forked from OSchip/llvm-project
2694 lines
97 KiB
ReStructuredText
2694 lines
97 KiB
ReStructuredText
=========================
|
|
Clang Language Extensions
|
|
=========================
|
|
|
|
.. contents::
|
|
:local:
|
|
:depth: 1
|
|
|
|
.. toctree::
|
|
:hidden:
|
|
|
|
ObjectiveCLiterals
|
|
BlockLanguageSpec
|
|
Block-ABI-Apple
|
|
AutomaticReferenceCounting
|
|
|
|
Introduction
|
|
============
|
|
|
|
This document describes the language extensions provided by Clang. In addition
|
|
to the language extensions listed here, Clang aims to support a broad range of
|
|
GCC extensions. Please see the `GCC manual
|
|
<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
|
|
these extensions.
|
|
|
|
.. _langext-feature_check:
|
|
|
|
Feature Checking Macros
|
|
=======================
|
|
|
|
Language extensions can be very useful, but only if you know you can depend on
|
|
them. In order to allow fine-grain features checks, we support three builtin
|
|
function-like macros. This allows you to directly test for a feature in your
|
|
code without having to resort to something like autoconf or fragile "compiler
|
|
version checks".
|
|
|
|
``__has_builtin``
|
|
-----------------
|
|
|
|
This function-like macro takes a single identifier argument that is the name of
|
|
a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
|
|
It can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
#ifndef __has_builtin // Optional of course.
|
|
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_builtin(__builtin_trap)
|
|
__builtin_trap();
|
|
#else
|
|
abort();
|
|
#endif
|
|
...
|
|
|
|
.. _langext-__has_feature-__has_extension:
|
|
|
|
``__has_feature`` and ``__has_extension``
|
|
-----------------------------------------
|
|
|
|
These function-like macros take a single identifier argument that is the name
|
|
of a feature. ``__has_feature`` evaluates to 1 if the feature is both
|
|
supported by Clang and standardized in the current language standard or 0 if
|
|
not (but see :ref:`below <langext-has-feature-back-compat>`), while
|
|
``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
|
|
current language (either as a language extension or a standard language
|
|
feature) or 0 if not. They can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
#ifndef __has_feature // Optional of course.
|
|
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
#ifndef __has_extension
|
|
#define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_feature(cxx_rvalue_references)
|
|
// This code will only be compiled with the -std=c++11 and -std=gnu++11
|
|
// options, because rvalue references are only standardized in C++11.
|
|
#endif
|
|
|
|
#if __has_extension(cxx_rvalue_references)
|
|
// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
|
|
// and -std=gnu++98 options, because rvalue references are supported as a
|
|
// language extension in C++98.
|
|
#endif
|
|
|
|
.. _langext-has-feature-back-compat:
|
|
|
|
For backward compatibility, ``__has_feature`` can also be used to test
|
|
for support for non-standardized features, i.e. features not prefixed ``c_``,
|
|
``cxx_`` or ``objc_``.
|
|
|
|
Another use of ``__has_feature`` is to check for compiler features not related
|
|
to the language standard, such as e.g. :doc:`AddressSanitizer
|
|
<AddressSanitizer>`.
|
|
|
|
If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
|
|
to ``__has_feature``.
|
|
|
|
The feature tag is described along with the language feature below.
|
|
|
|
The feature name or extension name can also be specified with a preceding and
|
|
following ``__`` (double underscore) to avoid interference from a macro with
|
|
the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
|
|
of ``cxx_rvalue_references``.
|
|
|
|
``__has_cpp_attribute``
|
|
-----------------------
|
|
|
|
This function-like macro takes a single argument that is the name of a
|
|
C++11-style attribute. The argument can either be a single identifier, or a
|
|
scoped identifier. If the attribute is supported, a nonzero value is returned.
|
|
If the attribute is a standards-based attribute, this macro returns a nonzero
|
|
value based on the year and month in which the attribute was voted into the
|
|
working draft. If the attribute is not supported by the current compliation
|
|
target, this macro evaluates to 0. It can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
#ifndef __has_cpp_attribute // Optional of course.
|
|
#define __has_cpp_attribute(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_cpp_attribute(clang::fallthrough)
|
|
#define FALLTHROUGH [[clang::fallthrough]]
|
|
#else
|
|
#define FALLTHROUGH
|
|
#endif
|
|
...
|
|
|
|
The attribute identifier (but not scope) can also be specified with a preceding
|
|
and following ``__`` (double underscore) to avoid interference from a macro with
|
|
the same name. For instance, ``gnu::__const__`` can be used instead of
|
|
``gnu::const``.
|
|
|
|
``__has_attribute``
|
|
-------------------
|
|
|
|
This function-like macro takes a single identifier argument that is the name of
|
|
a GNU-style attribute. It evaluates to 1 if the attribute is supported by the
|
|
current compilation target, or 0 if not. It can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
#ifndef __has_attribute // Optional of course.
|
|
#define __has_attribute(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_attribute(always_inline)
|
|
#define ALWAYS_INLINE __attribute__((always_inline))
|
|
#else
|
|
#define ALWAYS_INLINE
|
|
#endif
|
|
...
|
|
|
|
The attribute name can also be specified with a preceding and following ``__``
|
|
(double underscore) to avoid interference from a macro with the same name. For
|
|
instance, ``__always_inline__`` can be used instead of ``always_inline``.
|
|
|
|
|
|
``__has_declspec_attribute``
|
|
----------------------------
|
|
|
|
This function-like macro takes a single identifier argument that is the name of
|
|
an attribute implemented as a Microsoft-style ``__declspec`` attribute. It
|
|
evaluates to 1 if the attribute is supported by the current compilation target,
|
|
or 0 if not. It can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
#ifndef __has_declspec_attribute // Optional of course.
|
|
#define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_declspec_attribute(dllexport)
|
|
#define DLLEXPORT __declspec(dllexport)
|
|
#else
|
|
#define DLLEXPORT
|
|
#endif
|
|
...
|
|
|
|
The attribute name can also be specified with a preceding and following ``__``
|
|
(double underscore) to avoid interference from a macro with the same name. For
|
|
instance, ``__dllexport__`` can be used instead of ``dllexport``.
|
|
|
|
``__is_identifier``
|
|
-------------------
|
|
|
|
This function-like macro takes a single identifier argument that might be either
|
|
a reserved word or a regular identifier. It evaluates to 1 if the argument is just
|
|
a regular identifier and not a reserved word, in the sense that it can then be
|
|
used as the name of a user-defined function or variable. Otherwise it evaluates
|
|
to 0. It can be used like this:
|
|
|
|
.. code-block:: c++
|
|
|
|
...
|
|
#ifdef __is_identifier // Compatibility with non-clang compilers.
