forked from OSchip/llvm-project
1631 lines
67 KiB
C++
1631 lines
67 KiB
C++
//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the loop fusion pass.
|
|
/// The implementation is largely based on the following document:
|
|
///
|
|
/// Code Transformations to Augment the Scope of Loop Fusion in a
|
|
/// Production Compiler
|
|
/// Christopher Mark Barton
|
|
/// MSc Thesis
|
|
/// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
|
|
///
|
|
/// The general approach taken is to collect sets of control flow equivalent
|
|
/// loops and test whether they can be fused. The necessary conditions for
|
|
/// fusion are:
|
|
/// 1. The loops must be adjacent (there cannot be any statements between
|
|
/// the two loops).
|
|
/// 2. The loops must be conforming (they must execute the same number of
|
|
/// iterations).
|
|
/// 3. The loops must be control flow equivalent (if one loop executes, the
|
|
/// other is guaranteed to execute).
|
|
/// 4. There cannot be any negative distance dependencies between the loops.
|
|
/// If all of these conditions are satisfied, it is safe to fuse the loops.
|
|
///
|
|
/// This implementation creates FusionCandidates that represent the loop and the
|
|
/// necessary information needed by fusion. It then operates on the fusion
|
|
/// candidates, first confirming that the candidate is eligible for fusion. The
|
|
/// candidates are then collected into control flow equivalent sets, sorted in
|
|
/// dominance order. Each set of control flow equivalent candidates is then
|
|
/// traversed, attempting to fuse pairs of candidates in the set. If all
|
|
/// requirements for fusion are met, the two candidates are fused, creating a
|
|
/// new (fused) candidate which is then added back into the set to consider for
|
|
/// additional fusion.
|
|
///
|
|
/// This implementation currently does not make any modifications to remove
|
|
/// conditions for fusion. Code transformations to make loops conform to each of
|
|
/// the conditions for fusion are discussed in more detail in the document
|
|
/// above. These can be added to the current implementation in the future.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopFuse.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/DependenceAnalysis.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-fusion"
|
|
|
|
STATISTIC(FuseCounter, "Loops fused");
|
|
STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
|
|
STATISTIC(InvalidPreheader, "Loop has invalid preheader");
|
|
STATISTIC(InvalidHeader, "Loop has invalid header");
|
|
STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
|
|
STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
|
|
STATISTIC(InvalidLatch, "Loop has invalid latch");
|
|
STATISTIC(InvalidLoop, "Loop is invalid");
|
|
STATISTIC(AddressTakenBB, "Basic block has address taken");
|
|
STATISTIC(MayThrowException, "Loop may throw an exception");
|
|
STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
|
|
STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
|
|
STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
|
|
STATISTIC(UnknownTripCount, "Loop has unknown trip count");
|
|
STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
|
|
STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
|
|
STATISTIC(NonAdjacent, "Loops are not adjacent");
|
|
STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
|
|
STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
|
|
STATISTIC(NonIdenticalGuards, "Candidates have different guards");
|
|
STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
|
|
STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
|
|
|
|
enum FusionDependenceAnalysisChoice {
|
|
FUSION_DEPENDENCE_ANALYSIS_SCEV,
|
|
FUSION_DEPENDENCE_ANALYSIS_DA,
|
|
FUSION_DEPENDENCE_ANALYSIS_ALL,
|
|
};
|
|
|
|
static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
|
|
"loop-fusion-dependence-analysis",
|
|
cl::desc("Which dependence analysis should loop fusion use?"),
|
|
cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
|
|
"Use the scalar evolution interface"),
|
|
clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
|
|
"Use the dependence analysis interface"),
|
|
clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
|
|
"Use all available analyses")),
|
|
cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
VerboseFusionDebugging("loop-fusion-verbose-debug",
|
|
cl::desc("Enable verbose debugging for Loop Fusion"),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore);
|
|
#endif
|
|
|
|
namespace {
|
|
/// This class is used to represent a candidate for loop fusion. When it is
|
|
/// constructed, it checks the conditions for loop fusion to ensure that it
|
|
/// represents a valid candidate. It caches several parts of a loop that are
|
|
/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
|
|
/// of continually querying the underlying Loop to retrieve these values. It is
|
|
/// assumed these will not change throughout loop fusion.
|
|
///
|
|
/// The invalidate method should be used to indicate that the FusionCandidate is
|
|
/// no longer a valid candidate for fusion. Similarly, the isValid() method can
|
|
/// be used to ensure that the FusionCandidate is still valid for fusion.
|
|
struct FusionCandidate {
|
|
/// Cache of parts of the loop used throughout loop fusion. These should not
|
|
/// need to change throughout the analysis and transformation.
|
|
/// These parts are cached to avoid repeatedly looking up in the Loop class.
|
|
|
|
/// Preheader of the loop this candidate represents
|
|
BasicBlock *Preheader;
|
|
/// Header of the loop this candidate represents
|
|
BasicBlock *Header;
|
|
/// Blocks in the loop that exit the loop
|
|
BasicBlock *ExitingBlock;
|
|
/// The successor block of this loop (where the exiting blocks go to)
|
|
BasicBlock *ExitBlock;
|
|
/// Latch of the loop
|
|
BasicBlock *Latch;
|
|
/// The loop that this fusion candidate represents
|
|
Loop *L;
|
|
/// Vector of instructions in this loop that read from memory
|
|
SmallVector<Instruction *, 16> MemReads;
|
|
/// Vector of instructions in this loop that write to memory
|
|
SmallVector<Instruction *, 16> MemWrites;
|
|
/// Are all of the members of this fusion candidate still valid
|
|
bool Valid;
|
|
/// Guard branch of the loop, if it exists
|
|
BranchInst *GuardBranch;
|
|
|
|
/// Dominator and PostDominator trees are needed for the
|
|
/// FusionCandidateCompare function, required by FusionCandidateSet to
|
|
/// determine where the FusionCandidate should be inserted into the set. These
|
|
/// are used to establish ordering of the FusionCandidates based on dominance.
|
|
const DominatorTree *DT;
|
|
const PostDominatorTree *PDT;
|
|
|
|
OptimizationRemarkEmitter &ORE;
|
|
|
|
FusionCandidate(Loop *L, const DominatorTree *DT,
|
|
const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
|
|
: Preheader(L->getLoopPreheader()), Header(L->getHeader()),
|
|
ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
|
|
Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr),
|
|
DT(DT), PDT(PDT), ORE(ORE) {
|
|
|
|
// TODO: This is temporary while we fuse both rotated and non-rotated
|
|
// loops. Once we switch to only fusing rotated loops, the initialization of
|
|
// GuardBranch can be moved into the initialization list above.
|
|
if (isRotated())
|
|
GuardBranch = L->getLoopGuardBranch();
|
|
|
|
// Walk over all blocks in the loop and check for conditions that may
|
|
// prevent fusion. For each block, walk over all instructions and collect
|
|
// the memory reads and writes If any instructions that prevent fusion are
|
|
// found, invalidate this object and return.
