forked from OSchip/llvm-project
321 lines
12 KiB
C++
321 lines
12 KiB
C++
//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass which inserts x86 AVX vzeroupper instructions
|
|
// before calls to SSE encoded functions. This avoids transition latency
|
|
// penalty when transferring control between AVX encoded instructions and old
|
|
// SSE encoding mode.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-vzeroupper"
|
|
|
|
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
|
|
|
|
namespace {
|
|
|
|
class VZeroUpperInserter : public MachineFunctionPass {
|
|
public:
|
|
|
|
VZeroUpperInserter() : MachineFunctionPass(ID) {}
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
const char *getPassName() const override {return "X86 vzeroupper inserter";}
|
|
|
|
private:
|
|
|
|
void processBasicBlock(MachineBasicBlock &MBB);
|
|
void insertVZeroUpper(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock &MBB);
|
|
void addDirtySuccessor(MachineBasicBlock &MBB);
|
|
|
|
typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
|
|
static const char* getBlockExitStateName(BlockExitState ST);
|
|
|
|
// Core algorithm state:
|
|
// BlockState - Each block is either:
|
|
// - PASS_THROUGH: There are neither YMM dirtying instructions nor
|
|
// vzeroupper instructions in this block.
|
|
// - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
|
|
// block that will ensure that YMM is clean on exit.
|
|
// - EXITS_DIRTY: An instruction in the block dirties YMM and no
|
|
// subsequent vzeroupper in the block clears it.
|
|
//
|
|
// AddedToDirtySuccessors - This flag is raised when a block is added to the
|
|
// DirtySuccessors list to ensure that it's not
|
|
// added multiple times.
|
|
//
|
|
// FirstUnguardedCall - Records the location of the first unguarded call in
|
|
// each basic block that may need to be guarded by a
|
|
// vzeroupper. We won't know whether it actually needs
|
|
// to be guarded until we discover a predecessor that
|
|
// is DIRTY_OUT.
|
|
struct BlockState {
|
|
BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
|
|
BlockExitState ExitState;
|
|
bool AddedToDirtySuccessors;
|
|
MachineBasicBlock::iterator FirstUnguardedCall;
|
|
};
|
|
typedef SmallVector<BlockState, 8> BlockStateMap;
|
|
typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
|
|
|
|
BlockStateMap BlockStates;
|
|
DirtySuccessorsWorkList DirtySuccessors;
|
|
bool EverMadeChange;
|
|
const TargetInstrInfo *TII;
|
|
|
|
static char ID;
|
|
};
|
|
|
|
char VZeroUpperInserter::ID = 0;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
|
|
return new VZeroUpperInserter();
|
|
}
|
|
|
|
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
|
|
switch (ST) {
|
|
case PASS_THROUGH: return "Pass-through";
|
|
case EXITS_DIRTY: return "Exits-dirty";
|
|
case EXITS_CLEAN: return "Exits-clean";
|
|
}
|
|
llvm_unreachable("Invalid block exit state.");
|
|
}
|
|
|
|
static bool isYmmReg(unsigned Reg) {
|
|
return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
|
|
}
|
|
|
|
static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
|
|
for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
|
|
E = MRI.livein_end(); I != E; ++I)
|
|
if (isYmmReg(I->first))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool clobbersAllYmmRegs(const MachineOperand &MO) {
|
|
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
|
if (!MO.clobbersPhysReg(reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hasYmmReg(MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
|
|
return true;
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDebug())
|
|
continue;
|
|
if (isYmmReg(MO.getReg()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
|
|
/// instruction.
|
|
static bool callClobbersAnyYmmReg(MachineInstr *MI) {
|
|
assert(MI->isCall() && "Can only be called on call instructions.");
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isRegMask())
|
|
continue;
|
|
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
|
if (MO.clobbersPhysReg(reg))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Insert a vzeroupper instruction before I.
|
|
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock &MBB) {
|
|
DebugLoc dl = I->getDebugLoc();
|
|
BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
|
|
++NumVZU;
|
|
EverMadeChange = true;
|
|
}
|
|
|
|
// Add MBB to the DirtySuccessors list if it hasn't already been added.
|
|
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
|
|
if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
|
|
DirtySuccessors.push_back(&MBB);
|
|
BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
|
|
}
|
|
}
|
|
|
|
/// processBasicBlock - Loop over all of the instructions in the basic block,
|
|
/// inserting vzeroupper instructions before function calls.
|
|
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
|
|
|
|
// Start by assuming that the block PASS_THROUGH, which implies no unguarded
|
|
// calls.
|
|
BlockExitState CurState = PASS_THROUGH;
|
|
BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
|
|
|
|
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
|
|
MachineInstr *MI = I;
|
|
bool isControlFlow = MI->isCall() || MI->isReturn();
|
|
|
|
// Shortcut: don't need to check regular instructions in dirty state.
|
|
if (!isControlFlow && CurState == EXITS_DIRTY)
|
|
continue;
|
|
|
|
if (hasYmmReg(MI)) {
|
|
// We found a ymm-using instruction; this could be an AVX instruction,
|
|
// or it could be control flow.
