forked from OSchip/llvm-project
338 lines
13 KiB
C++
338 lines
13 KiB
C++
//===- MachOUniversalWriter.cpp - MachO universal binary writer---*- C++-*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Defines the Slice class and writeUniversalBinary function for writing a MachO
|
|
// universal binary file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Object/MachOUniversalWriter.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/Error.h"
|
|
#include "llvm/Object/IRObjectFile.h"
|
|
#include "llvm/Object/MachO.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
#include "llvm/Support/SmallVectorMemoryBuffer.h"
|
|
|
|
using namespace llvm;
|
|
using namespace object;
|
|
|
|
// For compatibility with cctools lipo, a file's alignment is calculated as the
|
|
// minimum aligment of all segments. For object files, the file's alignment is
|
|
// the maximum alignment of its sections.
|
|
static uint32_t calculateFileAlignment(const MachOObjectFile &O) {
|
|
uint32_t P2CurrentAlignment;
|
|
uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
|
|
const bool Is64Bit = O.is64Bit();
|
|
|
|
for (const auto &LC : O.load_commands()) {
|
|
if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
|
|
continue;
|
|
if (O.getHeader().filetype == MachO::MH_OBJECT) {
|
|
unsigned NumberOfSections =
|
|
(Is64Bit ? O.getSegment64LoadCommand(LC).nsects
|
|
: O.getSegmentLoadCommand(LC).nsects);
|
|
P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
|
|
for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
|
|
P2CurrentAlignment = std::max(P2CurrentAlignment,
|
|
(Is64Bit ? O.getSection64(LC, SI).align
|
|
: O.getSection(LC, SI).align));
|
|
}
|
|
} else {
|
|
P2CurrentAlignment =
|
|
countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
|
|
: O.getSegmentLoadCommand(LC).vmaddr);
|
|
}
|
|
P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
|
|
}
|
|
// return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
|
|
return std::max(
|
|
static_cast<uint32_t>(2),
|
|
std::min(P2MinAlignment, static_cast<uint32_t>(
|
|
MachOUniversalBinary::MaxSectionAlignment)));
|
|
}
|
|
|
|
static uint32_t calculateAlignment(const MachOObjectFile &ObjectFile) {
|
|
switch (ObjectFile.getHeader().cputype) {
|
|
case MachO::CPU_TYPE_I386:
|
|
case MachO::CPU_TYPE_X86_64:
|
|
case MachO::CPU_TYPE_POWERPC:
|
|
case MachO::CPU_TYPE_POWERPC64:
|
|
return 12; // log2 value of page size(4k) for x86 and PPC
|
|
case MachO::CPU_TYPE_ARM:
|
|
case MachO::CPU_TYPE_ARM64:
|
|
case MachO::CPU_TYPE_ARM64_32:
|
|
return 14; // log2 value of page size(16k) for Darwin ARM
|
|
default:
|
|
return calculateFileAlignment(ObjectFile);
|
|
}
|
|
}
|
|
|
|
Slice::Slice(const Archive &A, uint32_t CPUType, uint32_t CPUSubType,
|
|
std::string ArchName, uint32_t Align)
|
|
: B(&A), CPUType(CPUType), CPUSubType(CPUSubType),
|
|
ArchName(std::move(ArchName)), P2Alignment(Align) {}
|
|
|
|
Slice::Slice(const MachOObjectFile &O, uint32_t Align)
|
|
: B(&O), CPUType(O.getHeader().cputype),
|
|
CPUSubType(O.getHeader().cpusubtype),
