueVTs.size() == 1 &&
|
|
"PHIs with non-vector integer types should have a single VT.");
|
|
EVT IntVT = ValueVTs[0];
|
|
|
|
if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
|
|
return;
|
|
IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
|
|
unsigned BitWidth = IntVT.getSizeInBits();
|
|
|
|
unsigned DestReg = ValueMap[PN];
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
return;
|
|
LiveOutRegInfo.grow(DestReg);
|
|
LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
|
|
|
|
Value *V = PN->getIncomingValue(0);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
APInt Zero(BitWidth, 0);
|
|
DestLOI.KnownZero = Zero;
|
|
DestLOI.KnownOne = Zero;
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = Val.getNumSignBits();
|
|
DestLOI.KnownZero = ~Val;
|
|
DestLOI.KnownOne = Val;
|
|
} else {
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
|
|
"CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI = *SrcLOI;
|
|
}
|
|
|
|
assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
|
|
DestLOI.KnownOne.getBitWidth() == BitWidth &&
|
|
"Masks should have the same bit width as the type.");
|
|
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = PN->getIncomingValue(i);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
APInt Zero(BitWidth, 0);
|
|
DestLOI.KnownZero = Zero;
|
|
DestLOI.KnownOne = Zero;
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
|
|
DestLOI.KnownZero &= ~Val;
|
|
DestLOI.KnownOne &= Val;
|
|
continue;
|
|
}
|
|
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
|
|
"its CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
|
|
DestLOI.KnownZero &= SrcLOI->KnownZero;
|
|
DestLOI.KnownOne &= SrcLOI->KnownOne;
|
|
}
|
|
}
|
|
|
|
/// setArgumentFrameIndex - Record frame index for the byval
|
|
/// argument. This overrides previous frame index entry for this argument,
|
|
/// if any.
|
|
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
|
|
int FI) {
|
|
ByValArgFrameIndexMap[A] = FI;
|
|
}
|
|
|
|
/// getArgumentFrameIndex - Get frame index for the byval argument.
|
|
/// If the argument does not have any assigned frame index then 0 is
|
|
/// returned.
|
|
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
|
|
DenseMap<const Argument *, int>::iterator I =
|
|
ByValArgFrameIndexMap.find(A);
|
|
if (I != ByValArgFrameIndexMap.end())
|
|
return I->second;
|
|
DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
|
|
return 0;
|
|
}
|
|
|
|
/// ComputeUsesVAFloatArgument - Determine if any floating-point values are
|
|
/// being passed to this variadic function, and set the MachineModuleInfo's
|
|
/// usesVAFloatArgument flag if so. This flag is used to emit an undefined
|
|
/// reference to _fltused on Windows, which will link in MSVCRT's
|
|
/// floating-point support.
|
|
void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
|
|
MachineModuleInfo *MMI)
|
|
{
|
|
FunctionType *FT = cast<FunctionType>(
|
|
I.getCalledValue()->getType()->getContainedType(0));
|
|
if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
|
|
for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
|
|
Type* T = I.getArgOperand(i)->getType();
|
|
for (auto i : post_order(T)) {
|
|
if (i->isFloatingPointTy()) {
|
|
MMI->setUsesVAFloatArgument(true);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AddLandingPadInfo - Extract the exception handling information from the
|
|
/// landingpad instruction and add them to the specified machine module info.
|
|
void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
|
|
MachineBasicBlock *MBB) {
|
|
MMI.addPersonality(MBB,
|
|
cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
|
|
|
|
if (I.isCleanup())
|
|
MMI.addCleanup(MBB);
|
|
|
|
// FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
|
|
// but we need to do it this way because of how the DWARF EH emitter
|
|
// processes the clauses.
|
|
for (unsigned i = I.getNumClauses(); i != 0; --i) {
|
|
Value *Val = I.getClause(i - 1);
|
|
if (I.isCatch(i - 1)) {
|
|
MMI.addCatchTypeInfo(MBB,
|
|
dyn_cast<GlobalValue>(Val->stripPointerCasts()));
|
|
} else {
|
|
// Add filters in a list.
|
|
Constant *CVal = cast<Constant>(Val);
|
|
SmallVector<const GlobalValue*, 4> FilterList;
|
|
for (User::op_iterator
|
|
II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
|
|
FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
|
|
|
|
MMI.addFilterTypeInfo(MBB, FilterList);
|
|
}
|
|
}
|
|
}
|