|
|
CurState = EXITS_DIRTY;
|
|
continue;
|
|
}
|
|
|
|
// Check for control-flow out of the current function (which might
|
|
// indirectly execute SSE instructions).
|
|
if (!isControlFlow)
|
|
continue;
|
|
|
|
// If the call won't clobber any YMM register, skip it as well. It usually
|
|
// happens on helper function calls (such as '_chkstk', '_ftol2') where
|
|
// standard calling convention is not used (RegMask is not used to mark
|
|
// register clobbered and register usage (def/imp-def/use) is well-defined
|
|
// and explicitly specified.
|
|
if (MI->isCall() && !callClobbersAnyYmmReg(MI))
|
|
continue;
|
|
|
|
// The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
|
|
// registers. This instruction has zero latency. In addition, the processor
|
|
// changes back to Clean state, after which execution of Intel SSE
|
|
// instructions or Intel AVX instructions has no transition penalty. Add
|
|
// the VZEROUPPER instruction before any function call/return that might
|
|
// execute SSE code.
|
|
// FIXME: In some cases, we may want to move the VZEROUPPER into a
|
|
// predecessor block.
|
|
if (CurState == EXITS_DIRTY) {
|
|
// After the inserted VZEROUPPER the state becomes clean again, but
|
|
// other YMM may appear before other subsequent calls or even before
|
|
// the end of the BB.
|
|
insertVZeroUpper(I, MBB);
|
|
CurState = EXITS_CLEAN;
|
|
} else if (CurState == PASS_THROUGH) {
|
|
// If this block is currently in pass-through state and we encounter a
|
|
// call then whether we need a vzeroupper or not depends on whether this
|
|
// block has successors that exit dirty. Record the location of the call,
|
|
// and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
|
|
// It will be inserted later if necessary.
|
|
BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
|
|
CurState = EXITS_CLEAN;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
|
|
<< getBlockExitStateName(CurState) << '\n');
|
|
|
|
if (CurState == EXITS_DIRTY)
|
|
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
|
SE = MBB.succ_end();
|
|
SI != SE; ++SI)
|
|
addDirtySuccessor(**SI);
|
|
|
|
BlockStates[MBB.getNumber()].ExitState = CurState;
|
|
}
|
|
|
|
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
|
|
/// vzeroupper instructions before function calls.
|
|
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
|
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
|
|
if (!ST.hasAVX() || ST.hasAVX512())
|
|
return false;
|
|
TII = ST.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
EverMadeChange = false;
|
|
|
|
bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
|
|
|
|
// Fast check: if the function doesn't use any ymm registers, we don't need
|
|
// to insert any VZEROUPPER instructions. This is constant-time, so it is
|
|
// cheap in the common case of no ymm use.
|
|
bool YMMUsed = FnHasLiveInYmm;
|
|
if (!YMMUsed) {
|
|
const TargetRegisterClass *RC = &X86::VR256RegClass;
|
|
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
|
|
i++) {
|
|
if (!MRI.reg_nodbg_empty(*i)) {
|
|
YMMUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!YMMUsed) {
|
|
return false;
|
|
}
|
|
|
|
assert(BlockStates.empty() && DirtySuccessors.empty() &&
|
|
"X86VZeroUpper state should be clear");
|
|
BlockStates.resize(MF.getNumBlockIDs());
|
|
|
|
// Process all blocks. This will compute block exit states, record the first
|
|
// unguarded call in each block, and add successors of dirty blocks to the
|
|
// DirtySuccessors list.
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
processBasicBlock(*I);
|
|
|
|
// If any YMM regs are live in to this function, add the entry block to the
|
|
// DirtySuccessors list
|
|
if (FnHasLiveInYmm)
|
|
addDirtySuccessor(MF.front());
|
|
|
|
// Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
|
|
// vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
|
|
// through PASS_THROUGH blocks.
|
|
while (!DirtySuccessors.empty()) {
|
|
MachineBasicBlock &MBB = *DirtySuccessors.back();
|
|
DirtySuccessors.pop_back();
|
|
BlockState &BBState = BlockStates[MBB.getNumber()];
|
|
|
|
// MBB is a successor of a dirty block, so its first call needs to be
|
|
// guarded.
|
|
if (BBState.FirstUnguardedCall != MBB.end())
|
|
insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
|
|
|
|
// If this successor was a pass-through block then it is now dirty, and its
|
|
// successors need to be added to the worklist (if they haven't been
|
|
// already).
|
|
if (BBState.ExitState == PASS_THROUGH) {
|
|
DEBUG(dbgs() << "MBB #" << MBB.getNumber()
|
|
<< " was Pass-through, is now Dirty-out.\n");
|
|
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
|
SE = MBB.succ_end();
|
|
SI != SE; ++SI)
|
|
addDirtySuccessor(**SI);
|
|
}
|
|
}
|
|
|
|
BlockStates.clear();
|
|
return EverMadeChange;
|
|
}
|