|
|
ArchName(std::string(O.getArchTriple().getArchName())),
|
|
P2Alignment(Align) {}
|
|
|
|
Slice::Slice(const IRObjectFile &IRO, uint32_t CPUType, uint32_t CPUSubType,
|
|
std::string ArchName, uint32_t Align)
|
|
: B(&IRO), CPUType(CPUType), CPUSubType(CPUSubType),
|
|
ArchName(std::move(ArchName)), P2Alignment(Align) {}
|
|
|
|
Slice::Slice(const MachOObjectFile &O) : Slice(O, calculateAlignment(O)) {}
|
|
|
|
using MachoCPUTy = std::pair<unsigned, unsigned>;
|
|
|
|
static Expected<MachoCPUTy> getMachoCPUFromTriple(Triple TT) {
|
|
auto CPU = std::make_pair(MachO::getCPUType(TT), MachO::getCPUSubType(TT));
|
|
if (!CPU.first) {
|
|
return CPU.first.takeError();
|
|
}
|
|
if (!CPU.second) {
|
|
return CPU.second.takeError();
|
|
}
|
|
return std::make_pair(*CPU.first, *CPU.second);
|
|
}
|
|
|
|
static Expected<MachoCPUTy> getMachoCPUFromTriple(StringRef TT) {
|
|
return getMachoCPUFromTriple(Triple{TT});
|
|
}
|
|
|
|
Expected<Slice> Slice::create(const Archive &A, LLVMContext *LLVMCtx) {
|
|
Error Err = Error::success();
|
|
std::unique_ptr<MachOObjectFile> MFO = nullptr;
|
|
std::unique_ptr<IRObjectFile> IRFO = nullptr;
|
|
for (const Archive::Child &Child : A.children(Err)) {
|
|
Expected<std::unique_ptr<Binary>> ChildOrErr = Child.getAsBinary(LLVMCtx);
|
|
if (!ChildOrErr)
|
|
return createFileError(A.getFileName(), ChildOrErr.takeError());
|
|
Binary *Bin = ChildOrErr.get().get();
|
|
if (Bin->isMachOUniversalBinary())
|
|
return createStringError(std::errc::invalid_argument,
|
|
("archive member " + Bin->getFileName() +
|
|
" is a fat file (not allowed in an archive)")
|
|
.str()
|
|
.c_str());
|
|
if (Bin->isMachO()) {
|
|
MachOObjectFile *O = cast<MachOObjectFile>(Bin);
|
|
if (IRFO) {
|
|
return createStringError(
|
|
std::errc::invalid_argument,
|
|
"archive member %s is a MachO, while previous archive member "
|
|
"%s was an IR LLVM object",
|
|
O->getFileName().str().c_str(), IRFO->getFileName().str().c_str());
|
|
}
|
|
if (MFO &&
|
|
std::tie(MFO->getHeader().cputype, MFO->getHeader().cpusubtype) !=
|
|
std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) {
|
|
return createStringError(
|
|
std::errc::invalid_argument,
|
|
("archive member " + O->getFileName() + " cputype (" +
|
|
Twine(O->getHeader().cputype) + ") and cpusubtype(" +
|
|
Twine(O->getHeader().cpusubtype) +
|
|
") does not match previous archive members cputype (" +
|
|
Twine(MFO->getHeader().cputype) + ") and cpusubtype(" +
|
|
Twine(MFO->getHeader().cpusubtype) +
|
|
") (all members must match) " + MFO->getFileName())
|
|
.str()
|
|
.c_str());
|
|
}
|
|
if (!MFO) {
|
|
ChildOrErr.get().release();
|
|
MFO.reset(O);
|
|
}
|
|
} else if (Bin->isIR()) {
|
|
IRObjectFile *O = cast<IRObjectFile>(Bin);
|
|
if (MFO) {
|
|
return createStringError(std::errc::invalid_argument,
|
|
"archive member '%s' is an LLVM IR object, "
|
|
"while previous archive member "
|
|
"'%s' was a MachO",
|
|
O->getFileName().str().c_str(),
|
|
MFO->getFileName().str().c_str());
|
|
}
|
|
if (IRFO) {
|
|