|
|
#if __is_identifier(__wchar_t)
|
|
typedef wchar_t __wchar_t;
|
|
#endif
|
|
#endif
|
|
|
|
__wchar_t WideCharacter;
|
|
...
|
|
|
|
Include File Checking Macros
|
|
============================
|
|
|
|
Not all developments systems have the same include files. The
|
|
:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
|
|
you to check for the existence of an include file before doing a possibly
|
|
failing ``#include`` directive. Include file checking macros must be used
|
|
as expressions in ``#if`` or ``#elif`` preprocessing directives.
|
|
|
|
.. _langext-__has_include:
|
|
|
|
``__has_include``
|
|
-----------------
|
|
|
|
This function-like macro takes a single file name string argument that is the
|
|
name of an include file. It evaluates to 1 if the file can be found using the
|
|
include paths, or 0 otherwise:
|
|
|
|
.. code-block:: c++
|
|
|
|
// Note the two possible file name string formats.
|
|
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
|
|
# include "myinclude.h"
|
|
#endif
|
|
|
|
To test for this feature, use ``#if defined(__has_include)``:
|
|
|
|
.. code-block:: c++
|
|
|
|
// To avoid problem with non-clang compilers not having this macro.
|
|
#if defined(__has_include)
|
|
#if __has_include("myinclude.h")
|
|
# include "myinclude.h"
|
|
#endif
|
|
#endif
|
|
|
|
.. _langext-__has_include_next:
|
|
|
|
``__has_include_next``
|
|
----------------------
|
|
|
|
This function-like macro takes a single file name string argument that is the
|
|
name of an include file. It is like ``__has_include`` except that it looks for
|
|
the second instance of the given file found in the include paths. It evaluates
|
|
to 1 if the second instance of the file can be found using the include paths,
|
|
or 0 otherwise:
|
|
|
|
.. code-block:: c++
|
|
|
|
// Note the two possible file name string formats.
|
|
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
|
|
# include_next "myinclude.h"
|
|
#endif
|
|
|
|
// To avoid problem with non-clang compilers not having this macro.
|
|
#if defined(__has_include_next)
|
|
#if __has_include_next("myinclude.h")
|
|
# include_next "myinclude.h"
|
|
#endif
|
|
#endif
|
|
|
|
Note that ``__has_include_next``, like the GNU extension ``#include_next``
|
|
directive, is intended for use in headers only, and will issue a warning if
|
|
used in the top-level compilation file. A warning will also be issued if an
|
|
absolute path is used in the file argument.
|
|
|
|
``__has_warning``
|
|
-----------------
|
|
|
|
This function-like macro takes a string literal that represents a command line
|
|
option for a warning and returns true if that is a valid warning option.
|
|
|
|
.. code-block:: c++
|
|
|
|
#if __has_warning("-Wformat")
|
|
...
|
|
#endif
|
|
|
|
Builtin Macros
|
|
==============
|
|
|
|
``__BASE_FILE__``
|
|
Defined to a string that contains the name of the main input file passed to
|
|
Clang.
|
|
|
|
``__COUNTER__``
|
|
Defined to an integer value that starts at zero and is incremented each time
|
|
the ``__COUNTER__`` macro is expanded.
|
|
|
|
``__INCLUDE_LEVEL__``
|
|
Defined to an integral value that is the include depth of the file currently
|
|
being translated. For the main file, this value is zero.
|
|
|
|
``__TIMESTAMP__``
|
|
Defined to the date and time of the last modification of the current source
|
|
file.
|
|
|
|
``__clang__``
|
|
Defined when compiling with Clang
|
|
|
|
``__clang_major__``
|
|
Defined to the major marketing version number of Clang (e.g., the 2 in
|
|
2.0.1). Note that marketing version numbers should not be used to check for
|
|
language features, as different vendors use different numbering schemes.
|
|
Instead, use the :ref:`langext-feature_check`.
|
|
|
|
``__clang_minor__``
|
|
Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
|
|
that marketing version numbers should not be used to check for language
|
|
features, as different vendors use different numbering schemes. Instead, use
|
|
the :ref:`langext-feature_check`.
|
|
|
|
``__clang_patchlevel__``
|
|
Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
|
|
|
|
``__clang_version__``
|
|
Defined to a string that captures the Clang marketing version, including the
|
|
Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
|
|
|
|
.. _langext-vectors:
|
|
|
|
Vectors and Extended Vectors
|
|
============================
|
|
|
|
Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
|
|
|
|
OpenCL vector types are created using ``ext_vector_type`` attribute. It
|
|
support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
|
|
is:
|
|
|
|
.. code-block:: c++
|
|
|
|
typedef float float4 __attribute__((ext_vector_type(4)));
|
|
typedef float float2 __attribute__((ext_vector_type(2)));
|
|
|
|
float4 foo(float2 a, float2 b) {
|
|
float4 c;
|
|
c.xz = a;
|
|
c.yw = b;
|
|
return c;
|
|
}
|
|
|
|
Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
|
|
|
|
Giving ``-maltivec`` option to clang enables support for AltiVec vector syntax
|
|
and functions. For example:
|
|
|
|
.. code-block:: c++
|
|
|
|
vector float foo(vector int a) {
|
|
vector int b;
|
|
b = vec_add(a, a) + a;
|
|
return (vector float)b;
|
|
}
|
|
|
|
NEON vector types are created using ``neon_vector_type`` and
|
|
``neon_polyvector_type`` attributes. For example:
|
|
|
|
.. code-block:: c++
|
|
|
|
typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
|
|
typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
|
|
|
|
int8x8_t foo(int8x8_t a) {
|
|
int8x8_t v;
|
|
v = a;
|
|
return v;
|
|
}
|
|
|
|
Vector Literals
|
|
---------------
|
|
|
|
Vector literals can be used to create vectors from a set of scalars, or
|
|
vectors. Either parentheses or braces form can be used. In the parentheses
|
|
form the number of literal values specified must be one, i.e. referring to a
|
|
scalar value, or must match the size of the vector type being created. If a
|
|
single scalar literal value is specified, the scalar literal value will be
|
|
replicated to all the components of the vector type. In the brackets form any
|
|
number of literals can be specified. For example:
|
|
|
|
.. code-block:: c++
|
|
|
|
typedef int v4si __attribute__((__vector_size__(16)));
|
|
typedef float float4 __attribute__((ext_vector_type(4)));
|
|
typedef float float2 __attribute__((ext_vector_type(2)));
|
|
|
|
v4si vsi = (v4si){1, 2, 3, 4};
|
|
float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
|
|
vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
|
|
vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
|
|
vector int vi3 = (vector int)(1, 2); // error
|
|
vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
|
|
vector int vi5 = (vector int)(1, 2, 3, 4);
|
|
float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
|
|
|
|
Vector Operations
|
|
-----------------
|
|
|
|
The table below shows the support for each operation by vector extension. A
|
|
dash indicates that an operation is not accepted according to a corresponding
|
|
specification.
