llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp

1517 lines
60 KiB
C++

//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Target/LLVMIR/TypeTranslation.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::vector;
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
Value into, int64_t offset) {
auto vectorType = into.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<InsertOp>(loc, from, into, offset);
return rewriter.create<vector::InsertElementOp>(
loc, vectorType, from, into,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
int64_t offset) {
auto vectorType = vector.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<ExtractOp>(loc, vector, offset);
return rewriter.create<vector::ExtractElementOp>(
loc, vectorType.getElementType(), vector,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO: Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
auto range = arrayAttr.getAsRange<IntegerAttr>();
SmallVector<int64_t, 4> res;
res.reserve(arrayAttr.size() - dropFront - dropBack);
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
it != eit; ++it)
res.push_back((*it).getValue().getSExtValue());
return res;
}
// Helper that returns a vector comparison that constructs a mask:
// mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
//
// NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
// much more compact, IR for this operation, but LLVM eventually
// generates more elaborate instructions for this intrinsic since it
// is very conservative on the boundary conditions.
static Value buildVectorComparison(ConversionPatternRewriter &rewriter,
Operation *op, bool enableIndexOptimizations,
int64_t dim, Value b, Value *off = nullptr) {
auto loc = op->getLoc();
// If we can assume all indices fit in 32-bit, we perform the vector
// comparison in 32-bit to get a higher degree of SIMD parallelism.
// Otherwise we perform the vector comparison using 64-bit indices.
Value indices;
Type idxType;
if (enableIndexOptimizations) {
indices = rewriter.create<ConstantOp>(
loc, rewriter.getI32VectorAttr(
llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))));
idxType = rewriter.getI32Type();
} else {
indices = rewriter.create<ConstantOp>(
loc, rewriter.getI64VectorAttr(
llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))));
idxType = rewriter.getI64Type();
}
// Add in an offset if requested.
if (off) {
Value o = rewriter.create<IndexCastOp>(loc, idxType, *off);
Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
indices = rewriter.create<AddIOp>(loc, ov, indices);
}
// Construct the vector comparison.
Value bound = rewriter.create<IndexCastOp>(loc, idxType, b);
Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds);
}
// Helper that returns data layout alignment of a memref.
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
MemRefType memrefType, unsigned &align) {
Type elementTy = typeConverter.convertType(memrefType.getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy, typeConverter.getDataLayout());
return success();
}
// Helper that returns the base address of a memref.
static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc,
Value memref, MemRefType memRefType, Value &base) {
// Inspect stride and offset structure.
//
// TODO: flat memory only for now, generalize
//
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(memRefType, strides, offset);
if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 ||
offset != 0 || memRefType.getMemorySpace() != 0)
return failure();
base = MemRefDescriptor(memref).alignedPtr(rewriter, loc);
return success();
}
// Helper that returns vector of pointers given a memref base with index vector.
static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
Location loc, Value memref, Value indices,
MemRefType memRefType, VectorType vType,
Type iType, Value &ptrs) {
Value base;
if (failed(getBase(rewriter, loc, memref, memRefType, base)))
return failure();
auto pType = MemRefDescriptor(memref).getElementPtrType();
auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices);
return success();
}
// Casts a strided element pointer to a vector pointer. The vector pointer
// would always be on address space 0, therefore addrspacecast shall be
// used when source/dst memrefs are not on address space 0.
static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
Value ptr, MemRefType memRefType, Type vt) {
auto pType = LLVM::LLVMPointerType::get(vt);
if (memRefType.getMemorySpace() == 0)
return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
return rewriter.create<LLVM::AddrSpaceCastOp>(loc, pType, ptr);
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getMemRefAlignment(
typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
VectorType fillType = xferOp.getVectorType();
Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);
Type vecTy = typeConverter.convertType(xferOp.getVectorType());
if (!vecTy)
return failure();
unsigned align;
if (failed(getMemRefAlignment(
typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
xferOp, vecTy, dataPtr, mask, ValueRange{fill},
rewriter.getI32IntegerAttr(align));
return success();
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getMemRefAlignment(
typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
unsigned align;
if (failed(getMemRefAlignment(
typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
xferOp, adaptor.vector(), dataPtr, mask,
rewriter.getI32IntegerAttr(align));
return success();
}
static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
ArrayRef<Value> operands) {
return TransferReadOpAdaptor(operands);
}
static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
ArrayRef<Value> operands) {
return TransferWriteOpAdaptor(operands);
}
namespace {
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion
: public ConvertOpToLLVMPattern<vector::MatmulOp> {
public:
using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MatmulOp matmulOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::MatmulOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
matmulOp, typeConverter->convertType(matmulOp.res().getType()),
adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
matmulOp.lhs_columns(), matmulOp.rhs_columns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion
: public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
public:
using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FlatTransposeOp transOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::FlatTransposeOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter->convertType(transOp.res().getType()),
adaptor.matrix(), transOp.rows(), transOp.columns());
return success();
}
};
/// Conversion pattern for a vector.maskedload.