Expected<MachoCPUTy> CPUO = getMachoCPUFromTriple(O->getTargetTriple());
|
|
Expected<MachoCPUTy> CPUFO =
|
|
getMachoCPUFromTriple(IRFO->getTargetTriple());
|
|
if (!CPUO)
|
|
return CPUO.takeError();
|
|
if (!CPUFO)
|
|
return CPUFO.takeError();
|
|
if (*CPUO != *CPUFO) {
|
|
return createStringError(
|
|
std::errc::invalid_argument,
|
|
("archive member " + O->getFileName() + " cputype (" +
|
|
Twine(CPUO->first) + ") and cpusubtype(" + Twine(CPUO->second) +
|
|
") does not match previous archive members cputype (" +
|
|
Twine(CPUFO->first) + ") and cpusubtype(" +
|
|
Twine(CPUFO->second) + ") (all members must match) " +
|
|
IRFO->getFileName())
|
|
.str()
|
|
.c_str());
|
|
}
|
|
} else {
|
|
ChildOrErr.get().release();
|
|
IRFO.reset(O);
|
|
}
|
|
} else
|
|
return createStringError(std::errc::invalid_argument,
|
|
("archive member " + Bin->getFileName() +
|
|
" is neither a MachO file or an LLVM IR file "
|
|
"(not allowed in an archive)")
|
|
.str()
|
|
.c_str());
|
|
}
|
|
if (Err)
|
|
return createFileError(A.getFileName(), std::move(Err));
|
|
if (!MFO && !IRFO)
|
|
return createStringError(
|
|
std::errc::invalid_argument,
|
|
("empty archive with no architecture specification: " +
|
|
A.getFileName() + " (can't determine architecture for it)")
|
|
.str()
|
|
.c_str());
|
|
|
|
if (MFO) {
|
|
Slice ArchiveSlice(*(MFO.get()), MFO->is64Bit() ? 3 : 2);
|
|
ArchiveSlice.B = &A;
|
|
return ArchiveSlice;
|
|
}
|
|
|
|
// For IR objects
|
|
Expected<Slice> ArchiveSliceOrErr = Slice::create(*IRFO, 0);
|
|
if (!ArchiveSliceOrErr)
|
|
return createFileError(A.getFileName(), ArchiveSliceOrErr.takeError());
|
|
auto &ArchiveSlice = ArchiveSliceOrErr.get();
|
|
ArchiveSlice.B = &A;
|
|
return std::move(ArchiveSlice);
|
|
}
|
|
|
|
Expected<Slice> Slice::create(const IRObjectFile &IRO, uint32_t Align) {
|
|
Expected<MachoCPUTy> CPUOrErr = getMachoCPUFromTriple(IRO.getTargetTriple());
|
|
if (!CPUOrErr)
|
|
return CPUOrErr.takeError();
|
|
unsigned CPUType, CPUSubType;
|
|
std::tie(CPUType, CPUSubType) = CPUOrErr.get();
|
|
// We don't directly use the architecture name of the target triple T, as,
|
|
// for instance, thumb is treated as ARM by the MachOUniversal object.
|
|
std::string ArchName(
|
|
MachOObjectFile::getArchTriple(CPUType, CPUSubType).getArchName());
|
|
return Slice{IRO, CPUType, CPUSubType, std::move(ArchName), Align};
|
|
}
|
|
|
|
static Expected<SmallVector<MachO::fat_arch, 2>>
|
|
buildFatArchList(ArrayRef<Slice> Slices) {
|
|
SmallVector<MachO::fat_arch, 2> FatArchList;
|
|
uint64_t Offset =
|
|
sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch);
|
|
|
|
for (const auto &S : Slices) {
|
|
Offset = alignTo(Offset, 1ull << S.getP2Alignment());
|
|
if (Offset > UINT32_MAX)
|
|
return createStringError(
|
|
std::errc::invalid_argument,
|
|
("fat file too large to be created because the offset "
|
|
"field in struct fat_arch is only 32-bits and the offset " +
|
|
Twine(Offset) + " for " + S.getBinary()->getFileName() +
|
|
" for architecture " + S.getArchString() + "exceeds that.")
