forked from OSchip/llvm-project
2253 lines
71 KiB
C++
2253 lines
71 KiB
C++
//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to NVPTX assembly language.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXAsmPrinter.h"
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "MCTargetDesc/NVPTXInstPrinter.h"
|
|
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
|
|
#include "MCTargetDesc/NVPTXTargetStreamer.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXMCExpr.h"
|
|
#include "NVPTXMachineFunctionInfo.h"
|
|
#include "NVPTXRegisterInfo.h"
|
|
#include "NVPTXSubtarget.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "TargetInfo/NVPTXTargetInfo.h"
|
|
#include "cl_common_defines.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <new>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEPOTNAME "__local_depot"
|
|
|
|
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
|
|
/// depends.
|
|
static void
|
|
DiscoverDependentGlobals(const Value *V,
|
|
DenseSet<const GlobalVariable *> &Globals) {
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
Globals.insert(GV);
|
|
else {
|
|
if (const User *U = dyn_cast<User>(V)) {
|
|
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
|
|
DiscoverDependentGlobals(U->getOperand(i), Globals);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
|
|
/// instances to be emitted, but only after any dependents have been added
|
|
/// first.s
|
|
static void
|
|
VisitGlobalVariableForEmission(const GlobalVariable *GV,
|
|
SmallVectorImpl<const GlobalVariable *> &Order,
|
|
DenseSet<const GlobalVariable *> &Visited,
|
|
DenseSet<const GlobalVariable *> &Visiting) {
|
|
// Have we already visited this one?
|
|
if (Visited.count(GV))
|
|
return;
|
|
|
|
// Do we have a circular dependency?
|
|
if (!Visiting.insert(GV).second)
|
|
report_fatal_error("Circular dependency found in global variable set");
|
|
|
|
// Make sure we visit all dependents first
|
|
DenseSet<const GlobalVariable *> Others;
|
|
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
|
|
DiscoverDependentGlobals(GV->getOperand(i), Others);
|
|
|
|
for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
|
|
E = Others.end();
|
|
I != E; ++I)
|
|
VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
|
|
|
|
// Now we can visit ourself
|
|
Order.push_back(GV);
|
|
Visited.insert(GV);
|
|
Visiting.erase(GV);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
MCInst Inst;
|
|
lowerToMCInst(MI, Inst);
|
|
EmitToStreamer(*OutStreamer, Inst);
|
|
}
|
|
|
|
// Handle symbol backtracking for targets that do not support image handles
|
|
bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
|
|
unsigned OpNo, MCOperand &MCOp) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
|
|
if (MCID.TSFlags & NVPTXII::IsTexFlag) {
|
|
// This is a texture fetch, so operand 4 is a texref and operand 5 is
|
|
// a samplerref
|
|
if (OpNo == 4 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
|
|
unsigned VecSize =
|
|
1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
|
|
|
|
// For a surface load of vector size N, the Nth operand will be the surfref
|
|
if (OpNo == VecSize && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
|
|
// This is a surface store, so operand 0 is a surfref
|
|
if (OpNo == 0 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
|
|
// This is a query, so operand 1 is a surfref/texref
|
|
if (OpNo == 1 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
|
|
// Ewwww
|
|
LLVMTargetMachine &TM = const_cast<LLVMTargetMachine&>(MF->getTarget());
|
|
NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
|
|
const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
|
|
const char *Sym = MFI->getImageHandleSymbol(Index);
|
|
std::string *SymNamePtr =
|
|
nvTM.getManagedStrPool()->getManagedString(Sym);
|
|
MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(StringRef(*SymNamePtr)));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
|
|
OutMI.setOpcode(MI->getOpcode());
|
|
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
|
|
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
OutMI.addOperand(GetSymbolRef(
|
|
OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
|
|
return;
|
|
}
|
|
|
|
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
|
|
MCOperand MCOp;
|
|
if (!STI.hasImageHandles()) {
|
|
if (lowerImageHandleOperand(MI, i, MCOp)) {
|
|
OutMI.addOperand(MCOp);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (lowerOperand(MO, MCOp))
|
|
OutMI.addOperand(MCOp);
|
|
}
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
|
|
MCOperand &MCOp) {
|
|
switch (MO.getType()) {
|
|
default: llvm_unreachable("unknown operand type");
|
|
case MachineOperand::MO_Register:
|
|
MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
MCOp = MCOperand::createImm(MO.getImm());
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
|
|
MO.getMBB()->getSymbol(), OutContext));
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
|
|
break;
|
|
case MachineOperand::MO_FPImmediate: {
|
|
const ConstantFP *Cnt = MO.getFPImm();
|
|
const APFloat &Val = Cnt->getValueAPF();
|
|
|
|
switch (Cnt->getType()->getTypeID()) {
|
|
default: report_fatal_error("Unsupported FP type"); break;
|
|
case Type::HalfTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
|
|
break;
|
|
case Type::FloatTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
|
|
break;
|
|
case Type::DoubleTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
|
|
unsigned RegNum = RegMap[Reg];
|
|
|
|
// Encode the register class in the upper 4 bits
|
|
// Must be kept in sync with NVPTXInstPrinter::printRegName
|
|
unsigned Ret = 0;
|
|
if (RC == &NVPTX::Int1RegsRegClass) {
|
|
Ret = (1 << 28);
|
|
} else if (RC == &NVPTX::Int16RegsRegClass) {
|
|
Ret = (2 << 28);
|
|
} else if (RC == &NVPTX::Int32RegsRegClass) {
|
|
Ret = (3 << 28);
|
|
} else if (RC == &NVPTX::Int64RegsRegClass) {
|
|
Ret = (4 << 28);
|
|
} else if (RC == &NVPTX::Float32RegsRegClass) {
|
|
Ret = (5 << 28);
|
|
} else if (RC == &NVPTX::Float64RegsRegClass) {
|
|
Ret = (6 << 28);
|
|
} else if (RC == &NVPTX::Float16RegsRegClass) {
|
|
Ret = (7 << 28);
|
|
} else if (RC == &NVPTX::Float16x2RegsRegClass) {
|
|
Ret = (8 << 28);
|
|
} else {
|
|
report_fatal_error("Bad register class");
|
|
}
|
|
|
|
// Insert the vreg number
|
|
Ret |= (RegNum & 0x0FFFFFFF);
|
|
return Ret;
|
|
} else {
|
|
// Some special-use registers are actually physical registers.
|
|
// Encode this as the register class ID of 0 and the real register ID.
|
|
return Reg & 0x0FFFFFFF;
|
|
}
|
|
}
|
|
|
|
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
|
|
const MCExpr *Expr;
|
|
Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
|
|
OutContext);
|
|
return MCOperand::createExpr(Expr);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
|
|
Type *Ty = F->getReturnType();
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
|
|
if (Ty->getTypeID() == Type::VoidTyID)
|
|
return;
|
|
|
|
O << " (";
|
|
|
|
if (isABI) {
|
|
if (Ty->isFloatingPointTy() || (Ty->isIntegerTy() && !Ty->isIntegerTy(128))) {
|
|
unsigned size = 0;
|
|
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
|
|
size = ITy->getBitWidth();
|
|
} else {
|
|
assert(Ty->isFloatingPointTy() && "Floating point type expected here");
|
|
size = Ty->getPrimitiveSizeInBits();
|
|
}
|
|
// PTX ABI requires all scalar return values to be at least 32
|
|
// bits in size. fp16 normally uses .b16 as its storage type in
|
|
// PTX, so its size must be adjusted here, too.