class VectorMaskedLoadOpConversion
: public ConvertOpToLLVMPattern<vector::MaskedLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::MaskedLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MaskedLoadOp load, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = load->getLoc();
auto adaptor = vector::MaskedLoadOpAdaptor(operands);
MemRefType memRefType = load.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
// Resolve address.
auto vtype = typeConverter->convertType(load.getResultVectorType());
Value dataPtr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefType, vtype);
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.maskedstore.
class VectorMaskedStoreOpConversion
: public ConvertOpToLLVMPattern<vector::MaskedStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::MaskedStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MaskedStoreOp store, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = store->getLoc();
auto adaptor = vector::MaskedStoreOpAdaptor(operands);
MemRefType memRefType = store.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
// Resolve address.
auto vtype = typeConverter->convertType(store.getValueVectorType());
Value dataPtr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefType, vtype);
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
store, adaptor.value(), ptr, adaptor.mask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion
: public ConvertOpToLLVMPattern<vector::GatherOp> {
public:
using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::GatherOp gather, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = gather->getLoc();
auto adaptor = vector::GatherOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), gather.getMemRefType(),
align)))
return failure();
// Get index ptrs.
VectorType vType = gather.getResultVectorType();
Type iType = gather.getIndicesVectorType().getElementType();
Value ptrs;
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
gather.getMemRefType(), vType, iType, ptrs)))
return failure();
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion
: public ConvertOpToLLVMPattern<vector::ScatterOp> {
public:
using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScatterOp scatter, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = scatter->getLoc();
auto adaptor = vector::ScatterOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), scatter.getMemRefType(),
align)))
return failure();
// Get index ptrs.
VectorType vType = scatter.getValueVectorType();
Type iType = scatter.getIndicesVectorType().getElementType();
Value ptrs;
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
scatter.getMemRefType(), vType, iType, ptrs)))
return failure();
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.value(), ptrs, adaptor.mask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion
: public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExpandLoadOp expand, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = expand->getLoc();
auto adaptor = vector::ExpandLoadOpAdaptor(operands);
MemRefType memRefType = expand.getMemRefType();
// Resolve address.
auto vtype = typeConverter->convertType(expand.getResultVectorType());
Value ptr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion
: public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::CompressStoreOp compress, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = compress->getLoc();
auto adaptor = vector::CompressStoreOpAdaptor(operands);
MemRefType memRefType = compress.getMemRefType();
// Resolve address.
Value ptr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
adaptor.indices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
compress, adaptor.value(), ptr, adaptor.mask());
return success();
}
};
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion
: public ConvertOpToLLVMPattern<vector::ReductionOp> {
public:
explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
bool reassociateFPRed)
: ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(vector::ReductionOp reductionOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto kind = reductionOp.kind();
Type eltType = reductionOp.dest().getType();
Type llvmType = typeConverter->convertType(eltType);
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
if (kind == "add")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(
reductionOp, llvmType, operands[0]);
else if (kind == "mul")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(
reductionOp, llvmType, operands[0]);
else if (kind == "min" &&
(eltType.isIndex() || eltType.isUnsignedInteger()))
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
reductionOp, llvmType, operands[0]);
else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
reductionOp, llvmType, operands[0]);
else if (kind == "max" &&
(eltType.isIndex() || eltType.isUnsignedInteger()))
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
reductionOp, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
reductionOp, llvmType, operands[0]);
else if (kind == "and")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(
reductionOp, llvmType, operands[0]);
else if (kind == "or")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(
reductionOp, llvmType, operands[0]);
else if (kind == "xor")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(
reductionOp, llvmType, operands[0]);
else
return failure();
return success();
}
if (!eltType.isa<FloatType>())
return failure();
// Floating-point reductions: add/mul/min/max
if (kind == "add") {
// Optional accumulator (or zero).
Value acc = operands.size() > 1 ? operands[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
reductionOp, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "mul") {
// Optional accumulator (or one).