|
|
|
|
============================== ======= ======= ======= =======
|
|
Operator OpenCL AltiVec GCC NEON
|
|
============================== ======= ======= ======= =======
|
|
[] yes yes yes --
|
|
unary operators +, -- yes yes yes --
|
|
++, -- -- yes yes yes --
|
|
+,--,*,/,% yes yes yes --
|
|
bitwise operators &,|,^,~ yes yes yes --
|
|
>>,<< yes yes yes --
|
|
!, &&, || yes -- -- --
|
|
==, !=, >, <, >=, <= yes yes -- --
|
|
= yes yes yes yes
|
|
:? yes -- -- --
|
|
sizeof yes yes yes yes
|
|
C-style cast yes yes yes no
|
|
reinterpret_cast yes no yes no
|
|
static_cast yes no yes no
|
|
const_cast no no no no
|
|
============================== ======= ======= ======= =======
|
|
|
|
See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
|
|
|
|
Half-Precision Floating Point
|
|
=============================
|
|
|
|
Clang supports two half-precision (16-bit) floating point types: ``__fp16`` and
|
|
``_Float16``. ``__fp16`` is defined in the ARM C Language Extensions (`ACLE
|
|
<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053d/IHI0053D_acle_2_1.pdf>`_)
|
|
and ``_Float16`` in ISO/IEC TS 18661-3:2015.
|
|
|
|
``__fp16`` is a storage and interchange format only. This means that values of
|
|
``__fp16`` promote to (at least) float when used in arithmetic operations.
|
|
There are two ``__fp16`` formats. Clang supports the IEEE 754-2008 format and
|
|
not the ARM alternative format.
|
|
|
|
ISO/IEC TS 18661-3:2015 defines C support for additional floating point types.
|
|
``_FloatN`` is defined as a binary floating type, where the N suffix denotes
|
|
the number of bits and is 16, 32, 64, or greater and equal to 128 and a
|
|
multiple of 32. Clang supports ``_Float16``. The difference from ``__fp16`` is
|
|
that arithmetic on ``_Float16`` is performed in half-precision, thus it is not
|
|
a storage-only format. ``_Float16`` is available as a source language type in
|
|
both C and C++ mode.
|
|
|
|
It is recommended that portable code use the ``_Float16`` type because
|
|
``__fp16`` is an ARM C-Language Extension (ACLE), whereas ``_Float16`` is
|
|
defined by the C standards committee, so using ``_Float16`` will not prevent
|
|
code from being ported to architectures other than Arm. Also, ``_Float16``
|
|
arithmetic and operations will directly map on half-precision instructions when
|
|
they are available (e.g. Armv8.2-A), avoiding conversions to/from
|
|
single-precision, and thus will result in more performant code. If
|
|
half-precision instructions are unavailable, values will be promoted to
|
|
single-precision, similar to the semantics of ``__fp16`` except that the
|
|
results will be stored in single-precision.
|
|
|
|
In an arithmetic operation where one operand is of ``__fp16`` type and the
|
|
other is of ``_Float16`` type, the ``_Float16`` type is first converted to
|
|
``__fp16`` type and then the operation is completed as if both operands were of
|
|
``__fp16`` type.
|
|
|
|
To define a ``_Float16`` literal, suffix ``f16`` can be appended to the compile-time
|
|
constant declaration. There is no default argument promotion for ``_Float16``; this
|
|
applies to the standard floating types only. As a consequence, for example, an
|
|
explicit cast is required for printing a ``_Float16`` value (there is no string
|
|
format specifier for ``_Float16``).
|
|
|
|
Messages on ``deprecated`` and ``unavailable`` Attributes
|
|
=========================================================
|
|
|
|
An optional string message can be added to the ``deprecated`` and
|
|
``unavailable`` attributes. For example:
|
|
|
|
.. code-block:: c++
|
|
|
|
void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
|
|
|
|
If the deprecated or unavailable declaration is used, the message will be
|
|
incorporated into the appropriate diagnostic:
|
|
|
|
.. code-block:: none
|
|
|
|
harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
|
|
[-Wdeprecated-declarations]
|
|
explode();
|
|
^
|
|
|
|
Query for this feature with
|
|
``__has_extension(attribute_deprecated_with_message)`` and
|
|
``__has_extension(attribute_unavailable_with_message)``.
|
|
|
|
Attributes on Enumerators
|
|
=========================
|
|
|
|
Clang allows attributes to be written on individual enumerators. This allows
|
|
enumerators to be deprecated, made unavailable, etc. The attribute must appear
|
|
after the enumerator name and before any initializer, like so:
|
|
|
|
.. code-block:: c++
|
|
|
|
enum OperationMode {
|
|
OM_Invalid,
|
|
OM_Normal,
|
|
OM_Terrified __attribute__((deprecated)),
|
|
OM_AbortOnError __attribute__((deprecated)) = 4
|
|
};
|
|
|
|
Attributes on the ``enum`` declaration do not apply to individual enumerators.
|
|
|
|
Query for this feature with ``__has_extension(enumerator_attributes)``.
|
|
|
|
'User-Specified' System Frameworks
|
|
==================================
|
|
|
|
Clang provides a mechanism by which frameworks can be built in such a way that
|
|
they will always be treated as being "system frameworks", even if they are not
|
|
present in a system framework directory. This can be useful to system
|
|
framework developers who want to be able to test building other applications
|
|
with development builds of their framework, including the manner in which the
|
|
compiler changes warning behavior for system headers.
|
|
|
|
Framework developers can opt-in to this mechanism by creating a
|
|
"``.system_framework``" file at the top-level of their framework. That is, the
|
|
framework should have contents like:
|
|
|
|
.. code-block:: none
|
|
|
|
.../TestFramework.framework
|
|
.../TestFramework.framework/.system_framework
|
|
.../TestFramework.framework/Headers
|
|
.../TestFramework.framework/Headers/TestFramework.h
|
|
...
|
|
|
|
Clang will treat the presence of this file as an indicator that the framework
|
|
should be treated as a system framework, regardless of how it was found in the
|
|
framework search path. For consistency, we recommend that such files never be
|
|
included in installed versions of the framework.
|
|
|
|
Checks for Standard Language Features
|
|
=====================================
|
|
|
|
The ``__has_feature`` macro can be used to query if certain standard language
|
|
features are enabled. The ``__has_extension`` macro can be used to query if
|
|
language features are available as an extension when compiling for a standard
|
|
which does not provide them. The features which can be tested are listed here.