|
|
if (size < 32)
|
|
size = 32;
|
|
|
|
O << ".param .b" << size << " func_retval0";
|
|
} else if (isa<PointerType>(Ty)) {
|
|
O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
|
|
<< " func_retval0";
|
|
} else if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
|
|
unsigned totalsz = DL.getTypeAllocSize(Ty);
|
|
unsigned retAlignment = 0;
|
|
if (!getAlign(*F, 0, retAlignment))
|
|
retAlignment = DL.getABITypeAlignment(Ty);
|
|
O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
|
|
<< "]";
|
|
} else
|
|
llvm_unreachable("Unknown return type");
|
|
} else {
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*TLI, DL, Ty, vtparts);
|
|
unsigned idx = 0;
|
|
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[i];
|
|
if (vtparts[i].isVector()) {
|
|
elems = vtparts[i].getVectorNumElements();
|
|
elemtype = vtparts[i].getVectorElementType();
|
|
}
|
|
|
|
for (unsigned j = 0, je = elems; j != je; ++j) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger() && (sz < 32))
|
|
sz = 32;
|
|
O << ".reg .b" << sz << " func_retval" << idx;
|
|
if (j < je - 1)
|
|
O << ", ";
|
|
++idx;
|
|
}
|
|
if (i < e - 1)
|
|
O << ", ";
|
|
}
|
|
}
|
|
O << ") ";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
|
|
raw_ostream &O) {
|
|
const Function &F = MF.getFunction();
|
|
printReturnValStr(&F, O);
|
|
}
|
|
|
|
// Return true if MBB is the header of a loop marked with
|
|
// llvm.loop.unroll.disable.
|
|
// TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
|
|
bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
|
|
const MachineBasicBlock &MBB) const {
|
|
MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
|
|
// We insert .pragma "nounroll" only to the loop header.
|
|
if (!LI.isLoopHeader(&MBB))
|
|
return false;
|
|
|
|
// llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
|
|
// we iterate through each back edge of the loop with header MBB, and check
|
|
// whether its metadata contains llvm.loop.unroll.disable.
|
|
for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
|
|
const MachineBasicBlock *PMBB = *I;
|
|
if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
|
|
// Edges from other loops to MBB are not back edges.
|
|
continue;
|
|
}
|
|
if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
|
|
if (MDNode *LoopID =
|
|
PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
|
|
if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
|
|
AsmPrinter::emitBasicBlockStart(MBB);
|
|
if (isLoopHeaderOfNoUnroll(MBB))
|
|
OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n"));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionEntryLabel() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(*MF->getFunction().getParent());
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// Set up
|
|
MRI = &MF->getRegInfo();
|
|
F = &MF->getFunction();
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else {
|
|
O << ".func ";
|
|
printReturnValStr(*MF, O);
|
|
}
|
|
|
|
CurrentFnSym->print(O, MAI);
|
|
|
|
emitFunctionParamList(*MF, O);
|
|
|
|
if (isKernelFunction(*F))
|
|
emitKernelFunctionDirectives(*F, O);
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
|
|
VRegMapping.clear();
|
|
// Emit open brace for function body.
|
|
OutStreamer->emitRawText(StringRef("{\n"));
|
|
setAndEmitFunctionVirtualRegisters(*MF);
|
|
// Emit initial .loc debug directive for correct relocation symbol data.
|
|
if (MMI && MMI->hasDebugInfo())
|
|
emitInitialRawDwarfLocDirective(*MF);
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
|
|
bool Result = AsmPrinter::runOnMachineFunction(F);
|
|
// Emit closing brace for the body of function F.
|
|
// The closing brace must be emitted here because we need to emit additional
|
|
// debug labels/data after the last basic block.
|
|
// We need to emit the closing brace here because we don't have function that
|
|
// finished emission of the function body.
|
|
OutStreamer->emitRawText(StringRef("}\n"));
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyStart() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
emitDemotedVars(&MF->getFunction(), O);
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyEnd() {
|
|
VRegMapping.clear();
|
|
}
|
|
|
|
const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
|
|
return OutContext.getOrCreateSymbol(Str);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
|
|
Register RegNo = MI->getOperand(0).getReg();
|
|
if (Register::isVirtualRegister(RegNo)) {
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
getVirtualRegisterName(RegNo));
|
|
} else {
|
|
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
STI.getRegisterInfo()->getName(RegNo));
|
|
}
|
|
OutStreamer->AddBlankLine();
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
|
|
raw_ostream &O) const {
|
|
// If the NVVM IR has some of reqntid* specified, then output
|
|
// the reqntid directive, and set the unspecified ones to 1.
|
|
// If none of reqntid* is specified, don't output reqntid directive.
|
|
unsigned reqntidx, reqntidy, reqntidz;
|
|
bool specified = false;
|
|
if (!getReqNTIDx(F, reqntidx))
|
|
reqntidx = 1;
|
|
else
|
|
specified = true;
|
|
if (!getReqNTIDy(F, reqntidy))
|
|
reqntidy = 1;
|
|
else
|
|
specified = true;
|
|
if (!getReqNTIDz(F, reqntidz))
|
|
reqntidz = 1;
|
|
else
|
|
specified = true;
|
|
|
|
if (specified)
|
|
O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
|
|
<< "\n";
|
|
|
|
// If the NVVM IR has some of maxntid* specified, then output
|
|
// the maxntid directive, and set the unspecified ones to 1.
|
|
// If none of maxntid* is specified, don't output maxntid directive.
|
|
unsigned maxntidx, maxntidy, maxntidz;
|
|
specified = false;
|
|
if (!getMaxNTIDx(F, maxntidx))
|
|
maxntidx = 1;
|
|
else
|
|
specified = true;
|
|
if (!getMaxNTIDy(F, maxntidy))
|
|
maxntidy = 1;
|
|
else
|
|
specified = true;
|
|
if (!getMaxNTIDz(F, maxntidz))
|
|
maxntidz = 1;
|
|
else
|
|
specified = true;
|
|
|
|
if (specified)
|
|
O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
|
|
<< "\n";
|
|
|
|
unsigned mincta;
|
|
if (getMinCTASm(F, mincta))
|
|
O << ".minnctapersm " << mincta << "\n";
|
|
|
|
unsigned maxnreg;
|
|
if (getMaxNReg(F, maxnreg))
|
|
O << ".maxnreg " << maxnreg << "\n";
|
|
}
|
|
|
|
std::string
|
|
NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
std::string Name;
|
|
raw_string_ostream NameStr(Name);
|
|
|
|
VRegRCMap::const_iterator I = VRegMapping.find(RC);
|
|
assert(I != VRegMapping.end() && "Bad register class");
|
|
const DenseMap<unsigned, unsigned> &RegMap = I->second;
|
|
|
|
VRegMap::const_iterator VI = RegMap.find(Reg);
|
|
assert(VI != RegMap.end() && "Bad virtual register");
|
|
unsigned MappedVR = VI->second;
|
|
|
|
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
|
|
|
|
NameStr.flush();
|
|
return Name;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
|
|
raw_ostream &O) {
|
|
O << getVirtualRegisterName(vr);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else
|
|
O << ".func ";
|
|
printReturnValStr(F, O);
|
|
getSymbol(F)->print(O, MAI);
|
|
O << "\n";
|
|
emitFunctionParamList(F, O);
|
|
O << ";\n";
|
|
}
|
|
|
|
static bool usedInGlobalVarDef(const Constant *C) {
|
|
if (!C)
|
|
return false;
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
|
|
return GV->getName() != "llvm.used";
|
|
}
|
|
|
|
for (const User *U : C->users())
|
|
if (const Constant *C = dyn_cast<Constant>(U))
|
|
if (usedInGlobalVarDef(C))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
|
|
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
|
|
if (othergv->getName() == "llvm.used")
|
|
return true;
|
|
}
|
|
|
|
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
|
|
if (instr->getParent() && instr->getParent()->getParent()) {
|
|
const Function *curFunc = instr->getParent()->getParent();
|
|
if (oneFunc && (curFunc != oneFunc))
|
|
return false;
|
|
oneFunc = curFunc;
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
for (const User *UU : U->users())
|
|
if (!usedInOneFunc(UU, oneFunc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find out if a global variable can be demoted to local scope.