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
if (BB->hasAddressTaken()) {
|
|
invalidate();
|
|
reportInvalidCandidate(AddressTakenBB);
|
|
return;
|
|
}
|
|
|
|
for (Instruction &I : *BB) {
|
|
if (I.mayThrow()) {
|
|
invalidate();
|
|
reportInvalidCandidate(MayThrowException);
|
|
return;
|
|
}
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (SI->isVolatile()) {
|
|
invalidate();
|
|
reportInvalidCandidate(ContainsVolatileAccess);
|
|
return;
|
|
}
|
|
}
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->isVolatile()) {
|
|
invalidate();
|
|
reportInvalidCandidate(ContainsVolatileAccess);
|
|
return;
|
|
}
|
|
}
|
|
if (I.mayWriteToMemory())
|
|
MemWrites.push_back(&I);
|
|
if (I.mayReadFromMemory())
|
|
MemReads.push_back(&I);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check if all members of the class are valid.
|
|
bool isValid() const {
|
|
return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
|
|
!L->isInvalid() && Valid;
|
|
}
|
|
|
|
/// Verify that all members are in sync with the Loop object.
|
|
void verify() const {
|
|
assert(isValid() && "Candidate is not valid!!");
|
|
assert(!L->isInvalid() && "Loop is invalid!");
|
|
assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
|
|
assert(Header == L->getHeader() && "Header is out of sync");
|
|
assert(ExitingBlock == L->getExitingBlock() &&
|
|
"Exiting Blocks is out of sync");
|
|
assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
|
|
assert(Latch == L->getLoopLatch() && "Latch is out of sync");
|
|
}
|
|
|
|
/// Get the entry block for this fusion candidate.
|
|
///
|
|
/// If this fusion candidate represents a guarded loop, the entry block is the
|
|
/// loop guard block. If it represents an unguarded loop, the entry block is
|
|
/// the preheader of the loop.
|
|
BasicBlock *getEntryBlock() const {
|
|
if (GuardBranch)
|
|
return GuardBranch->getParent();
|
|
else
|
|
return Preheader;
|
|
}
|
|
|
|
/// Given a guarded loop, get the successor of the guard that is not in the
|
|
/// loop.
|
|
///
|
|
/// This method returns the successor of the loop guard that is not located
|
|
/// within the loop (i.e., the successor of the guard that is not the
|
|
/// preheader).
|
|
/// This method is only valid for guarded loops.
|
|
BasicBlock *getNonLoopBlock() const {
|
|
assert(GuardBranch && "Only valid on guarded loops.");
|
|
assert(GuardBranch->isConditional() &&
|
|
"Expecting guard to be a conditional branch.");
|
|
return (GuardBranch->getSuccessor(0) == Preheader)
|
|
? GuardBranch->getSuccessor(1)
|
|
: GuardBranch->getSuccessor(0);
|
|
}
|
|
|
|
bool isRotated() const {
|
|
assert(L && "Expecting loop to be valid.");
|
|
assert(Latch && "Expecting latch to be valid.");
|
|
return L->isLoopExiting(Latch);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void dump() const {
|
|
dbgs() << "\tGuardBranch: "
|
|
<< (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
|
|
<< "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
|
|
<< "\n"
|
|
<< "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
|
|
<< "\tExitingBB: "
|
|
<< (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
|
|
<< "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
|
|
<< "\n"
|
|
<< "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
|
|
<< "\tEntryBlock: "
|
|
<< (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
|
|
<< "\n";
|
|
}
|
|
#endif
|
|
|
|
/// Determine if a fusion candidate (representing a loop) is eligible for
|
|
/// fusion. Note that this only checks whether a single loop can be fused - it
|
|
/// does not check whether it is *legal* to fuse two loops together.
|
|
bool isEligibleForFusion(ScalarEvolution &SE) const {
|
|
if (!isValid()) {
|
|
LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
|
|
if (!Preheader)
|
|
++InvalidPreheader;
|
|
if (!Header)
|
|
++InvalidHeader;
|
|
if (!ExitingBlock)
|
|
++InvalidExitingBlock;
|
|
if (!ExitBlock)
|
|
++InvalidExitBlock;
|
|
if (!Latch)
|
|
++InvalidLatch;
|
|
if (L->isInvalid())
|
|
++InvalidLoop;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Require ScalarEvolution to be able to determine a trip count.
|
|
if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
|
|
LLVM_DEBUG(dbgs() << "Loop " << L->getName()
|
|
<< " trip count not computable!\n");
|
|
return reportInvalidCandidate(UnknownTripCount);
|
|
}
|
|
|
|
if (!L->isLoopSimplifyForm()) {
|
|
LLVM_DEBUG(dbgs() << "Loop " << L->getName()
|
|
<< " is not in simplified form!\n");
|
|
return reportInvalidCandidate(NotSimplifiedForm);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// This is only used internally for now, to clear the MemWrites and MemReads
|
|
// list and setting Valid to false. I can't envision other uses of this right
|
|
// now, since once FusionCandidates are put into the FusionCandidateSet they
|
|
// are immutable. Thus, any time we need to change/update a FusionCandidate,
|
|
// we must create a new one and insert it into the FusionCandidateSet to
|
|
// ensure the FusionCandidateSet remains ordered correctly.
|
|
void invalidate() {
|
|
MemWrites.clear();
|
|
MemReads.clear();
|
|
Valid = false;
|
|
}
|
|
|
|
bool reportInvalidCandidate(llvm::Statistic &Stat) const {
|
|
using namespace ore;
|
|
assert(L && Preheader && "Fusion candidate not initialized properly!");
|
|
++Stat;
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
|
|
L->getStartLoc(), Preheader)
|
|
<< "[" << Preheader->getParent()->getName() << "]: "
|
|
<< "Loop is not a candidate for fusion: " << Stat.getDesc());
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct FusionCandidateCompare {
|
|
/// Comparison functor to sort two Control Flow Equivalent fusion candidates
|
|
/// into dominance order.
|
|
/// If LHS dominates RHS and RHS post-dominates LHS, return true;
|
|
/// IF RHS dominates LHS and LHS post-dominates RHS, return false;
|
|
bool operator()(const FusionCandidate &LHS,
|
|
const FusionCandidate &RHS) const {
|
|
const DominatorTree *DT = LHS.DT;
|
|
|
|
BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
|
|
BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
|
|
|
|
// Do not save PDT to local variable as it is only used in asserts and thus
|
|
// will trigger an unused variable warning if building without asserts.
|
|
assert(DT && LHS.PDT && "Expecting valid dominator tree");
|
|
|
|
// Do this compare first so if LHS == RHS, function returns false.
|
|
if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
|
|
// RHS dominates LHS
|
|
// Verify LHS post-dominates RHS
|
|
assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
|
|
return false;
|
|
}
|
|
|
|
if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
|
|
// Verify RHS Postdominates LHS
|
|
assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
|
|
return true;
|
|
}
|
|
|
|
// If LHS does not dominate RHS and RHS does not dominate LHS then there is
|
|
// no dominance relationship between the two FusionCandidates. Thus, they
|
|
// should not be in the same set together.