|
|
.str()
|
|
.c_str());
|
|
|
|
MachO::fat_arch FatArch;
|
|
FatArch.cputype = S.getCPUType();
|
|
FatArch.cpusubtype = S.getCPUSubType();
|
|
FatArch.offset = Offset;
|
|
FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize();
|
|
FatArch.align = S.getP2Alignment();
|
|
Offset += FatArch.size;
|
|
FatArchList.push_back(FatArch);
|
|
}
|
|
return FatArchList;
|
|
}
|
|
|
|
static Error writeUniversalBinaryToStream(ArrayRef<Slice> Slices,
|
|
raw_ostream &Out) {
|
|
MachO::fat_header FatHeader;
|
|
FatHeader.magic = MachO::FAT_MAGIC;
|
|
FatHeader.nfat_arch = Slices.size();
|
|
|
|
Expected<SmallVector<MachO::fat_arch, 2>> FatArchListOrErr =
|
|
buildFatArchList(Slices);
|
|
if (!FatArchListOrErr)
|
|
return FatArchListOrErr.takeError();
|
|
SmallVector<MachO::fat_arch, 2> FatArchList = *FatArchListOrErr;
|
|
|
|
if (sys::IsLittleEndianHost)
|
|
MachO::swapStruct(FatHeader);
|
|
Out.write(reinterpret_cast<const char *>(&FatHeader),
|
|
sizeof(MachO::fat_header));
|
|
|
|
if (sys::IsLittleEndianHost)
|
|
for (MachO::fat_arch &FA : FatArchList)
|
|
MachO::swapStruct(FA);
|
|
Out.write(reinterpret_cast<const char *>(FatArchList.data()),
|
|
sizeof(MachO::fat_arch) * FatArchList.size());
|
|
|
|
if (sys::IsLittleEndianHost)
|
|
for (MachO::fat_arch &FA : FatArchList)
|
|
MachO::swapStruct(FA);
|
|
|
|
size_t Offset =
|
|
sizeof(MachO::fat_header) + sizeof(MachO::fat_arch) * FatArchList.size();
|
|
for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
|
|
MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef();
|
|
assert((Offset <= FatArchList[Index].offset) && "Incorrect slice offset");
|
|
Out.write_zeros(FatArchList[Index].offset - Offset);
|
|
Out.write(BufferRef.getBufferStart(), BufferRef.getBufferSize());
|
|
Offset = FatArchList[Index].offset + BufferRef.getBufferSize();
|
|
}
|
|
|
|
Out.flush();
|
|
return Error::success();
|
|
}
|
|
|
|
Error object::writeUniversalBinary(ArrayRef<Slice> Slices,
|
|
StringRef OutputFileName) {
|
|
const bool IsExecutable = any_of(Slices, [](Slice S) {
|
|
return sys::fs::can_execute(S.getBinary()->getFileName());
|
|
});
|
|
unsigned Mode = sys::fs::all_read | sys::fs::all_write;
|
|
if (IsExecutable)
|
|
Mode |= sys::fs::all_exe;
|
|
Expected<sys::fs::TempFile> Temp = sys::fs::TempFile::create(
|
|
OutputFileName + ".temp-universal-%%%%%%", Mode);
|
|
if (!Temp)
|
|
return Temp.takeError();
|
|
raw_fd_ostream Out(Temp->FD, false);
|
|
if (Error E = writeUniversalBinaryToStream(Slices, Out)) {
|
|
if (Error DiscardError = Temp->discard())
|
|
return joinErrors(std::move(E), std::move(DiscardError));
|
|
return E;
|
|
}
|
|
return Temp->keep(OutputFileName);
|
|
}
|
|
|
|
Expected<std::unique_ptr<MemoryBuffer>>
|
|
object::writeUniversalBinaryToBuffer(ArrayRef<Slice> Slices) {
|
|
SmallVector<char, 0> Buffer;
|
|
raw_svector_ostream Out(Buffer);
|
|
|
|
if (Error E = writeUniversalBinaryToStream(Slices, Out))
|
|
return std::move(E);
|
|
|
|
return std::make_unique<SmallVectorMemoryBuffer>(std::move(Buffer));
|
|
}
|