|
|
* Currently, this is valid for CUDA shared variables, which have local
|
|
* scope and global lifetime. So the conditions to check are :
|
|
* 1. Is the global variable in shared address space?
|
|
* 2. Does it have internal linkage?
|
|
* 3. Is the global variable referenced only in one function?
|
|
*/
|
|
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
|
|
if (!gv->hasInternalLinkage())
|
|
return false;
|
|
PointerType *Pty = gv->getType();
|
|
if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
|
|
return false;
|
|
|
|
const Function *oneFunc = nullptr;
|
|
|
|
bool flag = usedInOneFunc(gv, oneFunc);
|
|
if (!flag)
|
|
return false;
|
|
if (!oneFunc)
|
|
return false;
|
|
f = oneFunc;
|
|
return true;
|
|
}
|
|
|
|
static bool useFuncSeen(const Constant *C,
|
|
DenseMap<const Function *, bool> &seenMap) {
|
|
for (const User *U : C->users()) {
|
|
if (const Constant *cu = dyn_cast<Constant>(U)) {
|
|
if (useFuncSeen(cu, seenMap))
|
|
return true;
|
|
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
|
|
const BasicBlock *bb = I->getParent();
|
|
if (!bb)
|
|
continue;
|
|
const Function *caller = bb->getParent();
|
|
if (!caller)
|
|
continue;
|
|
if (seenMap.find(caller) != seenMap.end())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
|
|
DenseMap<const Function *, bool> seenMap;
|
|
for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
|
|
const Function *F = &*FI;
|
|
|
|
if (F->getAttributes().hasFnAttribute("nvptx-libcall-callee")) {
|
|
emitDeclaration(F, O);
|
|
continue;
|
|
}
|
|
|
|
if (F->isDeclaration()) {
|
|
if (F->use_empty())
|
|
continue;
|
|
if (F->getIntrinsicID())
|
|
continue;
|
|
emitDeclaration(F, O);
|
|
continue;
|
|
}
|
|
for (const User *U : F->users()) {
|
|
if (const Constant *C = dyn_cast<Constant>(U)) {
|
|
if (usedInGlobalVarDef(C)) {
|
|
// The use is in the initialization of a global variable
|
|
// that is a function pointer, so print a declaration
|
|
// for the original function
|
|
emitDeclaration(F, O);
|
|
break;
|
|
}
|
|
// Emit a declaration of this function if the function that
|
|
// uses this constant expr has already been seen.
|
|
if (useFuncSeen(C, seenMap)) {
|
|
emitDeclaration(F, O);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isa<Instruction>(U))
|
|
continue;
|
|
const Instruction *instr = cast<Instruction>(U);
|
|
const BasicBlock *bb = instr->getParent();
|
|
if (!bb)
|
|
continue;
|
|
const Function *caller = bb->getParent();
|
|
if (!caller)
|
|
continue;
|
|
|
|
// If a caller has already been seen, then the caller is
|
|
// appearing in the module before the callee. so print out
|
|
// a declaration for the callee.
|
|
if (seenMap.find(caller) != seenMap.end()) {
|
|
emitDeclaration(F, O);
|
|
break;
|
|
}
|
|
}
|
|
seenMap[F] = true;
|
|
}
|
|
}
|
|
|
|
static bool isEmptyXXStructor(GlobalVariable *GV) {
|
|
if (!GV) return true;
|
|
const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
if (!InitList) return true; // Not an array; we don't know how to parse.
|
|
return InitList->getNumOperands() == 0;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) {
|
|
// Construct a default subtarget off of the TargetMachine defaults. The
|
|
// rest of NVPTX isn't friendly to change subtargets per function and
|
|
// so the default TargetMachine will have all of the options.
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl());
|
|
SmallString<128> Str1;
|
|
raw_svector_ostream OS1(Str1);
|
|
|
|
// Emit header before any dwarf directives are emitted below.
|
|
emitHeader(M, OS1, *STI);
|
|
OutStreamer->emitRawText(OS1.str());
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doInitialization(Module &M) {
|
|
if (M.alias_size()) {
|
|
report_fatal_error("Module has aliases, which NVPTX does not support.");
|
|
return true; // error
|
|
}
|
|
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
|
|
report_fatal_error(
|
|
"Module has a nontrivial global ctor, which NVPTX does not support.");
|
|
return true; // error
|
|
}
|
|
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
|
|
report_fatal_error(
|
|
"Module has a nontrivial global dtor, which NVPTX does not support.");
|
|
return true; // error
|
|
}
|
|
|
|
// We need to call the parent's one explicitly.
|
|
bool Result = AsmPrinter::doInitialization(M);
|
|
|
|
GlobalsEmitted = false;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
|
|
SmallString<128> Str2;
|
|
raw_svector_ostream OS2(Str2);
|
|
|
|
emitDeclarations(M, OS2);
|
|
|
|
// As ptxas does not support forward references of globals, we need to first
|
|
// sort the list of module-level globals in def-use order. We visit each
|
|
// global variable in order, and ensure that we emit it *after* its dependent
|
|
// globals. We use a little extra memory maintaining both a set and a list to
|
|
// have fast searches while maintaining a strict ordering.
|
|
SmallVector<const GlobalVariable *, 8> Globals;
|
|
DenseSet<const GlobalVariable *> GVVisited;
|
|
DenseSet<const GlobalVariable *> GVVisiting;
|
|
|
|
// Visit each global variable, in order
|
|
for (const GlobalVariable &I : M.globals())
|
|
VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
|
|
|
|
assert(GVVisited.size() == M.getGlobalList().size() &&
|
|
"Missed a global variable");
|
|
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
|
|
|
|
// Print out module-level global variables in proper order
|
|
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
|
|
printModuleLevelGV(Globals[i], OS2);
|
|
|
|
OS2 << '\n';
|
|
|
|
OutStreamer->emitRawText(OS2.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
|
|
const NVPTXSubtarget &STI) {
|
|
O << "//\n";
|
|
O << "// Generated by LLVM NVPTX Back-End\n";
|
|
O << "//\n";
|
|
O << "\n";
|
|
|
|
unsigned PTXVersion = STI.getPTXVersion();
|
|
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
|
|
|
|
O << ".target ";
|
|
O << STI.getTargetName();
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
if (NTM.getDrvInterface() == NVPTX::NVCL)
|
|
O << ", texmode_independent";
|
|
|
|
bool HasFullDebugInfo = false;
|
|
for (DICompileUnit *CU : M.debug_compile_units()) {
|
|
switch(CU->getEmissionKind()) {
|
|
case DICompileUnit::NoDebug:
|
|
case DICompileUnit::DebugDirectivesOnly:
|
|
break;
|
|
case DICompileUnit::LineTablesOnly:
|
|
case DICompileUnit::FullDebug:
|
|
HasFullDebugInfo = true;
|
|
break;
|
|
}
|
|
if (HasFullDebugInfo)
|
|
break;
|
|
}
|
|
if (MMI && MMI->hasDebugInfo() && HasFullDebugInfo)
|
|
O << ", debug";
|
|
|
|
O << "\n";
|
|
|
|
O << ".address_size ";
|
|
if (NTM.is64Bit())
|
|
O << "64";
|
|
else
|
|
O << "32";
|
|
O << "\n";
|
|
|
|
O << "\n";
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doFinalization(Module &M) {
|
|
bool HasDebugInfo = MMI && MMI->hasDebugInfo();
|
|
|
|
// If we did not emit any functions, then the global declarations have not
|
|
// yet been emitted.