|
|
|
|
Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
|
|
These are macros with names of the form ``__cpp_<feature_name>``, and are
|
|
intended to be a portable way to query the supported features of the compiler.
|
|
See `the C++ status page <http://clang.llvm.org/cxx_status.html#ts>`_ for
|
|
information on the version of SD-6 supported by each Clang release, and the
|
|
macros provided by that revision of the recommendations.
|
|
|
|
C++98
|
|
-----
|
|
|
|
The features listed below are part of the C++98 standard. These features are
|
|
enabled by default when compiling C++ code.
|
|
|
|
C++ exceptions
|
|
^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
|
|
enabled. For example, compiling code with ``-fno-exceptions`` disables C++
|
|
exceptions.
|
|
|
|
C++ RTTI
|
|
^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
|
|
example, compiling code with ``-fno-rtti`` disables the use of RTTI.
|
|
|
|
C++11
|
|
-----
|
|
|
|
The features listed below are part of the C++11 standard. As a result, all
|
|
these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
|
|
when compiling C++ code.
|
|
|
|
C++11 SFINAE includes access control
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_access_control_sfinae)`` or
|
|
``__has_extension(cxx_access_control_sfinae)`` to determine whether
|
|
access-control errors (e.g., calling a private constructor) are considered to
|
|
be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
|
|
<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
|
|
|
|
C++11 alias templates
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_alias_templates)`` or
|
|
``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
|
|
alias declarations and alias templates is enabled.
|
|
|
|
C++11 alignment specifiers
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
|
|
determine if support for alignment specifiers using ``alignas`` is enabled.
|
|
|
|
Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
|
|
determine if support for the ``alignof`` keyword is enabled.
|
|
|
|
C++11 attributes
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
|
|
determine if support for attribute parsing with C++11's square bracket notation
|
|
is enabled.
|
|
|
|
C++11 generalized constant expressions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
|
|
constant expressions (e.g., ``constexpr``) is enabled.
|
|
|
|
C++11 ``decltype()``
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
|
|
determine if support for the ``decltype()`` specifier is enabled. C++11's
|
|
``decltype`` does not require type-completeness of a function call expression.
|
|
Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
|
|
``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
|
|
support for this feature is enabled.
|
|
|
|
C++11 default template arguments in function templates
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_default_function_template_args)`` or
|
|
``__has_extension(cxx_default_function_template_args)`` to determine if support
|
|
for default template arguments in function templates is enabled.
|
|
|
|
C++11 ``default``\ ed functions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_defaulted_functions)`` or
|
|
``__has_extension(cxx_defaulted_functions)`` to determine if support for
|
|
defaulted function definitions (with ``= default``) is enabled.
|
|
|
|
C++11 delegating constructors
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
|
|
delegating constructors is enabled.
|
|
|
|
C++11 ``deleted`` functions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_deleted_functions)`` or
|
|
``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
|
|
function definitions (with ``= delete``) is enabled.
|
|
|
|
C++11 explicit conversion functions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
|
|
``explicit`` conversion functions is enabled.
|
|
|
|
C++11 generalized initializers
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
|
|
generalized initializers (using braced lists and ``std::initializer_list``) is
|
|
enabled.
|
|
|
|
C++11 implicit move constructors/assignment operators
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
|
|
generate move constructors and move assignment operators where needed.
|
|
|
|
C++11 inheriting constructors
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
|
|
inheriting constructors is enabled.
|
|
|
|
C++11 inline namespaces
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_inline_namespaces)`` or
|
|
``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
|
|
namespaces is enabled.
|
|
|
|
C++11 lambdas
|
|
^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
|
|
determine if support for lambdas is enabled.
|
|
|
|
C++11 local and unnamed types as template arguments
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_local_type_template_args)`` or
|
|
``__has_extension(cxx_local_type_template_args)`` to determine if support for
|
|
local and unnamed types as template arguments is enabled.
|
|
|
|
C++11 noexcept
|
|
^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
|
|
determine if support for noexcept exception specifications is enabled.
|
|
|
|
C++11 in-class non-static data member initialization
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
|
|
initialization of non-static data members is enabled.
|
|
|
|
C++11 ``nullptr``
|
|
^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
|
|
determine if support for ``nullptr`` is enabled.
|
|
|
|
C++11 ``override control``
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_override_control)`` or
|
|
``__has_extension(cxx_override_control)`` to determine if support for the
|
|
override control keywords is enabled.
|
|
|
|
C++11 reference-qualified functions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_reference_qualified_functions)`` or
|
|
``__has_extension(cxx_reference_qualified_functions)`` to determine if support
|
|
for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
|
|
applied to ``*this``) is enabled.
|
|
|
|
C++11 range-based ``for`` loop
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
|
|
determine if support for the range-based for loop is enabled.
|
|
|
|
C++11 raw string literals
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
|
|
string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
|
|
|
|
C++11 rvalue references
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_rvalue_references)`` or
|
|
``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
|
|
references is enabled.
|
|
|
|
C++11 ``static_assert()``
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_static_assert)`` or
|
|
``__has_extension(cxx_static_assert)`` to determine if support for compile-time
|
|
assertions using ``static_assert`` is enabled.
|
|
|
|
C++11 ``thread_local``
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_thread_local)`` to determine if support for
|
|
``thread_local`` variables is enabled.
|
|
|
|
C++11 type inference
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
|
|
determine C++11 type inference is supported using the ``auto`` specifier. If
|
|
this is disabled, ``auto`` will instead be a storage class specifier, as in C
|
|
or C++98.
|
|
|
|
C++11 strongly typed enumerations
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_strong_enums)`` or
|
|
``__has_extension(cxx_strong_enums)`` to determine if support for strongly
|
|
typed, scoped enumerations is enabled.
|
|
|
|
C++11 trailing return type
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_trailing_return)`` or
|
|
``__has_extension(cxx_trailing_return)`` to determine if support for the
|
|
alternate function declaration syntax with trailing return type is enabled.
|
|
|
|
C++11 Unicode string literals
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
|
|
string literals is enabled.
|
|
|
|
C++11 unrestricted unions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
|
|
unrestricted unions is enabled.
|
|
|
|
C++11 user-defined literals
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_user_literals)`` to determine if support for
|
|
user-defined literals is enabled.
|
|
|
|
C++11 variadic templates
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_variadic_templates)`` or
|
|
``__has_extension(cxx_variadic_templates)`` to determine if support for
|
|
variadic templates is enabled.
|
|
|
|
C++14
|
|
-----
|
|
|
|
The features listed below are part of the C++14 standard. As a result, all
|
|
these features are enabled with the ``-std=C++14`` or ``-std=gnu++14`` option
|
|
when compiling C++ code.