|
|
llvm_unreachable(
|
|
"No dominance relationship between these fusion candidates!");
|
|
}
|
|
};
|
|
|
|
using LoopVector = SmallVector<Loop *, 4>;
|
|
|
|
// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
|
|
// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
|
|
// dominates FC1 and FC1 post-dominates FC0.
|
|
// std::set was chosen because we want a sorted data structure with stable
|
|
// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
|
|
// loops by moving intervening code around. When this intervening code contains
|
|
// loops, those loops will be moved also. The corresponding FusionCandidates
|
|
// will also need to be moved accordingly. As this is done, having stable
|
|
// iterators will simplify the logic. Similarly, having an efficient insert that
|
|
// keeps the FusionCandidateSet sorted will also simplify the implementation.
|
|
using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
|
|
using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
|
|
|
|
#if !defined(NDEBUG)
|
|
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
|
|
const FusionCandidate &FC) {
|
|
if (FC.isValid())
|
|
OS << FC.Preheader->getName();
|
|
else
|
|
OS << "<Invalid>";
|
|
|
|
return OS;
|
|
}
|
|
|
|
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
|
|
const FusionCandidateSet &CandSet) {
|
|
for (const FusionCandidate &FC : CandSet)
|
|
OS << FC << '\n';
|
|
|
|
return OS;
|
|
}
|
|
|
|
static void
|
|
printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
|
|
dbgs() << "Fusion Candidates: \n";
|
|
for (const auto &CandidateSet : FusionCandidates) {
|
|
dbgs() << "*** Fusion Candidate Set ***\n";
|
|
dbgs() << CandidateSet;
|
|
dbgs() << "****************************\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/// Collect all loops in function at the same nest level, starting at the
|
|
/// outermost level.
|
|
///
|
|
/// This data structure collects all loops at the same nest level for a
|
|
/// given function (specified by the LoopInfo object). It starts at the
|
|
/// outermost level.
|
|
struct LoopDepthTree {
|
|
using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
|
|
using iterator = LoopsOnLevelTy::iterator;
|
|
using const_iterator = LoopsOnLevelTy::const_iterator;
|
|
|
|
LoopDepthTree(LoopInfo &LI) : Depth(1) {
|
|
if (!LI.empty())
|
|
LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
|
|
}
|
|
|
|
/// Test whether a given loop has been removed from the function, and thus is
|
|
/// no longer valid.
|
|
bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
|
|
|
|
/// Record that a given loop has been removed from the function and is no
|
|
/// longer valid.
|
|
void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
|
|
|
|
/// Descend the tree to the next (inner) nesting level
|
|
void descend() {
|
|
LoopsOnLevelTy LoopsOnNextLevel;
|
|
|
|
for (const LoopVector &LV : *this)
|
|
for (Loop *L : LV)
|
|
if (!isRemovedLoop(L) && L->begin() != L->end())
|
|
LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
|
|
|
|
LoopsOnLevel = LoopsOnNextLevel;
|
|
RemovedLoops.clear();
|
|
Depth++;
|
|
}
|
|
|
|
bool empty() const { return size() == 0; }
|
|
size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
|
|
unsigned getDepth() const { return Depth; }
|
|
|
|
iterator begin() { return LoopsOnLevel.begin(); }
|
|
iterator end() { return LoopsOnLevel.end(); }
|
|
const_iterator begin() const { return LoopsOnLevel.begin(); }
|
|
const_iterator end() const { return LoopsOnLevel.end(); }
|
|
|
|
private:
|
|
/// Set of loops that have been removed from the function and are no longer
|
|
/// valid.
|
|
SmallPtrSet<const Loop *, 8> RemovedLoops;
|
|
|
|
/// Depth of the current level, starting at 1 (outermost loops).
|
|
unsigned Depth;
|
|
|
|
/// Vector of loops at the current depth level that have the same parent loop
|
|
LoopsOnLevelTy LoopsOnLevel;
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
static void printLoopVector(const LoopVector &LV) {
|
|
dbgs() << "****************************\n";
|
|
for (auto L : LV)
|
|
printLoop(*L, dbgs());
|
|
dbgs() << "****************************\n";
|
|
}
|
|
#endif
|
|
|
|
struct LoopFuser {
|
|
private:
|
|
// Sets of control flow equivalent fusion candidates for a given nest level.
|
|
FusionCandidateCollection FusionCandidates;
|
|
|
|
LoopDepthTree LDT;
|
|
DomTreeUpdater DTU;
|
|
|
|
LoopInfo &LI;
|
|
DominatorTree &DT;
|
|
DependenceInfo &DI;
|
|
ScalarEvolution &SE;
|
|
PostDominatorTree &PDT;
|
|
OptimizationRemarkEmitter &ORE;
|
|
|
|
public:
|
|
LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
|
|
ScalarEvolution &SE, PostDominatorTree &PDT,
|
|
OptimizationRemarkEmitter &ORE, const DataLayout &DL)
|
|
: LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
|
|
DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
|
|
|
|
/// This is the main entry point for loop fusion. It will traverse the
|
|
/// specified function and collect candidate loops to fuse, starting at the
|
|
/// outermost nesting level and working inwards.
|
|
bool fuseLoops(Function &F) {
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging) {
|
|
LI.print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
|
|
<< "\n");
|
|
bool Changed = false;
|
|
|
|
while (!LDT.empty()) {
|
|
LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
|
|
<< LDT.getDepth() << "\n";);
|
|
|
|
for (const LoopVector &LV : LDT) {
|
|
assert(LV.size() > 0 && "Empty loop set was build!");
|
|
|
|
// Skip singleton loop sets as they do not offer fusion opportunities on
|
|
// this level.
|
|
if (LV.size() == 1)
|
|
continue;
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging) {
|
|
LLVM_DEBUG({
|
|
dbgs() << " Visit loop set (#" << LV.size() << "):\n";
|
|
printLoopVector(LV);
|
|
});
|
|
}
|
|
#endif
|
|
|
|
collectFusionCandidates(LV);
|
|
Changed |= fuseCandidates();
|
|
}
|
|
|
|
// Finished analyzing candidates at this level.
|
|
// Descend to the next level and clear all of the candidates currently
|
|
// collected. Note that it will not be possible to fuse any of the
|
|
// existing candidates with new candidates because the new candidates will
|
|
// be at a different nest level and thus not be control flow equivalent
|
|
// with all of the candidates collected so far.
|
|
LLVM_DEBUG(dbgs() << "Descend one level!\n");
|
|
LDT.descend();
|
|
FusionCandidates.clear();
|
|
}
|
|
|
|
if (Changed)
|
|
LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
|
|
|
|
#ifndef NDEBUG
|
|
assert(DT.verify());
|
|
assert(PDT.verify());
|
|
LI.verify(DT);
|
|
SE.verify();
|
|
#endif
|
|
|
|
LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
/// Determine if two fusion candidates are control flow equivalent.
|
|
///
|
|
/// Two fusion candidates are control flow equivalent if when one executes,
|
|
/// the other is guaranteed to execute. This is determined using dominators
|
|
/// and post-dominators: if A dominates B and B post-dominates A then A and B
|
|
/// are control-flow equivalent.