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(M);
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// XXX Temproarily remove global variables so that doFinalization() will not
|
|
// emit them again (global variables are emitted at beginning).
|
|
|
|
Module::GlobalListType &global_list = M.getGlobalList();
|
|
int i, n = global_list.size();
|
|
GlobalVariable **gv_array = new GlobalVariable *[n];
|
|
|
|
// first, back-up GlobalVariable in gv_array
|
|
i = 0;
|
|
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
|
|
I != E; ++I)
|
|
gv_array[i++] = &*I;
|
|
|
|
// second, empty global_list
|
|
while (!global_list.empty())
|
|
global_list.remove(global_list.begin());
|
|
|
|
// call doFinalization
|
|
bool ret = AsmPrinter::doFinalization(M);
|
|
|
|
// now we restore global variables
|
|
for (i = 0; i < n; i++)
|
|
global_list.insert(global_list.end(), gv_array[i]);
|
|
|
|
clearAnnotationCache(&M);
|
|
|
|
delete[] gv_array;
|
|
// Close the last emitted section
|
|
if (HasDebugInfo) {
|
|
static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer())
|
|
->closeLastSection();
|
|
// Emit empty .debug_loc section for better support of the empty files.
|
|
OutStreamer->emitRawText("\t.section\t.debug_loc\t{\t}");
|
|
}
|
|
|
|
// Output last DWARF .file directives, if any.
|
|
static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer())
|
|
->outputDwarfFileDirectives();
|
|
|
|
return ret;
|
|
|
|
//bool Result = AsmPrinter::doFinalization(M);
|
|
// Instead of calling the parents doFinalization, we may
|
|
// clone parents doFinalization and customize here.
|
|
// Currently, we if NVISA out the EmitGlobals() in
|
|
// parent's doFinalization, which is too intrusive.
|
|
//
|
|
// Same for the doInitialization.
|
|
//return Result;
|
|
}
|
|
|
|
// This function emits appropriate linkage directives for
|
|
// functions and global variables.
|
|
//
|
|
// extern function declaration -> .extern
|
|
// extern function definition -> .visible
|
|
// external global variable with init -> .visible
|
|
// external without init -> .extern
|
|
// appending -> not allowed, assert.
|
|
// for any linkage other than
|
|
// internal, private, linker_private,
|
|
// linker_private_weak, linker_private_weak_def_auto,
|
|
// we emit -> .weak.
|
|
|
|
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
|
|
raw_ostream &O) {
|
|
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
|
|
if (V->hasExternalLinkage()) {
|
|
if (isa<GlobalVariable>(V)) {
|
|
const GlobalVariable *GVar = cast<GlobalVariable>(V);
|
|
if (GVar) {
|
|
if (GVar->hasInitializer())
|
|
O << ".visible ";
|
|
else
|
|
O << ".extern ";
|
|
}
|
|
} else if (V->isDeclaration())
|
|
O << ".extern ";
|
|
else
|
|
O << ".visible ";
|
|
} else if (V->hasAppendingLinkage()) {
|
|
std::string msg;
|
|
msg.append("Error: ");
|
|
msg.append("Symbol ");
|
|
if (V->hasName())
|
|
msg.append(std::string(V->getName()));
|
|
msg.append("has unsupported appending linkage type");
|
|
llvm_unreachable(msg.c_str());
|
|
} else if (!V->hasInternalLinkage() &&
|
|
!V->hasPrivateLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
|
|
raw_ostream &O,
|
|
bool processDemoted) {
|
|
// Skip meta data
|
|
if (GVar->hasSection()) {
|
|
if (GVar->getSection() == "llvm.metadata")
|
|
return;
|
|
}
|
|
|
|
// Skip LLVM intrinsic global variables
|
|
if (GVar->getName().startswith("llvm.") ||
|
|
GVar->getName().startswith("nvvm."))
|
|
return;
|
|
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
PointerType *PTy = GVar->getType();
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
if (GVar->hasExternalLinkage()) {
|
|
if (GVar->hasInitializer())
|
|
O << ".visible ";
|
|
else
|
|
O << ".extern ";
|
|
} else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
|
|
GVar->hasAvailableExternallyLinkage() ||
|
|
GVar->hasCommonLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
|
|
if (isTexture(*GVar)) {
|
|
O << ".global .texref " << getTextureName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSurface(*GVar)) {
|
|
O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->isDeclaration()) {
|
|
// (extern) declarations, no definition or initializer
|
|
// Currently the only known declaration is for an automatic __local
|
|
// (.shared) promoted to global.
|
|
emitPTXGlobalVariable(GVar, O);
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSampler(*GVar)) {
|
|
O << ".global .samplerref " << getSamplerName(*GVar);
|
|
|
|
const Constant *Initializer = nullptr;
|
|
if (GVar->hasInitializer())
|
|
Initializer = GVar->getInitializer();
|
|
const ConstantInt *CI = nullptr;
|
|
if (Initializer)
|
|
CI = dyn_cast<ConstantInt>(Initializer);
|
|
if (CI) {
|
|
unsigned sample = CI->getZExtValue();
|
|
|
|
O << " = { ";
|
|
|
|
for (int i = 0,
|
|
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
|
|
i < 3; i++) {
|
|
O << "addr_mode_" << i << " = ";
|
|
switch (addr) {
|
|
case 0:
|
|
O << "wrap";
|
|
break;
|
|
case 1:
|
|
O << "clamp_to_border";
|
|
break;
|
|
case 2:
|
|
O << "clamp_to_edge";
|
|
break;
|
|
case 3:
|
|
O << "wrap";
|
|
break;
|
|
case 4:
|
|
O << "mirror";
|
|
break;
|
|
}
|
|
O << ", ";
|
|
}
|
|
O << "filter_mode = ";
|
|
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
|
|
case 0:
|
|
O << "nearest";
|
|
break;
|
|
case 1:
|
|
O << "linear";
|
|
break;
|
|
case 2:
|
|
llvm_unreachable("Anisotropic filtering is not supported");
|
|
default:
|
|
O << "nearest";
|
|
break;
|
|
}
|
|
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
|
|
O << ", force_unnormalized_coords = 1";
|
|
}
|
|
O << " }";
|
|
}
|
|
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->hasPrivateLinkage()) {
|
|
if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
|
|
return;
|
|
|
|
// FIXME - need better way (e.g. Metadata) to avoid generating this global
|
|
if (strncmp(GVar->getName().data(), "filename", 8) == 0)
|
|
return;
|
|
if (GVar->use_empty())
|
|
return;
|
|
}
|
|
|
|
const Function *demotedFunc = nullptr;
|
|
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
|
|
O << "// " << GVar->getName() << " has been demoted\n";
|
|
if (localDecls.find(demotedFunc) != localDecls.end())
|
|
localDecls[demotedFunc].push_back(GVar);
|
|
else {
|
|
std::vector<const GlobalVariable *> temp;
|
|
temp.push_back(GVar);
|
|
localDecls[demotedFunc] = temp;
|
|
}
|
|
return;
|
|
}
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(PTy->getAddressSpace(), O);
|
|
|
|
if (isManaged(*GVar)) {
|
|
O << " .attribute(.managed)";
|
|
}
|
|
|
|
if (GVar->getAlignment() == 0)
|
|
O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
|
|
else
|
|
O << " .align " << GVar->getAlignment();
|
|
|
|
if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
|
|
(ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
|
|
O << " .";
|
|
// Special case: ABI requires that we use .u8 for predicates
|
|
if (ETy->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(ETy, false);
|
|
O << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
|
|
// Ptx allows variable initilization only for constant and global state
|
|
// spaces.
|
|
if (GVar->hasInitializer()) {
|
|
if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
// 'undef' is treated as there is no value specified.