|
|
|
|
C++14 binary literals
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_binary_literals)`` or
|
|
``__has_extension(cxx_binary_literals)`` to determine whether
|
|
binary literals (for instance, ``0b10010``) are recognized. Clang supports this
|
|
feature as an extension in all language modes.
|
|
|
|
C++14 contextual conversions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_contextual_conversions)`` or
|
|
``__has_extension(cxx_contextual_conversions)`` to determine if the C++14 rules
|
|
are used when performing an implicit conversion for an array bound in a
|
|
*new-expression*, the operand of a *delete-expression*, an integral constant
|
|
expression, or a condition in a ``switch`` statement.
|
|
|
|
C++14 decltype(auto)
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_decltype_auto)`` or
|
|
``__has_extension(cxx_decltype_auto)`` to determine if support
|
|
for the ``decltype(auto)`` placeholder type is enabled.
|
|
|
|
C++14 default initializers for aggregates
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_aggregate_nsdmi)`` or
|
|
``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
|
|
for default initializers in aggregate members is enabled.
|
|
|
|
C++14 digit separators
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__cpp_digit_separators`` to determine if support for digit separators
|
|
using single quotes (for instance, ``10'000``) is enabled. At this time, there
|
|
is no corresponding ``__has_feature`` name
|
|
|
|
C++14 generalized lambda capture
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_init_captures)`` or
|
|
``__has_extension(cxx_init_captures)`` to determine if support for
|
|
lambda captures with explicit initializers is enabled
|
|
(for instance, ``[n(0)] { return ++n; }``).
|
|
|
|
C++14 generic lambdas
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_generic_lambdas)`` or
|
|
``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
|
|
(polymorphic) lambdas is enabled
|
|
(for instance, ``[] (auto x) { return x + 1; }``).
|
|
|
|
C++14 relaxed constexpr
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_relaxed_constexpr)`` or
|
|
``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
|
|
declarations, local variable modification, and control flow constructs
|
|
are permitted in ``constexpr`` functions.
|
|
|
|
C++14 return type deduction
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_return_type_deduction)`` or
|
|
``__has_extension(cxx_return_type_deduction)`` to determine if support
|
|
for return type deduction for functions (using ``auto`` as a return type)
|
|
is enabled.
|
|
|
|
C++14 runtime-sized arrays
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_runtime_array)`` or
|
|
``__has_extension(cxx_runtime_array)`` to determine if support
|
|
for arrays of runtime bound (a restricted form of variable-length arrays)
|
|
is enabled.
|
|
Clang's implementation of this feature is incomplete.
|
|
|
|
C++14 variable templates
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(cxx_variable_templates)`` or
|
|
``__has_extension(cxx_variable_templates)`` to determine if support for
|
|
templated variable declarations is enabled.
|
|
|
|
C11
|
|
---
|
|
|
|
The features listed below are part of the C11 standard. As a result, all these
|
|
features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
|
|
compiling C code. Additionally, because these features are all
|
|
backward-compatible, they are available as extensions in all language modes.
|
|
|
|
C11 alignment specifiers
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
|
|
if support for alignment specifiers using ``_Alignas`` is enabled.
|
|
|
|
Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
|
|
if support for the ``_Alignof`` keyword is enabled.
|
|
|
|
C11 atomic operations
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
|
|
if support for atomic types using ``_Atomic`` is enabled. Clang also provides
|
|
:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
|
|
the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
|
|
``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
|
|
is available.
|
|
|
|
Clang will use the system's ``<stdatomic.h>`` header when one is available, and
|
|
will otherwise use its own. When using its own, implementations of the atomic
|
|
operations are provided as macros. In the cases where C11 also requires a real
|
|
function, this header provides only the declaration of that function (along
|
|
with a shadowing macro implementation), and you must link to a library which
|
|
provides a definition of the function if you use it instead of the macro.
|
|
|
|
C11 generic selections
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(c_generic_selections)`` or
|
|
``__has_extension(c_generic_selections)`` to determine if support for generic
|
|
selections is enabled.
|
|
|
|
As an extension, the C11 generic selection expression is available in all
|
|
languages supported by Clang. The syntax is the same as that given in the C11
|
|
standard.
|
|
|
|
In C, type compatibility is decided according to the rules given in the
|
|
appropriate standard, but in C++, which lacks the type compatibility rules used
|
|
in C, types are considered compatible only if they are equivalent.
|
|
|
|
C11 ``_Static_assert()``
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
|
|
to determine if support for compile-time assertions using ``_Static_assert`` is
|
|
enabled.
|
|
|
|
C11 ``_Thread_local``
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
|
|
to determine if support for ``_Thread_local`` variables is enabled.
|
|
|
|
Modules
|
|
-------
|
|
|
|
Use ``__has_feature(modules)`` to determine if Modules have been enabled.
|
|
For example, compiling code with ``-fmodules`` enables the use of Modules.
|
|
|
|
More information could be found `here <http://clang.llvm.org/docs/Modules.html>`_.
|
|
|
|
Checks for Type Trait Primitives
|
|
================================
|
|
|
|
Type trait primitives are special builtin constant expressions that can be used
|
|
by the standard C++ library to facilitate or simplify the implementation of
|
|
user-facing type traits in the <type_traits> header.
|
|
|
|
They are not intended to be used directly by user code because they are
|
|
implementation-defined and subject to change -- as such they're tied closely to
|
|
the supported set of system headers, currently:
|
|
|
|
* LLVM's own libc++
|
|
* GNU libstdc++
|
|
* The Microsoft standard C++ library
|
|
|
|
Clang supports the `GNU C++ type traits
|
|
<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
|
|
`Microsoft Visual C++ Type traits
|
|
<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
|
|
|
|
Feature detection is supported only for some of the primitives at present. User
|
|
code should not use these checks because they bear no direct relation to the
|
|
actual set of type traits supported by the C++ standard library.
|
|
|
|
For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
|
|
type trait primitive in the compiler. A simplistic usage example as might be
|
|
seen in standard C++ headers follows:
|
|
|
|
.. code-block:: c++
|
|
|
|
#if __has_extension(is_convertible_to)
|
|
template<typename From, typename To>
|
|
struct is_convertible_to {
|
|
static const bool value = __is_convertible_to(From, To);
|
|
};
|
|
#else
|
|
// Emulate type trait for compatibility with other compilers.
