llvm-project/flang/lib/Evaluate/fold-logical.cpp

227 lines
8.5 KiB
C++

//===-- lib/Evaluate/fold-logical.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "flang/Evaluate/check-expression.h"
namespace Fortran::evaluate {
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) {
using T = Type<TypeCategory::Logical, KIND>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "all") {
if (!args[1]) { // TODO: ALL(x,DIM=d)
if (const auto *constant{UnwrapConstantValue<T>(args[0])}) {
bool result{true};
for (const auto &element : constant->values()) {
if (!element.IsTrue()) {
result = false;
break;
}
}
return Expr<T>{result};
}
}
} else if (name == "any") {
if (!args[1]) { // TODO: ANY(x,DIM=d)
if (const auto *constant{UnwrapConstantValue<T>(args[0])}) {
bool result{false};
for (const auto &element : constant->values()) {
if (element.IsTrue()) {
result = true;
break;
}
}
return Expr<T>{result};
}
}
} else if (name == "associated") {
bool gotConstant{true};
const Expr<SomeType> *firstArgExpr{args[0]->UnwrapExpr()};
if (!firstArgExpr || !IsNullPointer(*firstArgExpr)) {
gotConstant = false;
} else if (args[1]) { // There's a second argument
const Expr<SomeType> *secondArgExpr{args[1]->UnwrapExpr()};
if (!secondArgExpr || !IsNullPointer(*secondArgExpr)) {
gotConstant = false;
}
}
return gotConstant ? Expr<T>{false} : Expr<T>{std::move(funcRef)};
} else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") {
using LargestInt = Type<TypeCategory::Integer, 16>;
static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>);
// Arguments do not have to be of the same integer type. Convert all
// arguments to the biggest integer type before comparing them to
// simplify.
for (int i{0}; i <= 1; ++i) {
if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) {
*args[i] = AsGenericExpr(
Fold(context, ConvertToType<LargestInt>(std::move(*x))));
} else if (auto *x{UnwrapExpr<BOZLiteralConstant>(args[i])}) {
*args[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)});
}
}
auto fptr{&Scalar<LargestInt>::BGE};
if (name == "bge") { // done in fptr declaration
} else if (name == "bgt") {
fptr = &Scalar<LargestInt>::BGT;
} else if (name == "ble") {
fptr = &Scalar<LargestInt>::BLE;
} else if (name == "blt") {
fptr = &Scalar<LargestInt>::BLT;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context,
std::move(funcRef),
ScalarFunc<T, LargestInt, LargestInt>(
[&fptr](const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) {
return Scalar<T>{std::invoke(fptr, i, j)};
}));
} else if (name == "isnan") {
// A warning about an invalid argument is discarded from converting
// the argument of isnan().
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNotANumber()};
}));
} else if (name == "is_contiguous") {
if (args.at(0)) {
if (auto *expr{args[0]->UnwrapExpr()}) {
if (IsSimplyContiguous(*expr, context)) {
return Expr<T>{true};
}
}
}
} else if (name == "logical") {
if (auto *expr{UnwrapExpr<Expr<SomeLogical>>(args[0])}) {
return Fold(context, ConvertToType<T>(std::move(*expr)));
}
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "__builtin_ieee_support_datatype" ||
name == "__builtin_ieee_support_denormal" ||
name == "__builtin_ieee_support_divide" ||
name == "__builtin_ieee_support_divide" ||
name == "__builtin_ieee_support_inf" ||
name == "__builtin_ieee_support_io" ||
name == "__builtin_ieee_support_nan" ||
name == "__builtin_ieee_support_sqrt" ||
name == "__builtin_ieee_support_standard" ||
name == "__builtin_ieee_support_subnormal" ||
name == "__builtin_ieee_support_underflow_control") {
return Expr<T>{true};
}
// TODO: btest, cshift, dot_product, eoshift, is_iostat_end,
// is_iostat_eor, lge, lgt, lle, llt, logical, matmul, out_of_range,
// pack, parity, reduce, spread, transfer, transpose, unpack,
// extends_type_of, same_type_as
return Expr<T>{std::move(funcRef)};
}
template <typename T>
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<T> &&relation) {
if (auto array{ApplyElementwise(context, relation,
std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{
[=](Expr<T> &&x, Expr<T> &&y) {
return Expr<LogicalResult>{Relational<SomeType>{
Relational<T>{relation.opr, std::move(x), std::move(y)}}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(relation)}) {
bool result{};
if constexpr (T::category == TypeCategory::Integer) {
result =
Satisfies(relation.opr, folded->first.CompareSigned(folded->second));
} else if constexpr (T::category == TypeCategory::Real) {
result = Satisfies(relation.opr, folded->first.Compare(folded->second));
} else if constexpr (T::category == TypeCategory::Complex) {
result = (relation.opr == RelationalOperator::EQ) ==
folded->first.Equals(folded->second);
} else if constexpr (T::category == TypeCategory::Character) {
result = Satisfies(relation.opr, Compare(folded->first, folded->second));
} else {
static_assert(T::category != TypeCategory::Logical);
}
return Expr<LogicalResult>{Constant<LogicalResult>{result}};
}
return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}};
}
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<SomeType> &&relation) {
return std::visit(
[&](auto &&x) {
return Expr<LogicalResult>{FoldOperation(context, std::move(x))};
},
std::move(relation.u));
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, Not<KIND> &&x) {
if (auto array{ApplyElementwise(context, x)}) {
return *array;
}
using Ty = Type<TypeCategory::Logical, KIND>;
auto &operand{x.left()};
if (auto value{GetScalarConstantValue<Ty>(operand)}) {
return Expr<Ty>{Constant<Ty>{!value->IsTrue()}};
}
return Expr<Ty>{x};
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, LogicalOperation<KIND> &&operation) {
using LOGICAL = Type<TypeCategory::Logical, KIND>;
if (auto array{ApplyElementwise(context, operation,
std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{
[=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) {
return Expr<LOGICAL>{LogicalOperation<KIND>{
operation.logicalOperator, std::move(x), std::move(y)}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(operation)}) {
bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{};
switch (operation.logicalOperator) {
case LogicalOperator::And:
result = xt && yt;
break;
case LogicalOperator::Or:
result = xt || yt;
break;
case LogicalOperator::Eqv:
result = xt == yt;
break;
case LogicalOperator::Neqv:
result = xt != yt;
break;
case LogicalOperator::Not:
DIE("not a binary operator");
}
return Expr<LOGICAL>{Constant<LOGICAL>{result}};
}
return Expr<LOGICAL>{std::move(operation)};
}
FOR_EACH_LOGICAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeLogical>;
} // namespace Fortran::evaluate