|
|
if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
|
|
O << " = ";
|
|
printScalarConstant(Initializer, O);
|
|
}
|
|
} else {
|
|
// The frontend adds zero-initializer to device and constant variables
|
|
// that don't have an initial value, and UndefValue to shared
|
|
// variables, so skip warning for this case.
|
|
if (!GVar->getInitializer()->isNullValue() &&
|
|
!isa<UndefValue>(GVar->getInitializer())) {
|
|
report_fatal_error("initial value of '" + GVar->getName() +
|
|
"' is not allowed in addrspace(" +
|
|
Twine(PTy->getAddressSpace()) + ")");
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
unsigned int ElementSize = 0;
|
|
|
|
// Although PTX has direct support for struct type and array type and
|
|
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
|
|
// targets that support these high level field accesses. Structs, arrays
|
|
// and vectors are lowered into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::IntegerTyID: // Integers larger than 64 bits
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
ElementSize = DL.getTypeStoreSize(ETy);
|
|
// Ptx allows variable initilization only for constant and
|
|
// global state spaces.
|
|
if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
|
|
GVar->hasInitializer()) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
|
|
AggBuffer aggBuffer(ElementSize, O, *this);
|
|
bufferAggregateConstant(Initializer, &aggBuffer);
|
|
if (aggBuffer.numSymbols) {
|
|
if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
|
|
O << " .u64 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
O << ElementSize / 8;
|
|
} else {
|
|
O << " .u32 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
O << ElementSize / 4;
|
|
}
|
|
O << "]";
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
O << ElementSize;
|
|
O << "]";
|
|
}
|
|
O << " = {";
|
|
aggBuffer.print();
|
|
O << "}";
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize) {
|
|
O << "[";
|
|
O << ElementSize;
|
|
O << "]";
|
|
}
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize) {
|
|
O << "[";
|
|
O << ElementSize;
|
|
O << "]";
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
O << ";\n";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
|
|
if (localDecls.find(f) == localDecls.end())
|
|
return;
|
|
|
|
std::vector<const GlobalVariable *> &gvars = localDecls[f];
|
|
|
|
for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
|
|
O << "\t// demoted variable\n\t";
|
|
printModuleLevelGV(gvars[i], O, true);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
|
|
raw_ostream &O) const {
|
|
switch (AddressSpace) {
|
|
case ADDRESS_SPACE_LOCAL:
|
|
O << "local";
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << "global";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << "const";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << "shared";
|
|
break;
|
|
default:
|
|
report_fatal_error("Bad address space found while emitting PTX: " +
|
|
llvm::Twine(AddressSpace));
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::string
|
|
NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (NumBits == 1)
|
|
return "pred";
|
|
else if (NumBits <= 64) {
|
|
std::string name = "u";
|
|
return name + utostr(NumBits);
|
|
} else {
|
|
llvm_unreachable("Integer too large");
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case Type::HalfTyID:
|
|
// fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
|
|
return "b16";
|
|
case Type::FloatTyID:
|
|
return "f32";
|
|
case Type::DoubleTyID:
|
|
return "f64";
|
|
case Type::PointerTyID:
|
|
if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
|
|
if (useB4PTR)
|
|
return "b64";
|
|
else
|
|
return "u64";
|
|
else if (useB4PTR)
|
|
return "b32";
|
|
else
|
|
return "u32";
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("unexpected type");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
|
|
raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
|
|
if (GVar->getAlignment() == 0)
|
|
O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
|
|
else
|
|
O << " .align " << GVar->getAlignment();
|
|
|
|
// Special case for i128
|
|
if (ETy->isIntegerTy(128)) {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[16]";
|
|
return;
|
|
}
|
|
|
|
if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
|
|
O << " .";
|
|
O << getPTXFundamentalTypeStr(ETy);
|
|
O << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
return;
|
|
}
|
|
|
|
int64_t ElementSize = 0;
|
|
|
|
// Although PTX has direct support for struct type and array type and LLVM IR
|
|
// is very similar to PTX, the LLVM CodeGen does not support for targets that
|
|
// support these high level field accesses. Structs and arrays are lowered
|
|
// into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
ElementSize = DL.getTypeStoreSize(ETy);
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
if (ElementSize) {
|
|
O << ElementSize;
|
|
}
|
|
O << "]";
|
|
break;
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
|
|
static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
|
|
if (Ty->isSingleValueType())
|
|
return DL.getPrefTypeAlignment(Ty);
|
|
|
|
auto *ATy = dyn_cast<ArrayType>(Ty);
|
|
if (ATy)
|
|
return getOpenCLAlignment(DL, ATy->getElementType());
|
|
|
|
auto *STy = dyn_cast<StructType>(Ty);
|
|
if (STy) {
|
|
unsigned int alignStruct = 1;
|
|
// Go through each element of the struct and find the
|
|
// largest alignment.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
|
|
Type *ETy = STy->getElementType(i);
|
|
unsigned int align = getOpenCLAlignment(DL, ETy);
|
|
if (align > alignStruct)
|
|
alignStruct = align;
|
|
}
|
|
return alignStruct;
|
|
}
|
|
|
|
auto *FTy = dyn_cast<FunctionType>(Ty);
|
|
if (FTy)
|
|
return DL.getPointerPrefAlignment().value();
|
|
return DL.getPrefTypeAlignment(Ty);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
|
|
int paramIndex, raw_ostream &O) {
|
|
getSymbol(I->getParent())->print(O, MAI);
|
|
O << "_param_" << paramIndex;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const AttributeList &PAL = F->getAttributes();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const TargetLowering *TLI = STI.getTargetLowering();
|
|
Function::const_arg_iterator I, E;
|
|
unsigned paramIndex = 0;
|
|
bool first = true;
|
|
bool isKernelFunc = isKernelFunction(*F);
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
bool hasImageHandles = STI.hasImageHandles();
|
|
MVT thePointerTy = TLI->getPointerTy(DL);
|
|
|
|
if (F->arg_empty()) {
|
|
O << "()\n";
|
|
return;
|
|
}
|
|
|
|
O << "(\n";
|
|
|
|
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
|
|
Type *Ty = I->getType();
|
|
|
|
if (!first)
|
|
O << ",\n";
|
|
|
|
first = false;
|
|
|
|
// Handle image/sampler parameters
|
|
if (isKernelFunction(*F)) {
|
|
if (isSampler(*I) || isImage(*I)) {
|
|
if (isImage(*I)) {
|
|
std::string sname = std::string(I->getName());
|
|
if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .surfref ";
|
|
else
|
|
O << "\t.param .surfref ";
|
|
CurrentFnSym->print(O, MAI);
|
|
O << "_param_" << paramIndex;
|
|
}
|
|
else { // Default image is read_only
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .texref ";
|
|
else
|
|
O << "\t.param .texref ";
|
|
CurrentFnSym->print(O, MAI);
|
|
O << "_param_" << paramIndex;
|
|
}
|
|
} else {
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .samplerref ";
|
|
else
|
|
O << "\t.param .samplerref ";
|
|
CurrentFnSym->print(O, MAI);
|
|
O << "_param_" << paramIndex;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!PAL.hasParamAttribute(paramIndex, Attribute::ByVal)) {
|
|
if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
|
|
// Just print .param .align <a> .b8 .param[size];
|
|
// <a> = PAL.getparamalignment
|
|
// size = typeallocsize of element type
|
|
const Align align = DL.getValueOrABITypeAlignment(
|
|
PAL.getParamAlignment(paramIndex), Ty);
|
|
|
|
unsigned sz = DL.getTypeAllocSize(Ty);
|
|
O << "\t.param .align " << align.value() << " .b8 ";
|
|
printParamName(I, paramIndex, O);
|
|
O << "[" << sz << "]";
|
|
|
|
continue;
|
|
}
|
|
// Just a scalar
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
if (isKernelFunc) {
|
|
if (PTy) {
|
|
// Special handling for pointer arguments to kernel
|
|
O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
|
|
|
|
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
|
|
NVPTX::CUDA) {
|
|
Type *ETy = PTy->getElementType();
|
|
int addrSpace = PTy->getAddressSpace();
|
|
switch (addrSpace) {
|
|
default:
|
|
O << ".ptr ";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << ".ptr .const ";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << ".ptr .shared ";
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << ".ptr .global ";
|
|
break;
|
|
}
|
|
O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
|
|
}
|
|
printParamName(I, paramIndex, O);
|
|
continue;
|
|
}
|
|
|
|
// non-pointer scalar to kernel func
|
|
O << "\t.param .";
|
|
// Special case: predicate operands become .u8 types
|
|
if (Ty->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(Ty);
|
|
O << " ";
|
|
printParamName(I, paramIndex, O);
|
|
continue;
|
|
}
|
|
// Non-kernel function, just print .param .b<size> for ABI
|
|
// and .reg .b<size> for non-ABI
|
|
unsigned sz = 0;
|
|
if (isa<IntegerType>(Ty)) {
|
|
sz = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (sz < 32)
|
|
sz = 32;
|
|
} else if (isa<PointerType>(Ty))
|
|
sz = thePointerTy.getSizeInBits();
|
|
else if (Ty->isHalfTy())
|
|
// PTX ABI requires all scalar parameters to be at least 32
|
|
// bits in size. fp16 normally uses .b16 as its storage type
|
|
// in PTX, so its size must be adjusted here, too.