|
|
#endif
|
|
|
|
The following type trait primitives are supported by Clang:
|
|
|
|
* ``__has_nothrow_assign`` (GNU, Microsoft)
|
|
* ``__has_nothrow_copy`` (GNU, Microsoft)
|
|
* ``__has_nothrow_constructor`` (GNU, Microsoft)
|
|
* ``__has_trivial_assign`` (GNU, Microsoft)
|
|
* ``__has_trivial_copy`` (GNU, Microsoft)
|
|
* ``__has_trivial_constructor`` (GNU, Microsoft)
|
|
* ``__has_trivial_destructor`` (GNU, Microsoft)
|
|
* ``__has_virtual_destructor`` (GNU, Microsoft)
|
|
* ``__is_abstract`` (GNU, Microsoft)
|
|
* ``__is_aggregate`` (GNU, Microsoft)
|
|
* ``__is_base_of`` (GNU, Microsoft)
|
|
* ``__is_class`` (GNU, Microsoft)
|
|
* ``__is_convertible_to`` (Microsoft)
|
|
* ``__is_empty`` (GNU, Microsoft)
|
|
* ``__is_enum`` (GNU, Microsoft)
|
|
* ``__is_interface_class`` (Microsoft)
|
|
* ``__is_pod`` (GNU, Microsoft)
|
|
* ``__is_polymorphic`` (GNU, Microsoft)
|
|
* ``__is_union`` (GNU, Microsoft)
|
|
* ``__is_literal(type)``: Determines whether the given type is a literal type
|
|
* ``__is_final``: Determines whether the given type is declared with a
|
|
``final`` class-virt-specifier.
|
|
* ``__underlying_type(type)``: Retrieves the underlying type for a given
|
|
``enum`` type. This trait is required to implement the C++11 standard
|
|
library.
|
|
* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
|
|
of type ``totype`` can be assigned to from a value of type ``fromtype`` such
|
|
that no non-trivial functions are called as part of that assignment. This
|
|
trait is required to implement the C++11 standard library.
|
|
* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
|
|
value of type ``type`` can be direct-initialized with arguments of types
|
|
``argtypes...`` such that no non-trivial functions are called as part of
|
|
that initialization. This trait is required to implement the C++11 standard
|
|
library.
|
|
* ``__is_destructible`` (MSVC 2013)
|
|
* ``__is_nothrow_destructible`` (MSVC 2013)
|
|
* ``__is_nothrow_assignable`` (MSVC 2013, clang)
|
|
* ``__is_constructible`` (MSVC 2013, clang)
|
|
* ``__is_nothrow_constructible`` (MSVC 2013, clang)
|
|
* ``__is_assignable`` (MSVC 2015, clang)
|
|
|
|
Blocks
|
|
======
|
|
|
|
The syntax and high level language feature description is in
|
|
:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
|
|
the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
|
|
|
|
Query for this feature with ``__has_extension(blocks)``.
|
|
|
|
Objective-C Features
|
|
====================
|
|
|
|
Related result types
|
|
--------------------
|
|
|
|
According to Cocoa conventions, Objective-C methods with certain names
|
|
("``init``", "``alloc``", etc.) always return objects that are an instance of
|
|
the receiving class's type. Such methods are said to have a "related result
|
|
type", meaning that a message send to one of these methods will have the same
|
|
static type as an instance of the receiver class. For example, given the
|
|
following classes:
|
|
|
|
.. code-block:: objc
|
|
|
|
@interface NSObject
|
|
+ (id)alloc;
|
|
- (id)init;
|
|
@end
|
|
|
|
@interface NSArray : NSObject
|
|
@end
|
|
|
|
and this common initialization pattern
|
|
|
|
.. code-block:: objc
|
|
|
|
NSArray *array = [[NSArray alloc] init];
|
|
|
|
the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
|
|
``alloc`` implicitly has a related result type. Similarly, the type of the
|
|
expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
|
|
related result type and its receiver is known to have the type ``NSArray *``.
|
|
If neither ``alloc`` nor ``init`` had a related result type, the expressions
|
|
would have had type ``id``, as declared in the method signature.
|
|
|
|
A method with a related result type can be declared by using the type
|
|
``instancetype`` as its result type. ``instancetype`` is a contextual keyword
|
|
that is only permitted in the result type of an Objective-C method, e.g.
|
|
|
|
.. code-block:: objc
|
|
|
|
@interface A
|
|
+ (instancetype)constructAnA;
|
|
@end
|
|
|
|
The related result type can also be inferred for some methods. To determine
|
|
whether a method has an inferred related result type, the first word in the
|
|
camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
|
|
and the method will have a related result type if its return type is compatible
|
|
with the type of its class and if:
|
|
|
|
* the first word is "``alloc``" or "``new``", and the method is a class method,
|
|
or
|
|
|
|
* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
|
|
and the method is an instance method.
|
|
|
|
If a method with a related result type is overridden by a subclass method, the
|
|
subclass method must also return a type that is compatible with the subclass
|
|
type. For example:
|
|
|
|
.. code-block:: objc
|
|
|
|
@interface NSString : NSObject
|
|
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
|
|
@end
|
|
|
|
Related result types only affect the type of a message send or property access
|
|
via the given method. In all other respects, a method with a related result
|
|
type is treated the same way as method that returns ``id``.
|
|
|
|
Use ``__has_feature(objc_instancetype)`` to determine whether the
|
|
``instancetype`` contextual keyword is available.
|
|
|
|
Automatic reference counting
|
|
----------------------------
|
|
|
|
Clang provides support for :doc:`automated reference counting
|
|
<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
|
|
for manual ``retain``/``release``/``autorelease`` message sends. There are two
|
|
feature macros associated with automatic reference counting:
|
|
``__has_feature(objc_arc)`` indicates the availability of automated reference
|
|
counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
|
|
automated reference counting also includes support for ``__weak`` pointers to
|
|
Objective-C objects.
|
|
|
|
.. _objc-fixed-enum:
|
|
|
|
Enumerations with a fixed underlying type
|
|
-----------------------------------------
|
|
|
|
Clang provides support for C++11 enumerations with a fixed underlying type
|
|
within Objective-C. For example, one can write an enumeration type as:
|
|
|
|
.. code-block:: c++
|
|
|
|
typedef enum : unsigned char { Red, Green, Blue } Color;
|
|
|
|
This specifies that the underlying type, which is used to store the enumeration
|
|
value, is ``unsigned char``.
|
|
|
|
Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
|
|
underlying types is available in Objective-C.