Value acc = operands.size() > 1
? operands[1]
: rewriter.create<LLVM::ConstantOp>(
reductionOp->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
reductionOp, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(
reductionOp, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(
reductionOp, llvmType, operands[0]);
else
return failure();
return success();
}
private:
const bool reassociateFPReductions;
};
/// Conversion pattern for a vector.create_mask (1-D only).
class VectorCreateMaskOpConversion
: public ConvertOpToLLVMPattern<vector::CreateMaskOp> {
public:
explicit VectorCreateMaskOpConversion(LLVMTypeConverter &typeConv,
bool enableIndexOpt)
: ConvertOpToLLVMPattern<vector::CreateMaskOp>(typeConv),
enableIndexOptimizations(enableIndexOpt) {}
LogicalResult
matchAndRewrite(vector::CreateMaskOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = op.getType();
int64_t rank = dstType.getRank();
if (rank == 1) {
rewriter.replaceOp(
op, buildVectorComparison(rewriter, op, enableIndexOptimizations,
dstType.getDimSize(0), operands[0]));
return success();
}
return failure();
}
private:
const bool enableIndexOptimizations;
};
class VectorShuffleOpConversion
: public ConvertOpToLLVMPattern<vector::ShuffleOp> {
public:
using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = shuffleOp->getLoc();
auto adaptor = vector::ShuffleOpAdaptor(operands);
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter->convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(shuffleOp, llvmShuffleOp);
return success();
}
// For all other cases, insert the individual values individually.
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, rank, extPos);
insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(shuffleOp, insert);
return success();
}
};
class VectorExtractElementOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
public:
using ConvertOpToLLVMPattern<
vector::ExtractElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractElementOp extractEltOp,
ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::ExtractElementOpAdaptor(operands);
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter->convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.vector(), adaptor.position());
return success();
}
};
class VectorExtractOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractOp> {
public:
using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = extractOp->getLoc();
auto adaptor = vector::ExtractOpAdaptor(operands);
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter->convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(extractOp, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = extractOp->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(extractOp, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
/// -> !llvm."<8 x f32>">
/// ```
class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
public:
using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::FMAOpAdaptor(operands);
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() != 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
adaptor.rhs(), adaptor.acc());
return success();
}
};
class VectorInsertElementOpConversion
: public ConvertOpToLLVMPattern<vector::InsertElementOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertElementOp insertEltOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::InsertElementOpAdaptor(operands);
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter->convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
adaptor.position());
return success();
}
};
class VectorInsertOpConversion
: public ConvertOpToLLVMPattern<vector::InsertOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = insertOp->getLoc();
auto adaptor = vector::InsertOpAdaptor(operands);
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter->convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(insertOp, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = insertOp->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
adaptor.source(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(insertOp, inserted);
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
auto loc = op.getLoc();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff == 0)
return failure();
int64_t rankRest = dstType.getRank() - rankDiff;
// Extract / insert the subvector of matching rank and InsertStridedSlice
// on it.
Value extracted =
rewriter.create<ExtractOp>(loc, op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropBack=*/rankRest));
// A different pattern will kick in for InsertStridedSlice with matching
// ranks.
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
loc, op.source(), extracted,
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
getI64SubArray(op.strides(), /*dropFront=*/0));
rewriter.replaceOpWithNewOp<InsertOp>(
op, stridedSliceInnerOp.getResult(), op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropBack=*/rankRest));
return success();
}
};
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx)
: OpRewritePattern<InsertStridedSliceOp>(ctx) {
// This pattern creates recursive InsertStridedSliceOp, but the recursion is
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff != 0)
return failure();
if (srcType == dstType) {
rewriter.replaceOp(op, op.source());
return success();
}
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = srcType.getShape().front();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
Value res = op.dest();
// For each slice of the source vector along the most major dimension.
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
// 1. extract the proper subvector (or element) from source
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
if (extractedSource.getType().isa<VectorType>()) {
// 2. If we have a vector, extract the proper subvector from destination
// Otherwise we are at the element level and no need to recurse.
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
// smaller rank.
extractedSource = rewriter.create<InsertStridedSliceOp>(
loc, extractedSource, extractedDest,
getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
}
// 4. Insert the extractedSource into the res vector.
res = insertOne(rewriter, loc, extractedSource, res, off);
}
rewriter.replaceOp(op, res);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static llvm::Optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(memRefType, strides, offset)))
return None;
if (!strides.empty() && strides.back() != 1)
return None;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getAffineMaps().empty() ||
memRefType.getAffineMaps().front().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamicStrideOrOffset(strides[index]) ||
ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
return None;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return None;
}
return strides;
}
class VectorTypeCastOpConversion
: public ConvertOpToLLVMPattern<vector::TypeCastOp> {
public:
using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::TypeCastOp castOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = castOp->getLoc();
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType = castOp.getType();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
operands[0].getType().dyn_cast<LLVM::LLVMStructType>();
if (!llvmSourceDescriptorTy)
return failure();
MemRefDescriptor sourceMemRef(operands[0]);
auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMStructType>();
if (!llvmTargetDescriptorTy)
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, [](int64_t stride) {
return ShapedType::isDynamicStrideOrOffset(stride);
}))
return failure();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementPtrType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(castOp, {desc});
return success();
}
};
/// Conversion pattern that converts a 1-D vector transfer read/write op in a
/// sequence of:
/// 1. Get the source/dst address as an LLVM vector pointer.
/// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
/// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
/// 4. Create a mask where offsetVector is compared against memref upper bound.
/// 5. Rewrite op as a masked read or write.
template <typename ConcreteOp>
class VectorTransferConversion : public ConvertOpToLLVMPattern<ConcreteOp> {
public:
explicit VectorTransferConversion(LLVMTypeConverter &typeConv,
bool enableIndexOpt)
: ConvertOpToLLVMPattern<ConcreteOp>(typeConv),
enableIndexOptimizations(enableIndexOpt) {}
LogicalResult
matchAndRewrite(ConcreteOp xferOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = getTransferOpAdapter(xferOp, operands);
if (xferOp.getVectorType().getRank() > 1 ||
llvm::size(xferOp.indices()) == 0)
return failure();
if (xferOp.permutation_map() !=
AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
xferOp.getVectorType().getRank(),
xferOp->getContext()))
return failure();
auto memRefType = xferOp.getShapedType().template dyn_cast<MemRefType>();
if (!memRefType)
return failure();
// Only contiguous source tensors supported atm.
auto strides = computeContiguousStrides(memRefType);
if (!strides)
return failure();
auto toLLVMTy = [&](Type t) {
return this->getTypeConverter()->convertType(t);
};
Location loc = xferOp->getLoc();
if (auto memrefVectorElementType =
memRefType.getElementType().template dyn_cast<VectorType>()) {
// Memref has vector element type.
if (memrefVectorElementType.getElementType() !=
xferOp.getVectorType().getElementType())
return failure();
#ifndef NDEBUG
// Check that memref vector type is a suffix of 'vectorType.
unsigned memrefVecEltRank = memrefVectorElementType.getRank();
unsigned resultVecRank = xferOp.getVectorType().getRank();
assert(memrefVecEltRank <= resultVecRank);
// TODO: Move this to isSuffix in Vector/Utils.h.
unsigned rankOffset = resultVecRank - memrefVecEltRank;
auto memrefVecEltShape = memrefVectorElementType.getShape();
auto resultVecShape = xferOp.getVectorType().getShape();
for (unsigned i = 0; i < memrefVecEltRank; ++i)
assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
"memref vector element shape should match suffix of vector "
"result shape.");
#endif // ifndef NDEBUG
}
// 1. Get the source/dst address as an LLVM vector pointer.
VectorType vtp = xferOp.getVectorType();
Value dataPtr = this->getStridedElementPtr(
loc, memRefType, adaptor.source(), adaptor.indices(), rewriter);
Value vectorDataPtr =
castDataPtr(rewriter, loc, dataPtr, memRefType, toLLVMTy(vtp));
if (!xferOp.isMaskedDim(0))
return replaceTransferOpWithLoadOrStore(rewriter,
*this->getTypeConverter(), loc,
xferOp, operands, vectorDataPtr);
// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
// 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
// 4. Let dim the memref dimension, compute the vector comparison mask:
// [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
//
// TODO: when the leaf transfer rank is k > 1, we need the last `k`
// dimensions here.
unsigned vecWidth = LLVM::getVectorNumElements(vtp).getFixedValue();
unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
Value off = xferOp.indices()[lastIndex];
Value dim = rewriter.create<DimOp>(loc, xferOp.source(), lastIndex);
Value mask = buildVectorComparison(
rewriter, xferOp, enableIndexOptimizations, vecWidth, dim, &off);
// 5. Rewrite as a masked read / write.
return replaceTransferOpWithMasked(rewriter, *this->getTypeConverter(), loc,
xferOp, operands, vectorDataPtr, mask);
}
private:
const bool enableIndexOptimizations;
};
class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
public:
using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(vector::PrintOp printOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::PrintOpAdaptor(operands);
Type printType = printOp.getPrintType();
if (typeConverter->convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
Operation *printer;
if (eltType.isF32()) {
printer = getPrintFloat(printOp);
} else if (eltType.isF64()) {
printer = getPrintDouble(printOp);
} else if (eltType.isIndex()) {
printer = getPrintU64(printOp);
} else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer = getPrintU64(printOp);
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer = getPrintI64(printOp);
} else {
return failure();
}
}
} else {
return failure();
}
// Unroll vector into elementary print calls.