|
|
sz = 32;
|
|
else
|
|
sz = Ty->getPrimitiveSizeInBits();
|
|
if (isABI)
|
|
O << "\t.param .b" << sz << " ";
|
|
else
|
|
O << "\t.reg .b" << sz << " ";
|
|
printParamName(I, paramIndex, O);
|
|
continue;
|
|
}
|
|
|
|
// param has byVal attribute. So should be a pointer
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
assert(PTy && "Param with byval attribute should be a pointer type");
|
|
Type *ETy = PTy->getElementType();
|
|
|
|
if (isABI || isKernelFunc) {
|
|
// Just print .param .align <a> .b8 .param[size];
|
|
// <a> = PAL.getparamalignment
|
|
// size = typeallocsize of element type
|
|
Align align =
|
|
DL.getValueOrABITypeAlignment(PAL.getParamAlignment(paramIndex), ETy);
|
|
// Work around a bug in ptxas. When PTX code takes address of
|
|
// byval parameter with alignment < 4, ptxas generates code to
|
|
// spill argument into memory. Alas on sm_50+ ptxas generates
|
|
// SASS code that fails with misaligned access. To work around
|
|
// the problem, make sure that we align byval parameters by at
|
|
// least 4. Matching change must be made in LowerCall() where we
|
|
// prepare parameters for the call.
|
|
//
|
|
// TODO: this will need to be undone when we get to support multi-TU
|
|
// device-side compilation as it breaks ABI compatibility with nvcc.
|
|
// Hopefully ptxas bug is fixed by then.
|
|
if (!isKernelFunc && align < Align(4))
|
|
align = Align(4);
|
|
unsigned sz = DL.getTypeAllocSize(ETy);
|
|
O << "\t.param .align " << align.value() << " .b8 ";
|
|
printParamName(I, paramIndex, O);
|
|
O << "[" << sz << "]";
|
|
continue;
|
|
} else {
|
|
// Split the ETy into constituent parts and
|
|
// print .param .b<size> <name> for each part.
|
|
// Further, if a part is vector, print the above for
|
|
// each vector element.
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*TLI, DL, ETy, vtparts);
|
|
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[i];
|
|
if (vtparts[i].isVector()) {
|
|
elems = vtparts[i].getVectorNumElements();
|
|
elemtype = vtparts[i].getVectorElementType();
|
|
}
|
|
|
|
for (unsigned j = 0, je = elems; j != je; ++j) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger() && (sz < 32))
|
|
sz = 32;
|
|
O << "\t.reg .b" << sz << " ";
|
|
printParamName(I, paramIndex, O);
|
|
if (j < je - 1)
|
|
O << ",\n";
|
|
++paramIndex;
|
|
}
|
|
if (i < e - 1)
|
|
O << ",\n";
|
|
}
|
|
--paramIndex;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
O << "\n)\n";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
|
|
raw_ostream &O) {
|
|
const Function &F = MF.getFunction();
|
|
emitFunctionParamList(&F, O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
|
|
const MachineFunction &MF) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
// Map the global virtual register number to a register class specific
|
|
// virtual register number starting from 1 with that class.
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
//unsigned numRegClasses = TRI->getNumRegClasses();
|
|
|
|
// Emit the Fake Stack Object
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int NumBytes = (int) MFI.getStackSize();
|
|
if (NumBytes) {
|
|
O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
|
|
<< DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
|
|
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
|
|
O << "\t.reg .b64 \t%SP;\n";
|
|
O << "\t.reg .b64 \t%SPL;\n";
|
|
} else {
|
|
O << "\t.reg .b32 \t%SP;\n";
|
|
O << "\t.reg .b32 \t%SPL;\n";
|
|
}
|
|
}
|
|
|
|
// Go through all virtual registers to establish the mapping between the
|
|
// global virtual
|
|
// register number and the per class virtual register number.
|
|
// We use the per class virtual register number in the ptx output.
|
|
unsigned int numVRs = MRI->getNumVirtRegs();
|
|
for (unsigned i = 0; i < numVRs; i++) {
|
|
unsigned int vr = Register::index2VirtReg(i);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(vr);
|
|
DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
|
|
int n = regmap.size();
|
|
regmap.insert(std::make_pair(vr, n + 1));
|
|
}
|
|
|
|
// Emit register declarations
|
|
// @TODO: Extract out the real register usage
|
|
// O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
|
|
|
|
// Emit declaration of the virtual registers or 'physical' registers for
|
|
// each register class
|
|
for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
|
|
const TargetRegisterClass *RC = TRI->getRegClass(i);
|
|
DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
|
|
std::string rcname = getNVPTXRegClassName(RC);
|
|
std::string rcStr = getNVPTXRegClassStr(RC);
|
|
int n = regmap.size();
|
|
|
|
// Only declare those registers that may be used.