|
|
bool isControlFlowEquivalent(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) const {
|
|
assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
|
|
|
|
return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
|
|
DT, PDT);
|
|
}
|
|
|
|
/// Iterate over all loops in the given loop set and identify the loops that
|
|
/// are eligible for fusion. Place all eligible fusion candidates into Control
|
|
/// Flow Equivalent sets, sorted by dominance.
|
|
void collectFusionCandidates(const LoopVector &LV) {
|
|
for (Loop *L : LV) {
|
|
FusionCandidate CurrCand(L, &DT, &PDT, ORE);
|
|
if (!CurrCand.isEligibleForFusion(SE))
|
|
continue;
|
|
|
|
// Go through each list in FusionCandidates and determine if L is control
|
|
// flow equivalent with the first loop in that list. If it is, append LV.
|
|
// If not, go to the next list.
|
|
// If no suitable list is found, start another list and add it to
|
|
// FusionCandidates.
|
|
bool FoundSet = false;
|
|
|
|
for (auto &CurrCandSet : FusionCandidates) {
|
|
if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
|
|
CurrCandSet.insert(CurrCand);
|
|
FoundSet = true;
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging)
|
|
LLVM_DEBUG(dbgs() << "Adding " << CurrCand
|
|
<< " to existing candidate set\n");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
if (!FoundSet) {
|
|
// No set was found. Create a new set and add to FusionCandidates
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging)
|
|
LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
|
|
#endif
|
|
FusionCandidateSet NewCandSet;
|
|
NewCandSet.insert(CurrCand);
|
|
FusionCandidates.push_back(NewCandSet);
|
|
}
|
|
NumFusionCandidates++;
|
|
}
|
|
}
|
|
|
|
/// Determine if it is beneficial to fuse two loops.
|
|
///
|
|
/// For now, this method simply returns true because we want to fuse as much
|
|
/// as possible (primarily to test the pass). This method will evolve, over
|
|
/// time, to add heuristics for profitability of fusion.
|
|
bool isBeneficialFusion(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) {
|
|
return true;
|
|
}
|
|
|
|
/// Determine if two fusion candidates have the same trip count (i.e., they
|
|
/// execute the same number of iterations).
|
|
///
|
|
/// Note that for now this method simply returns a boolean value because there
|
|
/// are no mechanisms in loop fusion to handle different trip counts. In the
|
|
/// future, this behaviour can be extended to adjust one of the loops to make
|
|
/// the trip counts equal (e.g., loop peeling). When this is added, this
|
|
/// interface may need to change to return more information than just a
|
|
/// boolean value.
|
|
bool identicalTripCounts(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) const {
|
|
const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
|
|
if (isa<SCEVCouldNotCompute>(TripCount0)) {
|
|
UncomputableTripCount++;
|
|
LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
|
|
if (isa<SCEVCouldNotCompute>(TripCount1)) {
|
|
UncomputableTripCount++;
|
|
LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
|
|
<< *TripCount1 << " are "
|
|
<< (TripCount0 == TripCount1 ? "identical" : "different")
|
|
<< "\n");
|
|
|
|
return (TripCount0 == TripCount1);
|
|
}
|
|
|
|
/// Walk each set of control flow equivalent fusion candidates and attempt to
|
|
/// fuse them. This does a single linear traversal of all candidates in the
|
|
/// set. The conditions for legal fusion are checked at this point. If a pair
|
|
/// of fusion candidates passes all legality checks, they are fused together
|
|
/// and a new fusion candidate is created and added to the FusionCandidateSet.
|
|
/// The original fusion candidates are then removed, as they are no longer
|
|
/// valid.
|
|
bool fuseCandidates() {
|
|
bool Fused = false;
|
|
LLVM_DEBUG(printFusionCandidates(FusionCandidates));
|
|
for (auto &CandidateSet : FusionCandidates) {
|
|
if (CandidateSet.size() < 2)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
|
|
<< CandidateSet << "\n");
|
|
|
|
for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
|
|
assert(!LDT.isRemovedLoop(FC0->L) &&
|
|
"Should not have removed loops in CandidateSet!");
|
|
auto FC1 = FC0;
|
|
for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
|
|
assert(!LDT.isRemovedLoop(FC1->L) &&
|
|
"Should not have removed loops in CandidateSet!");
|
|
|
|
LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
|
|
dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
|
|
|
|
FC0->verify();
|
|
FC1->verify();
|
|
|
|
if (!identicalTripCounts(*FC0, *FC1)) {
|
|
LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
|
|
"counts. Not fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
NonEqualTripCount);
|
|
continue;
|
|
}
|
|
|
|
if (!isAdjacent(*FC0, *FC1)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Fusion candidates are not adjacent. Not fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
|
|
continue;
|
|
}
|
|
|
|
// Ensure that FC0 and FC1 have identical guards.
|
|
// If one (or both) are not guarded, this check is not necessary.
|
|
if (FC0->GuardBranch && FC1->GuardBranch &&
|
|
!haveIdenticalGuards(*FC0, *FC1)) {
|
|
LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
|
|
"guards. Not Fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
NonIdenticalGuards);
|
|
continue;
|
|
}
|
|
|
|
// The following three checks look for empty blocks in FC0 and FC1. If
|
|
// any of these blocks are non-empty, we do not fuse. This is done
|
|
// because we currently do not have the safety checks to determine if
|
|
// it is safe to move the blocks past other blocks in the loop. Once
|
|
// these checks are added, these conditions can be relaxed.
|
|
if (!isEmptyPreheader(*FC1)) {
|
|
LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
|
|
"preheader. Not fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
NonEmptyPreheader);
|
|
continue;
|
|
}
|
|
|
|
if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
|
|
LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
|
|
"block. Not fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
NonEmptyExitBlock);
|
|
continue;
|
|
}
|
|
|
|
if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
|
|
LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
|
|
"block. Not fusing.\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
NonEmptyGuardBlock);
|
|
continue;
|
|
}
|
|
|
|
// Check the dependencies across the loops and do not fuse if it would
|
|
// violate them.
|
|
if (!dependencesAllowFusion(*FC0, *FC1)) {
|
|
LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
InvalidDependencies);
|
|
continue;
|
|
}
|
|
|
|
bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "\tFusion appears to be "
|
|
<< (BeneficialToFuse ? "" : "un") << "profitable!\n");
|
|
if (!BeneficialToFuse) {
|
|
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
|
|
FusionNotBeneficial);
|
|
continue;
|
|
}
|
|
// All analysis has completed and has determined that fusion is legal
|
|
// and profitable. At this point, start transforming the code and
|
|
// perform fusion.
|
|
|
|
LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
|
|
<< *FC1 << "\n");
|
|
|
|
// Report fusion to the Optimization Remarks.
|
|
// Note this needs to be done *before* performFusion because
|
|
// performFusion will change the original loops, making it not
|
|
// possible to identify them after fusion is complete.