int64_t rank = vectorType ? vectorType.getRank() : 0;
emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
conversion);
emitCall(rewriter, printOp->getLoc(), getPrintNewline(printOp));
rewriter.eraseOp(printOp);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64
// clang-format on
};
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, VectorType vectorType, Operation *printer,
int64_t rank, PrintConversion conversion) const {
Location loc = op->getLoc();
if (rank == 0) {
switch (conversion) {
case PrintConversion::ZeroExt64:
value = rewriter.create<ZeroExtendIOp>(
loc, value, IntegerType::get(rewriter.getContext(), 64));
break;
case PrintConversion::SignExt64:
value = rewriter.create<SignExtendIOp>(
loc, value, IntegerType::get(rewriter.getContext(), 64));
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = typeConverter->convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, TypeRange(),
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, StringRef name,
ArrayRef<Type> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMFunctionType::get(LLVM::LLVMVoidType::get(op->getContext()),
params));
}
// Helpers for method names.
Operation *getPrintI64(Operation *op) const {
return getPrint(op, "printI64", IntegerType::get(op->getContext(), 64));
}
Operation *getPrintU64(Operation *op) const {
return getPrint(op, "printU64", IntegerType::get(op->getContext(), 64));
}
Operation *getPrintFloat(Operation *op) const {
return getPrint(op, "printF32", Float32Type::get(op->getContext()));
}
Operation *getPrintDouble(Operation *op) const {
return getPrint(op, "printF64", Float64Type::get(op->getContext()));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, "printOpen", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, "printClose", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, "printComma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, "printNewline", {});
}
};
/// Progressive lowering of ExtractStridedSliceOp to either:
/// 1. express single offset extract as a direct shuffle.
/// 2. extract + lower rank strided_slice + insert for the n-D case.
class VectorExtractStridedSliceOpConversion
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
VectorExtractStridedSliceOpConversion(MLIRContext *ctx)
: OpRewritePattern<ExtractStridedSliceOp>(ctx) {
// This pattern creates recursive ExtractStridedSliceOp, but the recursion
// is bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getType();
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
auto elemType = dstType.getElementType();
assert(elemType.isSignlessIntOrIndexOrFloat());
// Single offset can be more efficiently shuffled.
if (op.offsets().getValue().size() == 1) {
SmallVector<int64_t, 4> offsets;
offsets.reserve(size);
for (int64_t off = offset, e = offset + size * stride; off < e;
off += stride)
offsets.push_back(off);
rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
op.vector(),
rewriter.getI64ArrayAttr(offsets));
return success();
}
// Extract/insert on a lower ranked extract strided slice op.
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
Value one = extractOne(rewriter, loc, op.vector(), off);
Value extracted = rewriter.create<ExtractStridedSliceOp>(
loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.sizes(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
res = insertOne(rewriter, loc, extracted, res, idx);
}
rewriter.replaceOp(op, res);
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
bool reassociateFPReductions, bool enableIndexOptimizations) {
MLIRContext *ctx = converter.getDialect()->getContext();
// clang-format off
patterns.insert<VectorFMAOpNDRewritePattern,
VectorInsertStridedSliceOpDifferentRankRewritePattern,
VectorInsertStridedSliceOpSameRankRewritePattern,
VectorExtractStridedSliceOpConversion>(ctx);
patterns.insert<VectorReductionOpConversion>(
converter, reassociateFPReductions);
patterns.insert<VectorCreateMaskOpConversion,
VectorTransferConversion<TransferReadOp>,
VectorTransferConversion<TransferWriteOp>>(
converter, enableIndexOptimizations);
patterns
.insert<VectorShuffleOpConversion,
VectorExtractElementOpConversion,
VectorExtractOpConversion,
VectorFMAOp1DConversion,
VectorInsertElementOpConversion,
VectorInsertOpConversion,
VectorPrintOpConversion,
VectorTypeCastOpConversion,
VectorMaskedLoadOpConversion,
VectorMaskedStoreOpConversion,
VectorGatherOpConversion,
VectorScatterOpConversion,
VectorExpandLoadOpConversion,
VectorCompressStoreOpConversion>(converter);
// clang-format on
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
patterns.insert<VectorMatmulOpConversion>(converter);
patterns.insert<VectorFlatTransposeOpConversion>(converter);
}