|
|
|
|
Interoperability with C++11 lambdas
|
|
-----------------------------------
|
|
|
|
Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
|
|
permitting a lambda to be implicitly converted to a block pointer with the
|
|
corresponding signature. For example, consider an API such as ``NSArray``'s
|
|
array-sorting method:
|
|
|
|
.. code-block:: objc
|
|
|
|
- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
|
|
|
|
``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
|
|
(^)(id, id)``, and parameters of this type are generally provided with block
|
|
literals as arguments. However, one can also use a C++11 lambda so long as it
|
|
provides the same signature (in this case, accepting two parameters of type
|
|
``id`` and returning an ``NSComparisonResult``):
|
|
|
|
.. code-block:: objc
|
|
|
|
NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
|
|
@"String 02"];
|
|
const NSStringCompareOptions comparisonOptions
|
|
= NSCaseInsensitiveSearch | NSNumericSearch |
|
|
NSWidthInsensitiveSearch | NSForcedOrderingSearch;
|
|
NSLocale *currentLocale = [NSLocale currentLocale];
|
|
NSArray *sorted
|
|
= [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
|
|
NSRange string1Range = NSMakeRange(0, [s1 length]);
|
|
return [s1 compare:s2 options:comparisonOptions
|
|
range:string1Range locale:currentLocale];
|
|
}];
|
|
NSLog(@"sorted: %@", sorted);
|
|
|
|
This code relies on an implicit conversion from the type of the lambda
|
|
expression (an unnamed, local class type called the *closure type*) to the
|
|
corresponding block pointer type. The conversion itself is expressed by a
|
|
conversion operator in that closure type that produces a block pointer with the
|
|
same signature as the lambda itself, e.g.,
|
|
|
|
.. code-block:: objc
|
|
|
|
operator NSComparisonResult (^)(id, id)() const;
|
|
|
|
This conversion function returns a new block that simply forwards the two
|
|
parameters to the lambda object (which it captures by copy), then returns the
|
|
result. The returned block is first copied (with ``Block_copy``) and then
|
|
autoreleased. As an optimization, if a lambda expression is immediately
|
|
converted to a block pointer (as in the first example, above), then the block
|
|
is not copied and autoreleased: rather, it is given the same lifetime as a
|
|
block literal written at that point in the program, which avoids the overhead
|
|
of copying a block to the heap in the common case.
|
|
|
|
The conversion from a lambda to a block pointer is only available in
|
|
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
|
|
management (autorelease).
|
|
|
|
Object Literals and Subscripting
|
|
--------------------------------
|
|
|
|
Clang provides support for :doc:`Object Literals and Subscripting
|
|
<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
|
|
programming patterns, makes programs more concise, and improves the safety of
|
|
container creation. There are several feature macros associated with object
|
|
literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
|
|
availability of array literals; ``__has_feature(objc_dictionary_literals)``
|
|
tests the availability of dictionary literals;
|
|
``__has_feature(objc_subscripting)`` tests the availability of object
|
|
subscripting.
|
|
|
|
Objective-C Autosynthesis of Properties
|
|
---------------------------------------
|
|
|
|
Clang provides support for autosynthesis of declared properties. Using this
|
|
feature, clang provides default synthesis of those properties not declared
|
|
@dynamic and not having user provided backing getter and setter methods.
|
|
``__has_feature(objc_default_synthesize_properties)`` checks for availability
|
|
of this feature in version of clang being used.
|
|
|
|
.. _langext-objc-retain-release:
|
|
|
|
Objective-C retaining behavior attributes
|
|
-----------------------------------------
|
|
|
|
In Objective-C, functions and methods are generally assumed to follow the
|
|
`Cocoa Memory Management
|
|
<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
|
|
conventions for ownership of object arguments and
|
|
return values. However, there are exceptions, and so Clang provides attributes
|
|
to allow these exceptions to be documented. This are used by ARC and the
|
|
`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
|
|
better described using the ``objc_method_family`` attribute instead.
|
|
|
|
**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
|
|
``ns_returns_autoreleased``, ``cf_returns_retained``, and
|
|
``cf_returns_not_retained`` attributes can be placed on methods and functions
|
|
that return Objective-C or CoreFoundation objects. They are commonly placed at
|
|
the end of a function prototype or method declaration:
|
|
|
|
.. code-block:: objc
|
|
|
|
id foo() __attribute__((ns_returns_retained));
|
|
|
|
- (NSString *)bar:(int)x __attribute__((ns_returns_retained));
|
|
|
|
The ``*_returns_retained`` attributes specify that the returned object has a +1
|
|
retain count. The ``*_returns_not_retained`` attributes specify that the return
|
|
object has a +0 retain count, even if the normal convention for its selector
|
|
would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
|
|
+0, but is guaranteed to live at least as long as the next flush of an
|
|
autorelease pool.
|
|
|
|
**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
|
|
an parameter declaration; they specify that the argument is expected to have a
|
|
+1 retain count, which will be balanced in some way by the function or method.
|
|
The ``ns_consumes_self`` attribute can only be placed on an Objective-C
|
|
method; it specifies that the method expects its ``self`` parameter to have a
|
|
+1 retain count, which it will balance in some way.
|
|
|
|
.. code-block:: objc
|
|
|
|
void foo(__attribute__((ns_consumed)) NSString *string);
|
|
|
|
- (void) bar __attribute__((ns_consumes_self));
|
|
- (void) baz:(id) __attribute__((ns_consumed)) x;
|
|
|
|
Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
|
|
<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
|
|
|
|
Query for these features with ``__has_attribute(ns_consumed)``,
|
|
``__has_attribute(ns_returns_retained)``, etc.
|
|
|
|
Objective-C @available
|
|
----------------------
|
|
|
|
It is possible to use the newest SDK but still build a program that can run on
|
|
older versions of macOS and iOS by passing ``-mmacosx-version-min=`` /
|
|
``-miphoneos-version-min=``.
|
|
|
|
Before LLVM 5.0, when calling a function that exists only in the OS that's
|
|
newer than the target OS (as determined by the minimum deployment version),
|
|
programmers had to carefully check if the function exists at runtime, using
|
|
null checks for weakly-linked C functions, ``+class`` for Objective-C classes,
|
|
and ``-respondsToSelector:`` or ``+instancesRespondToSelector:`` for
|
|
Objective-C methods. If such a check was missed, the program would compile
|
|
fine, run fine on newer systems, but crash on older systems.
|
|
|
|
As of LLVM 5.0, ``-Wunguarded-availability`` uses the `availability attributes
|
|
<http://clang.llvm.org/docs/AttributeReference.html#availability>`_ together
|
|
with the new ``@available()`` keyword to assist with this issue.
|
|
When a method that's introduced in the OS newer than the target OS is called, a
|
|
-Wunguarded-availability warning is emitted if that call is not guarded:
|
|
|
|
.. code-block:: objc
|
|
|
|
void my_fun(NSSomeClass* var) {
|
|
// If fancyNewMethod was added in e.g. macOS 10.12, but the code is
|
|
// built with -mmacosx-version-min=10.11, then this unconditional call
|
|
// will emit a -Wunguarded-availability warning:
|
|
[var fancyNewMethod];
|
|
}
|
|
|
|
To fix the warning and to avoid the crash on macOS 10.11, wrap it in
|
|
``if(@available())``:
|
|
|
|
.. code-block:: objc
|
|
|
|
void my_fun(NSSomeClass* var) {
|
|
if (@available(macOS 10.12, *)) {
|
|
[var fancyNewMethod];
|
|
} else {
|
|
// Put fallback behavior for old macOS versions (and for non-mac
|
|
// platforms) here.