|
|
reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
|
|
|
|
FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
|
|
FusedCand.verify();
|
|
assert(FusedCand.isEligibleForFusion(SE) &&
|
|
"Fused candidate should be eligible for fusion!");
|
|
|
|
// Notify the loop-depth-tree that these loops are not valid objects
|
|
LDT.removeLoop(FC1->L);
|
|
|
|
CandidateSet.erase(FC0);
|
|
CandidateSet.erase(FC1);
|
|
|
|
auto InsertPos = CandidateSet.insert(FusedCand);
|
|
|
|
assert(InsertPos.second &&
|
|
"Unable to insert TargetCandidate in CandidateSet!");
|
|
|
|
// Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
|
|
// of the FC1 loop will attempt to fuse the new (fused) loop with the
|
|
// remaining candidates in the current candidate set.
|
|
FC0 = FC1 = InsertPos.first;
|
|
|
|
LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
|
|
<< "\n");
|
|
|
|
Fused = true;
|
|
}
|
|
}
|
|
}
|
|
return Fused;
|
|
}
|
|
|
|
/// Rewrite all additive recurrences in a SCEV to use a new loop.
|
|
class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
|
|
public:
|
|
AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
|
|
bool UseMax = true)
|
|
: SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
|
|
NewL(NewL) {}
|
|
|
|
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
|
|
const Loop *ExprL = Expr->getLoop();
|
|
SmallVector<const SCEV *, 2> Operands;
|
|
if (ExprL == &OldL) {
|
|
Operands.append(Expr->op_begin(), Expr->op_end());
|
|
return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
|
|
}
|
|
|
|
if (OldL.contains(ExprL)) {
|
|
bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
|
|
if (!UseMax || !Pos || !Expr->isAffine()) {
|
|
Valid = false;
|
|
return Expr;
|
|
}
|
|
return visit(Expr->getStart());
|
|
}
|
|
|
|
for (const SCEV *Op : Expr->operands())
|
|
Operands.push_back(visit(Op));
|
|
return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
|
|
}
|
|
|
|
bool wasValidSCEV() const { return Valid; }
|
|
|
|
private:
|
|
bool Valid, UseMax;
|
|
const Loop &OldL, &NewL;
|
|
};
|
|
|
|
/// Return false if the access functions of \p I0 and \p I1 could cause
|
|
/// a negative dependence.
|
|
bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
|
|
Instruction &I1, bool EqualIsInvalid) {
|
|
Value *Ptr0 = getLoadStorePointerOperand(&I0);
|
|
Value *Ptr1 = getLoadStorePointerOperand(&I1);
|
|
if (!Ptr0 || !Ptr1)
|
|
return false;
|
|
|
|
const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
|
|
const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging)
|
|
LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
|
|
<< *SCEVPtr1 << "\n");
|
|
#endif
|
|
AddRecLoopReplacer Rewriter(SE, L0, L1);
|
|
SCEVPtr0 = Rewriter.visit(SCEVPtr0);
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging)
|
|
LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
|
|
<< " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
|
|
#endif
|
|
if (!Rewriter.wasValidSCEV())
|
|
return false;
|
|
|
|
// TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
|
|
// L0) and the other is not. We could check if it is monotone and test
|
|
// the beginning and end value instead.
|
|
|
|
BasicBlock *L0Header = L0.getHeader();
|
|
auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
|
|
if (!AddRec)
|
|
return false;
|
|
return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
|
|
!DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
|
|
};
|
|
if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
|
|
return false;
|
|
|
|
ICmpInst::Predicate Pred =
|
|
EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
|
|
bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging)
|
|
LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
|
|
<< (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
|
|
<< "\n");
|
|
#endif
|
|
return IsAlwaysGE;
|
|
}
|
|
|
|
/// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
|
|
/// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
|
|
/// specified by @p DepChoice are used to determine this.
|
|
bool dependencesAllowFusion(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1, Instruction &I0,
|
|
Instruction &I1, bool AnyDep,
|
|
FusionDependenceAnalysisChoice DepChoice) {
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging) {
|
|
LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
|
|
<< DepChoice << "\n");
|
|
}
|
|
#endif
|
|
switch (DepChoice) {
|
|
case FUSION_DEPENDENCE_ANALYSIS_SCEV:
|
|
return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
|
|
case FUSION_DEPENDENCE_ANALYSIS_DA: {
|
|
auto DepResult = DI.depends(&I0, &I1, true);
|
|
if (!DepResult)
|
|
return true;
|
|
#ifndef NDEBUG
|
|
if (VerboseFusionDebugging) {
|
|
LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
|
|
dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
|
|
<< (DepResult->isOrdered() ? "true" : "false")
|
|
<< "]\n");
|
|
LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
|
|
<< "\n");
|
|
}
|
|
#endif
|
|
|
|
if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
|
|
LLVM_DEBUG(
|
|
dbgs() << "TODO: Implement pred/succ dependence handling!\n");
|
|
|
|
// TODO: Can we actually use the dependence info analysis here?
|
|
return false;
|
|
}
|
|
|
|
case FUSION_DEPENDENCE_ANALYSIS_ALL:
|
|
return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
|
|
FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
|
|
dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
|
|
FUSION_DEPENDENCE_ANALYSIS_DA);
|
|
}
|
|
|
|
llvm_unreachable("Unknown fusion dependence analysis choice!");
|
|
}
|
|
|
|
/// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
|
|
bool dependencesAllowFusion(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) {
|
|
LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
|
|
<< "\n");
|
|
assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
|
|
assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
|
|
|
|
for (Instruction *WriteL0 : FC0.MemWrites) {
|
|
for (Instruction *WriteL1 : FC1.MemWrites)
|
|
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
|
|
/* AnyDep */ false,
|
|
FusionDependenceAnalysis)) {
|
|
InvalidDependencies++;
|
|
return false;
|
|
}
|
|
for (Instruction *ReadL1 : FC1.MemReads)
|
|
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
|
|
/* AnyDep */ false,
|
|
FusionDependenceAnalysis)) {
|
|
InvalidDependencies++;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (Instruction *WriteL1 : FC1.MemWrites) {
|
|
for (Instruction *WriteL0 : FC0.MemWrites)
|
|
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
|
|
/* AnyDep */ false,
|
|
FusionDependenceAnalysis)) {
|
|
InvalidDependencies++;
|
|
return false;
|
|
}
|
|
for (Instruction *ReadL0 : FC0.MemReads)
|
|
if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
|
|
/* AnyDep */ false,
|
|
FusionDependenceAnalysis)) {
|
|
InvalidDependencies++;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Walk through all uses in FC1. For each use, find the reaching def. If the
|
|
// def is located in FC0 then it is is not safe to fuse.
|
|
for (BasicBlock *BB : FC1.L->blocks())
|
|
for (Instruction &I : *BB)
|
|
for (auto &Op : I.operands())
|
|
if (Instruction *Def = dyn_cast<Instruction>(Op))
|
|
if (FC0.L->contains(Def->getParent())) {
|
|
InvalidDependencies++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determine if two fusion candidates are adjacent in the CFG.
|
|
///
|
|
/// This method will determine if there are additional basic blocks in the CFG
|
|
/// between the exit of \p FC0 and the entry of \p FC1.