|
|
if (n) {
|
|
O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
|
|
<< ">;\n";
|
|
}
|
|
}
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
|
|
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
|
|
bool ignored;
|
|
unsigned int numHex;
|
|
const char *lead;
|
|
|
|
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
|
|
numHex = 8;
|
|
lead = "0f";
|
|
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
|
|
numHex = 16;
|
|
lead = "0d";
|
|
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else
|
|
llvm_unreachable("unsupported fp type");
|
|
|
|
APInt API = APF.bitcastToAPInt();
|
|
O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
O << CI->getValue();
|
|
return;
|
|
}
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
|
|
printFPConstant(CFP, O);
|
|
return;
|
|
}
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
O << "0";
|
|
return;
|
|
}
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
bool IsNonGenericPointer = false;
|
|
if (GVar->getType()->getAddressSpace() != 0) {
|
|
IsNonGenericPointer = true;
|
|
}
|
|
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
|
|
O << "generic(";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << ")";
|
|
} else {
|
|
getSymbol(GVar)->print(O, MAI);
|
|
}
|
|
return;
|
|
}
|
|
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const Value *v = Cexpr->stripPointerCasts();
|
|
PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
|
|
bool IsNonGenericPointer = false;
|
|
if (PTy && PTy->getAddressSpace() != 0) {
|
|
IsNonGenericPointer = true;
|
|
}
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
|
|
if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
|
|
O << "generic(";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << ")";
|
|
} else {
|
|
getSymbol(GVar)->print(O, MAI);
|
|
}
|
|
return;
|
|
} else {
|
|
lowerConstant(CPV)->print(O, MAI);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Not scalar type found in printScalarConstant()");
|
|
}
|
|
|
|
// These utility functions assure we get the right sequence of bytes for a given
|
|
// type even for big-endian machines
|
|
template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
|
|
int64_t vp = (int64_t)val;
|
|
for (unsigned i = 0; i < sizeof(T); ++i) {
|
|
p[i] = (unsigned char)vp;
|
|
vp >>= 8;
|
|
}
|
|
}
|
|
static void ConvertFloatToBytes(unsigned char *p, float val) {
|
|
int32_t *vp = (int32_t *)&val;
|
|
for (unsigned i = 0; i < sizeof(int32_t); ++i) {
|
|
p[i] = (unsigned char)*vp;
|
|
*vp >>= 8;
|
|
}
|
|
}
|
|
static void ConvertDoubleToBytes(unsigned char *p, double val) {
|
|
int64_t *vp = (int64_t *)&val;
|
|
for (unsigned i = 0; i < sizeof(int64_t); ++i) {
|
|
p[i] = (unsigned char)*vp;
|
|
*vp >>= 8;
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
|
|
AggBuffer *aggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
|
|
int s = DL.getTypeAllocSize(CPV->getType());
|
|
if (s < Bytes)
|
|
s = Bytes;
|
|
aggBuffer->addZeros(s);
|
|
return;
|
|
}
|
|
|
|
unsigned char ptr[8];
|
|
switch (CPV->getType()->getTypeID()) {
|
|
|
|
case Type::IntegerTyID: {
|
|
Type *ETy = CPV->getType();
|
|
if (ETy == Type::getInt8Ty(CPV->getContext())) {
|
|
unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
|
|
ConvertIntToBytes<>(ptr, c);
|
|
aggBuffer->addBytes(ptr, 1, Bytes);
|
|
} else if (ETy == Type::getInt16Ty(CPV->getContext())) {
|
|
short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
|
|
ConvertIntToBytes<>(ptr, int16);
|
|
aggBuffer->addBytes(ptr, 2, Bytes);
|
|
} else if (ETy == Type::getInt32Ty(CPV->getContext())) {
|
|
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
|
|
int int32 = (int)(constInt->getZExtValue());
|
|
ConvertIntToBytes<>(ptr, int32);
|
|
aggBuffer->addBytes(ptr, 4, Bytes);
|
|
break;
|
|
} else if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (const auto *constInt = dyn_cast<ConstantInt>(
|
|
ConstantFoldConstant(Cexpr, DL))) {
|
|
int int32 = (int)(constInt->getZExtValue());
|
|
ConvertIntToBytes<>(ptr, int32);
|
|
aggBuffer->addBytes(ptr, 4, Bytes);
|
|
break;
|
|
}
|
|
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
|
|
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
|
|
aggBuffer->addSymbol(v, Cexpr->getOperand(0));
|
|
aggBuffer->addZeros(4);
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("unsupported integer const type");
|
|
} else if (ETy == Type::getInt64Ty(CPV->getContext())) {
|
|
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
|
|
long long int64 = (long long)(constInt->getZExtValue());
|
|
ConvertIntToBytes<>(ptr, int64);
|
|
aggBuffer->addBytes(ptr, 8, Bytes);
|
|
break;
|
|
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (const auto *constInt = dyn_cast<ConstantInt>(
|
|
ConstantFoldConstant(Cexpr, DL))) {
|
|
long long int64 = (long long)(constInt->getZExtValue());
|
|
ConvertIntToBytes<>(ptr, int64);
|
|
aggBuffer->addBytes(ptr, 8, Bytes);
|
|
break;
|
|
}
|
|
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
|
|
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
|
|
aggBuffer->addSymbol(v, Cexpr->getOperand(0));
|
|
aggBuffer->addZeros(8);
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("unsupported integer const type");
|
|
} else
|
|
llvm_unreachable("unsupported integer const type");
|
|
break;
|
|
}
|
|
case Type::HalfTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: {
|
|
const auto *CFP = cast<ConstantFP>(CPV);
|
|
Type *Ty = CFP->getType();
|
|
if (Ty == Type::getHalfTy(CPV->getContext())) {
|
|
APInt API = CFP->getValueAPF().bitcastToAPInt();
|
|
uint16_t float16 = API.getLoBits(16).getZExtValue();
|
|
ConvertIntToBytes<>(ptr, float16);
|
|
aggBuffer->addBytes(ptr, 2, Bytes);
|
|
} else if (Ty == Type::getFloatTy(CPV->getContext())) {
|
|
float float32 = (float) CFP->getValueAPF().convertToFloat();
|
|
ConvertFloatToBytes(ptr, float32);
|
|
aggBuffer->addBytes(ptr, 4, Bytes);
|
|
} else if (Ty == Type::getDoubleTy(CPV->getContext())) {
|
|
double float64 = CFP->getValueAPF().convertToDouble();
|
|
ConvertDoubleToBytes(ptr, float64);
|
|
aggBuffer->addBytes(ptr, 8, Bytes);
|
|
} else {
|
|
llvm_unreachable("unsupported fp const type");
|
|
}
|
|
break;
|
|
}
|
|
case Type::PointerTyID: {
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
aggBuffer->addSymbol(GVar, GVar);
|
|
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const Value *v = Cexpr->stripPointerCasts();
|
|
aggBuffer->addSymbol(v, Cexpr);
|
|
}
|
|
unsigned int s = DL.getTypeAllocSize(CPV->getType());
|
|
aggBuffer->addZeros(s);
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
case Type::StructTyID: {
|
|
if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
|
|
int ElementSize = DL.getTypeAllocSize(CPV->getType());
|
|
bufferAggregateConstant(CPV, aggBuffer);
|
|
if (Bytes > ElementSize)
|
|
aggBuffer->addZeros(Bytes - ElementSize);
|
|
} else if (isa<ConstantAggregateZero>(CPV))
|
|
aggBuffer->addZeros(Bytes);
|
|
else
|
|
llvm_unreachable("Unexpected Constant type");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unsupported type");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
|
|
AggBuffer *aggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
int Bytes;
|
|
|
|
// Integers of arbitrary width
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
APInt Val = CI->getValue();
|
|
for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
|
|
uint8_t Byte = Val.getLoBits(8).getZExtValue();
|
|
aggBuffer->addBytes(&Byte, 1, 1);
|
|
Val.lshrInPlace(8);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Old constants
|
|
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
|
|
if (CPV->getNumOperands())
|
|
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
|
|
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(CPV)) {
|
|
if (CDS->getNumElements())
|
|
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
|
|
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
|
|
aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantStruct>(CPV)) {
|
|
if (CPV->getNumOperands()) {
|
|
StructType *ST = cast<StructType>(CPV->getType());
|
|
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
|
|
if (i == (e - 1))
|
|
Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
|
|
DL.getTypeAllocSize(ST) -
|
|
DL.getStructLayout(ST)->getElementOffset(i);
|
|
else
|
|
Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
|
|
DL.getStructLayout(ST)->getElementOffset(i);
|
|
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported constant type in printAggregateConstant()");
|
|
}
|
|
|
|
/// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
|
|
/// a copy from AsmPrinter::lowerConstant, except customized to only handle
|
|
/// expressions that are representable in PTX and create
|
|
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
|
|
const MCExpr *
|
|
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
|
|
MCContext &Ctx = OutContext;
|
|
|
|
if (CV->isNullValue() || isa<UndefValue>(CV))
|
|
return MCConstantExpr::create(0, Ctx);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
|
|
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
const MCSymbolRefExpr *Expr =
|
|
MCSymbolRefExpr::create(getSymbol(GV), Ctx);
|
|
if (ProcessingGeneric) {
|
|
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
|
|
} else {
|
|
return Expr;
|
|
}
|
|
}
|
|
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
|
|
if (!CE) {
|
|
llvm_unreachable("Unknown constant value to lower!");
|
|
}
|
|
|
|
switch (CE->getOpcode()) {
|
|
default: {
|
|
// If the code isn't optimized, there may be outstanding folding
|
|
// opportunities. Attempt to fold the expression using DataLayout as a
|
|
// last resort before giving up.
|
|
Constant *C = ConstantFoldConstant(CE, getDataLayout());
|
|
if (C != CE)
|
|
return lowerConstantForGV(C, ProcessingGeneric);
|
|
|
|
// Otherwise report the problem to the user.