|
|
/// If the two candidates are guarded loops, then it checks whether the
|
|
/// non-loop successor of the \p FC0 guard branch is the entry block of \p
|
|
/// FC1. If not, then the loops are not adjacent. If the two candidates are
|
|
/// not guarded loops, then it checks whether the exit block of \p FC0 is the
|
|
/// preheader of \p FC1.
|
|
bool isAdjacent(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) const {
|
|
// If the successor of the guard branch is FC1, then the loops are adjacent
|
|
if (FC0.GuardBranch)
|
|
return FC0.getNonLoopBlock() == FC1.getEntryBlock();
|
|
else
|
|
return FC0.ExitBlock == FC1.getEntryBlock();
|
|
}
|
|
|
|
/// Determine if two fusion candidates have identical guards
|
|
///
|
|
/// This method will determine if two fusion candidates have the same guards.
|
|
/// The guards are considered the same if:
|
|
/// 1. The instructions to compute the condition used in the compare are
|
|
/// identical.
|
|
/// 2. The successors of the guard have the same flow into/around the loop.
|
|
/// If the compare instructions are identical, then the first successor of the
|
|
/// guard must go to the same place (either the preheader of the loop or the
|
|
/// NonLoopBlock). In other words, the the first successor of both loops must
|
|
/// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
|
|
/// the NonLoopBlock). The same must be true for the second successor.
|
|
bool haveIdenticalGuards(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) const {
|
|
assert(FC0.GuardBranch && FC1.GuardBranch &&
|
|
"Expecting FC0 and FC1 to be guarded loops.");
|
|
|
|
if (auto FC0CmpInst =
|
|
dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
|
|
if (auto FC1CmpInst =
|
|
dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
|
|
if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
|
|
return false;
|
|
|
|
// The compare instructions are identical.
|
|
// Now make sure the successor of the guards have the same flow into/around
|
|
// the loop
|
|
if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
|
|
return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
|
|
else
|
|
return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
|
|
}
|
|
|
|
/// Check that the guard for \p FC *only* contains the cmp/branch for the
|
|
/// guard.
|
|
/// Once we are able to handle intervening code, any code in the guard block
|
|
/// for FC1 will need to be treated as intervening code and checked whether
|
|
/// it can safely move around the loops.
|
|
bool isEmptyGuardBlock(const FusionCandidate &FC) const {
|
|
assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
|
|
if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
|
|
auto *GuardBlock = FC.GuardBranch->getParent();
|
|
// If the generation of the cmp value is in GuardBlock, then the size of
|
|
// the guard block should be 2 (cmp + branch). If the generation of the
|
|
// cmp value is in a different block, then the size of the guard block
|
|
// should only be 1.
|
|
if (CmpInst->getParent() == GuardBlock)
|
|
return GuardBlock->size() == 2;
|
|
else
|
|
return GuardBlock->size() == 1;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isEmptyPreheader(const FusionCandidate &FC) const {
|
|
assert(FC.Preheader && "Expecting a valid preheader");
|
|
return FC.Preheader->size() == 1;
|
|
}
|
|
|
|
bool isEmptyExitBlock(const FusionCandidate &FC) const {
|
|
assert(FC.ExitBlock && "Expecting a valid exit block");
|
|
return FC.ExitBlock->size() == 1;
|
|
}
|
|
|
|
/// Fuse two fusion candidates, creating a new fused loop.
|
|
///
|
|
/// This method contains the mechanics of fusing two loops, represented by \p
|
|
/// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
|
|
/// postdominates \p FC0 (making them control flow equivalent). It also
|
|
/// assumes that the other conditions for fusion have been met: adjacent,
|
|
/// identical trip counts, and no negative distance dependencies exist that
|
|
/// would prevent fusion. Thus, there is no checking for these conditions in
|
|
/// this method.
|
|
///
|
|
/// Fusion is performed by rewiring the CFG to update successor blocks of the
|
|
/// components of tho loop. Specifically, the following changes are done:
|
|
///
|
|
/// 1. The preheader of \p FC1 is removed as it is no longer necessary
|
|
/// (because it is currently only a single statement block).
|
|
/// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
|
|
/// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
|
|
/// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
|
|
///
|
|
/// All of these modifications are done with dominator tree updates, thus
|
|
/// keeping the dominator (and post dominator) information up-to-date.
|
|
///
|
|
/// This can be improved in the future by actually merging blocks during
|
|
/// fusion. For example, the preheader of \p FC1 can be merged with the
|
|
/// preheader of \p FC0. This would allow loops with more than a single
|
|
/// statement in the preheader to be fused. Similarly, the latch blocks of the
|
|
/// two loops could also be fused into a single block. This will require
|
|
/// analysis to prove it is safe to move the contents of the block past
|
|
/// existing code, which currently has not been implemented.
|
|
Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
|
|
assert(FC0.isValid() && FC1.isValid() &&
|
|
"Expecting valid fusion candidates");
|
|
|
|
LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
|
|
dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
|
|
|
|
// Fusing guarded loops is handled slightly differently than non-guarded
|
|
// loops and has been broken out into a separate method instead of trying to
|
|
// intersperse the logic within a single method.
|
|
if (FC0.GuardBranch)
|
|
return fuseGuardedLoops(FC0, FC1);
|
|
|
|
assert(FC1.Preheader == FC0.ExitBlock);
|
|
assert(FC1.Preheader->size() == 1 &&
|
|
FC1.Preheader->getSingleSuccessor() == FC1.Header);
|
|
|
|
// Remember the phi nodes originally in the header of FC0 in order to rewire
|
|
// them later. However, this is only necessary if the new loop carried
|
|
// values might not dominate the exiting branch. While we do not generally
|
|
// test if this is the case but simply insert intermediate phi nodes, we
|
|
// need to make sure these intermediate phi nodes have different
|
|
// predecessors. To this end, we filter the special case where the exiting
|
|
// block is the latch block of the first loop. Nothing needs to be done
|
|
// anyway as all loop carried values dominate the latch and thereby also the
|
|
// exiting branch.
|
|
SmallVector<PHINode *, 8> OriginalFC0PHIs;
|
|
if (FC0.ExitingBlock != FC0.Latch)
|
|
for (PHINode &PHI : FC0.Header->phis())
|
|
OriginalFC0PHIs.push_back(&PHI);
|
|
|
|
// Replace incoming blocks for header PHIs first.
|
|
FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
|
|
FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
|
|
|
|
// Then modify the control flow and update DT and PDT.
|
|
SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
|
|
|
|
// The old exiting block of the first loop (FC0) has to jump to the header
|
|
// of the second as we need to execute the code in the second header block
|
|
// regardless of the trip count. That is, if the trip count is 0, so the
|
|
// back edge is never taken, we still have to execute both loop headers,
|
|
// especially (but not only!) if the second is a do-while style loop.
|
|
// However, doing so might invalidate the phi nodes of the first loop as
|
|
// the new values do only need to dominate their latch and not the exiting
|
|
// predicate. To remedy this potential problem we always introduce phi
|
|
// nodes in the header of the second loop later that select the loop carried
|
|
// value, if the second header was reached through an old latch of the
|
|
// first, or undef otherwise. This is sound as exiting the first implies the
|
|
// second will exit too, __without__ taking the back-edge. [Their
|
|
// trip-counts are equal after all.
|
|
// KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
|
|
// to FC1.Header? I think this is basically what the three sequences are
|
|
// trying to accomplish; however, doing this directly in the CFG may mean
|
|
// the DT/PDT becomes invalid
|
|
FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
|
|
FC1.Header);
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
|
|
|
|
// The pre-header of L1 is not necessary anymore.
|
|
assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
|
|
FC1.Preheader->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC1.Preheader, FC1.Header));
|
|
|
|
// Moves the phi nodes from the second to the first loops header block.
|
|
while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
|
|
if (SE.isSCEVable(PHI->getType()))
|
|
SE.forgetValue(PHI);
|
|
if (PHI->hasNUsesOrMore(1))
|
|
PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
|
|
else
|
|
PHI->eraseFromParent();
|
|
}
|
|
|
|
// Introduce new phi nodes in the second loop header to ensure
|
|
// exiting the first and jumping to the header of the second does not break
|
|
// the SSA property of the phis originally in the first loop. See also the
|
|
// comment above.
|
|
Instruction *L1HeaderIP = &FC1.Header->front();
|
|
for (PHINode *LCPHI : OriginalFC0PHIs) {
|
|
int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
|
|
assert(L1LatchBBIdx >= 0 &&
|
|
"Expected loop carried value to be rewired at this point!");
|
|
|
|
Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
|
|
|
|
PHINode *L1HeaderPHI = PHINode::Create(
|
|
LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
|
|
L1HeaderPHI->addIncoming(LCV, FC0.Latch);
|
|
L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
|
|
FC0.ExitingBlock);
|
|
|
|
LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
|
|
}
|
|
|
|
// Replace latch terminator destinations.
|
|
FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
|
|
FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
|
|
|
|
// If FC0.Latch and FC0.ExitingBlock are the same then we have already
|
|
// performed the updates above.
|
|
if (FC0.Latch != FC0.ExitingBlock)
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Insert, FC0.Latch, FC1.Header));
|
|
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
|
|
FC0.Latch, FC0.Header));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
|
|
FC1.Latch, FC0.Header));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
|
|
FC1.Latch, FC1.Header));
|
|
|
|
// Update DT/PDT
|
|
DTU.applyUpdates(TreeUpdates);
|
|
|
|
LI.removeBlock(FC1.Preheader);
|
|
DTU.deleteBB(FC1.Preheader);
|
|
DTU.flush();
|
|
|
|
// Is there a way to keep SE up-to-date so we don't need to forget the loops
|
|
// and rebuild the information in subsequent passes of fusion?
|
|
SE.forgetLoop(FC1.L);
|
|
SE.forgetLoop(FC0.L);
|
|
|
|
// Merge the loops.
|
|
SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
|
|
FC1.L->block_end());
|
|
for (BasicBlock *BB : Blocks) {
|
|
FC0.L->addBlockEntry(BB);
|
|
FC1.L->removeBlockFromLoop(BB);
|
|
if (LI.getLoopFor(BB) != FC1.L)
|
|
continue;
|
|
LI.changeLoopFor(BB, FC0.L);
|
|
}
|
|
while (!FC1.L->empty()) {
|
|
const auto &ChildLoopIt = FC1.L->begin();
|
|
Loop *ChildLoop = *ChildLoopIt;
|
|
FC1.L->removeChildLoop(ChildLoopIt);
|
|
FC0.L->addChildLoop(ChildLoop);
|
|
}
|
|
|
|
// Delete the now empty loop L1.
|
|
LI.erase(FC1.L);
|
|
|
|
#ifndef NDEBUG
|
|
assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
|
|
assert(PDT.verify());
|
|
LI.verify(DT);
|
|
SE.verify();
|
|
#endif
|
|
|
|
LLVM_DEBUG(dbgs() << "Fusion done:\n");
|
|
|
|
return FC0.L;
|
|
}
|
|
|
|
/// Report details on loop fusion opportunities.
|
|
///
|
|
/// This template function can be used to report both successful and missed
|
|
/// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
|
|
/// be one of:
|
|
/// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
|
|
/// given two valid fusion candidates.
|
|
/// - OptimizationRemark to report successful fusion of two fusion
|
|
/// candidates.
|
|
/// The remarks will be printed using the form:
|
|
/// <path/filename>:<line number>:<column number>: [<function name>]:
|
|
/// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
|
|
template <typename RemarkKind>
|
|
void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
|
|
llvm::Statistic &Stat) {
|
|
assert(FC0.Preheader && FC1.Preheader &&
|
|
"Expecting valid fusion candidates");
|
|
using namespace ore;
|
|
++Stat;
|
|
ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
|
|
FC0.Preheader)
|
|
<< "[" << FC0.Preheader->getParent()->getName()
|
|
<< "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
|
|
<< " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
|
|
<< ": " << Stat.getDesc());
|
|
}
|
|
|
|
/// Fuse two guarded fusion candidates, creating a new fused loop.
|
|
///
|
|
/// Fusing guarded loops is handled much the same way as fusing non-guarded
|
|
/// loops. The rewiring of the CFG is slightly different though, because of
|
|
/// the presence of the guards around the loops and the exit blocks after the
|
|
/// loop body. As such, the new loop is rewired as follows:
|
|
/// 1. Keep the guard branch from FC0 and use the non-loop block target
|
|
/// from the FC1 guard branch.
|
|
/// 2. Remove the exit block from FC0 (this exit block should be empty
|
|
/// right now).
|
|
/// 3. Remove the guard branch for FC1
|
|
/// 4. Remove the preheader for FC1.
|
|
/// The exit block successor for the latch of FC0 is updated to be the header
|
|
/// of FC1 and the non-exit block successor of the latch of FC1 is updated to
|
|
/// be the header of FC0, thus creating the fused loop.
|
|
Loop *fuseGuardedLoops(const FusionCandidate &FC0,
|
|
const FusionCandidate &FC1) {
|
|
assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
|
|
|
|
BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
|
|
BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
|
|
BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
|
|
BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
|
|
|
|
assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
|
|
|
|
SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// Update the Loop Guard
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// The guard for FC0 is updated to guard both FC0 and FC1. This is done by
|
|
// changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
|
|
// Thus, one path from the guard goes to the preheader for FC0 (and thus
|
|
// executes the new fused loop) and the other path goes to the NonLoopBlock
|
|
// for FC1 (where FC1 guard would have gone if FC1 was not executed).
|
|
FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
|
|
FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
|
|
FC1.Header);
|
|
|
|
// The guard of FC1 is not necessary anymore.