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Unsupported expression in static initializer: ";
|
|
CE->printAsOperand(OS, /*PrintType=*/false,
|
|
!MF ? nullptr : MF->getFunction().getParent());
|
|
report_fatal_error(OS.str());
|
|
}
|
|
|
|
case Instruction::AddrSpaceCast: {
|
|
// Strip the addrspacecast and pass along the operand
|
|
PointerType *DstTy = cast<PointerType>(CE->getType());
|
|
if (DstTy->getAddressSpace() == 0) {
|
|
return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
|
|
}
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Unsupported expression in static initializer: ";
|
|
CE->printAsOperand(OS, /*PrintType=*/ false,
|
|
!MF ? nullptr : MF->getFunction().getParent());
|
|
report_fatal_error(OS.str());
|
|
}
|
|
|
|
case Instruction::GetElementPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Generate a symbolic expression for the byte address
|
|
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
|
|
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
|
|
|
|
const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
|
|
ProcessingGeneric);
|
|
if (!OffsetAI)
|
|
return Base;
|
|
|
|
int64_t Offset = OffsetAI.getSExtValue();
|
|
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
|
|
Ctx);
|
|
}
|
|
|
|
case Instruction::Trunc:
|
|
// We emit the value and depend on the assembler to truncate the generated
|
|
// expression properly. This is important for differences between
|
|
// blockaddress labels. Since the two labels are in the same function, it
|
|
// is reasonable to treat their delta as a 32-bit value.
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::BitCast:
|
|
return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
|
|
case Instruction::IntToPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Handle casts to pointers by changing them into casts to the appropriate
|
|
// integer type. This promotes constant folding and simplifies this code.
|
|
Constant *Op = CE->getOperand(0);
|
|
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
|
|
false/*ZExt*/);
|
|
return lowerConstantForGV(Op, ProcessingGeneric);
|
|
}
|
|
|
|
case Instruction::PtrToInt: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Support only foldable casts to/from pointers that can be eliminated by
|
|
// changing the pointer to the appropriately sized integer type.
|
|
Constant *Op = CE->getOperand(0);
|
|
Type *Ty = CE->getType();
|
|
|
|
const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
|
|
|
|
// We can emit the pointer value into this slot if the slot is an
|
|
// integer slot equal to the size of the pointer.
|
|
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
|
|
return OpExpr;
|
|
|
|
// Otherwise the pointer is smaller than the resultant integer, mask off
|
|
// the high bits so we are sure to get a proper truncation if the input is
|
|
// a constant expr.
|
|
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
|
|
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
|
|
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
|
|
}
|
|
|
|
// The MC library also has a right-shift operator, but it isn't consistently
|
|
// signed or unsigned between different targets.
|
|
case Instruction::Add: {
|
|
const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Unknown binary operator constant cast expr");
|
|
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy of MCExpr::print customized for NVPTX
|
|
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
|
|
switch (Expr.getKind()) {
|
|
case MCExpr::Target:
|
|
return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
|
|
case MCExpr::Constant:
|
|
OS << cast<MCConstantExpr>(Expr).getValue();
|
|
return;
|
|
|
|
case MCExpr::SymbolRef: {
|
|
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
|
|
const MCSymbol &Sym = SRE.getSymbol();
|
|
Sym.print(OS, MAI);
|
|
return;
|
|
}
|
|
|
|
case MCExpr::Unary: {
|
|
const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
|
|
switch (UE.getOpcode()) {
|
|
case MCUnaryExpr::LNot: OS << '!'; break;
|
|
case MCUnaryExpr::Minus: OS << '-'; break;
|
|
case MCUnaryExpr::Not: OS << '~'; break;
|
|
case MCUnaryExpr::Plus: OS << '+'; break;
|
|
}
|
|
printMCExpr(*UE.getSubExpr(), OS);
|
|
return;
|
|
}
|
|
|
|
case MCExpr::Binary: {
|
|
const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
|
|
|
|
// Only print parens around the LHS if it is non-trivial.
|
|
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
|
|
isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
|
|
printMCExpr(*BE.getLHS(), OS);
|
|
} else {
|
|
OS << '(';
|
|
printMCExpr(*BE.getLHS(), OS);
|
|
OS<< ')';
|
|
}
|
|
|
|
switch (BE.getOpcode()) {
|
|
case MCBinaryExpr::Add:
|
|
// Print "X-42" instead of "X+-42".
|
|
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
|
|
if (RHSC->getValue() < 0) {
|
|
OS << RHSC->getValue();
|
|
return;
|
|
}
|
|
}
|
|
|
|
OS << '+';
|
|
break;
|
|
default: llvm_unreachable("Unhandled binary operator");
|
|
}
|
|
|
|
// Only print parens around the LHS if it is non-trivial.
|
|
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
|
|
printMCExpr(*BE.getRHS(), OS);
|
|
} else {
|
|
OS << '(';
|
|
printMCExpr(*BE.getRHS(), OS);
|
|
OS << ')';
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid expression kind!");
|
|
}
|
|
|
|
/// PrintAsmOperand - Print out an operand for an inline asm expression.
|
|
///
|
|
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
|
|
case 'r':
|
|
break;
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNo, O);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
|
|
unsigned OpNo,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0])
|
|
return true; // Unknown modifier
|
|
|
|
O << '[';
|
|
printMemOperand(MI, OpNo, O);
|
|
O << ']';
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
|
|
raw_ostream &O) {
|
|
const MachineOperand &MO = MI->getOperand(opNum);
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (Register::isPhysicalRegister(MO.getReg())) {
|
|
if (MO.getReg() == NVPTX::VRDepot)
|
|
O << DEPOTNAME << getFunctionNumber();
|
|
else
|
|
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
|
|
} else {
|
|
emitVirtualRegister(MO.getReg(), O);
|
|
}
|
|
break;
|
|
|
|
case MachineOperand::MO_Immediate:
|
|
O << MO.getImm();
|
|
break;
|
|
|
|
case MachineOperand::MO_FPImmediate:
|
|
printFPConstant(MO.getFPImm(), O);
|
|
break;
|
|
|
|
case MachineOperand::MO_GlobalAddress:
|
|
PrintSymbolOperand(MO, O);
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MO.getMBB()->getSymbol()->print(O, MAI);
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Operand type not supported.");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
|
|
raw_ostream &O, const char *Modifier) {
|
|
printOperand(MI, opNum, O);
|
|
|
|
if (Modifier && strcmp(Modifier, "add") == 0) {
|
|
O << ", ";
|
|
printOperand(MI, opNum + 1, O);
|
|
} else {
|
|
if (MI->getOperand(opNum + 1).isImm() &&
|
|
MI->getOperand(opNum + 1).getImm() == 0)
|
|
return; // don't print ',0' or '+0'
|
|
O << "+";
|
|
printOperand(MI, opNum + 1, O);
|
|
}
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXAsmPrinter() {
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
|
|
}
|