|
|
FC1.GuardBranch->eraseFromParent();
|
|
new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
|
|
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
|
|
|
|
assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
|
|
"Expecting guard block to have no predecessors");
|
|
assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
|
|
"Expecting guard block to have no successors");
|
|
|
|
// Remember the phi nodes originally in the header of FC0 in order to rewire
|
|
// them later. However, this is only necessary if the new loop carried
|
|
// values might not dominate the exiting branch. While we do not generally
|
|
// test if this is the case but simply insert intermediate phi nodes, we
|
|
// need to make sure these intermediate phi nodes have different
|
|
// predecessors. To this end, we filter the special case where the exiting
|
|
// block is the latch block of the first loop. Nothing needs to be done
|
|
// anyway as all loop carried values dominate the latch and thereby also the
|
|
// exiting branch.
|
|
// KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
|
|
// (because the loops are rotated. Thus, nothing will ever be added to
|
|
// OriginalFC0PHIs.
|
|
SmallVector<PHINode *, 8> OriginalFC0PHIs;
|
|
if (FC0.ExitingBlock != FC0.Latch)
|
|
for (PHINode &PHI : FC0.Header->phis())
|
|
OriginalFC0PHIs.push_back(&PHI);
|
|
|
|
assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
|
|
|
|
// Replace incoming blocks for header PHIs first.
|
|
FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
|
|
FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
|
|
|
|
// The old exiting block of the first loop (FC0) has to jump to the header
|
|
// of the second as we need to execute the code in the second header block
|
|
// regardless of the trip count. That is, if the trip count is 0, so the
|
|
// back edge is never taken, we still have to execute both loop headers,
|
|
// especially (but not only!) if the second is a do-while style loop.
|
|
// However, doing so might invalidate the phi nodes of the first loop as
|
|
// the new values do only need to dominate their latch and not the exiting
|
|
// predicate. To remedy this potential problem we always introduce phi
|
|
// nodes in the header of the second loop later that select the loop carried
|
|
// value, if the second header was reached through an old latch of the
|
|
// first, or undef otherwise. This is sound as exiting the first implies the
|
|
// second will exit too, __without__ taking the back-edge (their
|
|
// trip-counts are equal after all).
|
|
FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
|
|
FC1.Header);
|
|
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
|
|
|
|
// Remove FC0 Exit Block
|
|
// The exit block for FC0 is no longer needed since control will flow
|
|
// directly to the header of FC1. Since it is an empty block, it can be
|
|
// removed at this point.
|
|
// TODO: In the future, we can handle non-empty exit blocks my merging any
|
|
// instructions from FC0 exit block into FC1 exit block prior to removing
|
|
// the block.
|
|
assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
|
|
"Expecting exit block to be empty");
|
|
FC0.ExitBlock->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
|
|
|
|
// Remove FC1 Preheader
|
|
// The pre-header of L1 is not necessary anymore.
|
|
assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
|
|
FC1.Preheader->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Delete, FC1.Preheader, FC1.Header));
|
|
|
|
// Moves the phi nodes from the second to the first loops header block.
|
|
while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
|
|
if (SE.isSCEVable(PHI->getType()))
|
|
SE.forgetValue(PHI);
|
|
if (PHI->hasNUsesOrMore(1))
|
|
PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
|
|
else
|
|
PHI->eraseFromParent();
|
|
}
|
|
|
|
// Introduce new phi nodes in the second loop header to ensure
|
|
// exiting the first and jumping to the header of the second does not break
|
|
// the SSA property of the phis originally in the first loop. See also the
|
|
// comment above.
|
|
Instruction *L1HeaderIP = &FC1.Header->front();
|
|
for (PHINode *LCPHI : OriginalFC0PHIs) {
|
|
int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
|
|
assert(L1LatchBBIdx >= 0 &&
|
|
"Expected loop carried value to be rewired at this point!");
|
|
|
|
Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
|
|
|
|
PHINode *L1HeaderPHI = PHINode::Create(
|
|
LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
|
|
L1HeaderPHI->addIncoming(LCV, FC0.Latch);
|
|
L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
|
|
FC0.ExitingBlock);
|
|
|
|
LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
|
|
}
|
|
|
|
// Update the latches
|
|
|
|
// Replace latch terminator destinations.
|
|
FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
|
|
FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
|
|
|
|
// If FC0.Latch and FC0.ExitingBlock are the same then we have already
|
|
// performed the updates above.
|
|
if (FC0.Latch != FC0.ExitingBlock)
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(
|
|
DominatorTree::Insert, FC0.Latch, FC1.Header));
|
|
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
|
|
FC0.Latch, FC0.Header));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
|
|
FC1.Latch, FC0.Header));
|
|
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
|
|
FC1.Latch, FC1.Header));
|
|
|
|
// All done
|
|
// Apply the updates to the Dominator Tree and cleanup.
|
|
|
|
assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
|
|
"FC1GuardBlock has successors!!");
|
|
assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
|
|
"FC1GuardBlock has predecessors!!");
|
|
|
|
// Update DT/PDT
|
|
DTU.applyUpdates(TreeUpdates);
|
|
|
|
LI.removeBlock(FC1.Preheader);
|
|
DTU.deleteBB(FC1.Preheader);
|
|
DTU.deleteBB(FC0.ExitBlock);
|
|
DTU.flush();
|
|
|
|
// Is there a way to keep SE up-to-date so we don't need to forget the loops
|
|
// and rebuild the information in subsequent passes of fusion?
|
|
SE.forgetLoop(FC1.L);
|
|
SE.forgetLoop(FC0.L);
|
|
|
|
// Merge the loops.
|
|
SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
|
|
FC1.L->block_end());
|
|
for (BasicBlock *BB : Blocks) {
|
|
FC0.L->addBlockEntry(BB);
|
|
FC1.L->removeBlockFromLoop(BB);
|
|
if (LI.getLoopFor(BB) != FC1.L)
|
|
continue;
|
|
LI.changeLoopFor(BB, FC0.L);
|
|
}
|
|
while (!FC1.L->empty()) {
|
|
const auto &ChildLoopIt = FC1.L->begin();
|
|
Loop *ChildLoop = *ChildLoopIt;
|
|
FC1.L->removeChildLoop(ChildLoopIt);
|
|
FC0.L->addChildLoop(ChildLoop);
|
|
}
|
|
|
|
// Delete the now empty loop L1.
|
|
LI.erase(FC1.L);
|
|
|
|
#ifndef NDEBUG
|
|
assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
|
|
assert(PDT.verify());
|
|
LI.verify(DT);
|
|
SE.verify();
|
|
#endif
|
|
|
|
LLVM_DEBUG(dbgs() << "Fusion done:\n");
|
|
|
|
return FC0.L;
|
|
}
|
|
};
|
|
|
|
struct LoopFuseLegacy : public FunctionPass {
|
|
|
|
static char ID;
|
|
|
|
LoopFuseLegacy() : FunctionPass(ID) {
|
|
initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addRequired<DependenceAnalysisWrapperPass>();
|
|
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
|
|
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
|
|
return LF.fuseLoops(F);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &DI = AM.getResult<DependenceAnalysis>(F);
|
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
|
|
bool Changed = LF.fuseLoops(F);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<PostDominatorTreeAnalysis>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
PA.preserve<LoopAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
char LoopFuseLegacy::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
|
|
|
|
FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
|