|
|
}
|
|
}
|
|
|
|
The ``*`` is required and means that platforms not explicitly listed will take
|
|
the true branch, and the compiler will emit ``-Wunguarded-availability``
|
|
warnings for unlisted platforms based on those platform's deployment target.
|
|
More than one platform can be listed in ``@available()``:
|
|
|
|
.. code-block:: objc
|
|
|
|
void my_fun(NSSomeClass* var) {
|
|
if (@available(macOS 10.12, iOS 10, *)) {
|
|
[var fancyNewMethod];
|
|
}
|
|
}
|
|
|
|
If the caller of ``my_fun()`` already checks that ``my_fun()`` is only called
|
|
on 10.12, then add an `availability attribute
|
|
<http://clang.llvm.org/docs/AttributeReference.html#availability>`_ to it,
|
|
which will also suppress the warning and require that calls to my_fun() are
|
|
checked:
|
|
|
|
.. code-block:: objc
|
|
|
|
API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) {
|
|
[var fancyNewMethod]; // Now ok.
|
|
}
|
|
|
|
``@available()`` is only available in Objective-C code. To use the feature
|
|
in C and C++ code, use the ``__builtin_available()`` spelling instead.
|
|
|
|
If existing code uses null checks or ``-respondsToSelector:``, it should
|
|
be changed to use ``@available()`` (or ``__builtin_available``) instead.
|
|
|
|
``-Wunguarded-availability`` is disabled by default, but
|
|
``-Wunguarded-availability-new``, which only emits this warning for APIs
|
|
that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and
|
|
tvOS >= 11, is enabled by default.
|
|
|
|
.. _langext-overloading:
|
|
|
|
Objective-C++ ABI: protocol-qualifier mangling of parameters
|
|
------------------------------------------------------------
|
|
|
|
Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
|
|
type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
|
|
parameters to be differentiated from those with the regular unqualified ``id``
|
|
type.
|
|
|
|
This was a non-backward compatible mangling change to the ABI. This change
|
|
allows proper overloading, and also prevents mangling conflicts with template
|
|
parameters of protocol-qualified type.
|
|
|
|
Query the presence of this new mangling with
|
|
``__has_feature(objc_protocol_qualifier_mangling)``.
|
|
|
|
Initializer lists for complex numbers in C
|
|
==========================================
|
|
|
|
clang supports an extension which allows the following in C:
|
|
|
|
.. code-block:: c++
|
|
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
|
|
|
|
This construct is useful because there is no way to separately initialize the
|
|
real and imaginary parts of a complex variable in standard C, given that clang
|
|
does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
|
|
``__imag__`` extensions from gcc, which help in some cases, but are not usable
|
|
in static initializers.)
|
|
|
|
Note that this extension does not allow eliding the braces; the meaning of the
|
|
following two lines is different:
|
|
|
|
.. code-block:: c++
|
|
|
|
complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
|
|
complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
|
|
|
|
This extension also works in C++ mode, as far as that goes, but does not apply
|
|
to the C++ ``std::complex``. (In C++11, list initialization allows the same
|
|
syntax to be used with ``std::complex`` with the same meaning.)
|
|
|
|
Builtin Functions
|
|
=================
|
|
|
|
Clang supports a number of builtin library functions with the same syntax as
|
|
GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
|
|
``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
|
|
``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
|
|
the GCC builtins, Clang supports a number of builtins that GCC does not, which
|
|
are listed here.
|
|
|
|
Please note that Clang does not and will not support all of the GCC builtins
|
|
for vector operations. Instead of using builtins, you should use the functions
|
|
defined in target-specific header files like ``<xmmintrin.h>``, which define
|
|
portable wrappers for these. Many of the Clang versions of these functions are
|
|
implemented directly in terms of :ref:`extended vector support
|
|
<langext-vectors>` instead of builtins, in order to reduce the number of
|
|
builtins that we need to implement.
|
|
|
|
``__builtin_assume``
|
|
------------------------------
|
|
|
|
``__builtin_assume`` is used to provide the optimizer with a boolean
|
|
invariant that is defined to be true.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_assume(bool)
|
|
|
|
**Example of Use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
int foo(int x) {
|
|
__builtin_assume(x != 0);
|
|
|
|
// The optimizer may short-circuit this check using the invariant.
|
|
if (x == 0)
|
|
return do_something();
|
|
|
|
return do_something_else();
|
|
}
|
|
|
|
**Description**:
|
|
|
|
The boolean argument to this function is defined to be true. The optimizer may
|
|
analyze the form of the expression provided as the argument and deduce from
|
|
that information used to optimize the program. If the condition is violated
|
|
during execution, the behavior is undefined. The argument itself is never
|
|
evaluated, so any side effects of the expression will be discarded.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_assume)``.
|
|
|
|
``__builtin_readcyclecounter``
|
|
------------------------------
|
|
|
|
``__builtin_readcyclecounter`` is used to access the cycle counter register (or
|
|
a similar low-latency, high-accuracy clock) on those targets that support it.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_readcyclecounter()
|
|
|
|
**Example of Use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
unsigned long long t0 = __builtin_readcyclecounter();
|
|
do_something();
|
|
unsigned long long t1 = __builtin_readcyclecounter();
|
|
unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
|
|
|
|
**Description**:
|
|
|
|
The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
|
|
which may be either global or process/thread-specific depending on the target.
|
|
As the backing counters often overflow quickly (on the order of seconds) this
|
|
should only be used for timing small intervals. When not supported by the
|
|
target, the return value is always zero. This builtin takes no arguments and
|
|
produces an unsigned long long result.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
|
|
that even if present, its use may depend on run-time privilege or other OS
|
|
controlled state.
|
|
|
|
.. _langext-__builtin_shufflevector:
|
|
|
|
``__builtin_shufflevector``
|
|
---------------------------
|
|
|
|
``__builtin_shufflevector`` is used to express generic vector
|
|
permutation/shuffle/swizzle operations. This builtin is also very important
|
|
for the implementation of various target-specific header files like
|
|
``<xmmintrin.h>``.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_shufflevector(vec1, vec2, index1, index2, ...)
|
|
|
|
**Examples**:
|
|
|
|
.. code-block:: c++
|
|
|
|
// identity operation - return 4-element vector v1.
|
|
__builtin_shufflevector(v1, v1, 0, 1, 2, 3)
|
|
|
|
// "Splat" element 0 of V1 into a 4-element result.
|
|
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)
|
|
|
|
// Reverse 4-element vector V1.
|
|
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)
|
|
|
|
// Concatenate every other element of 4-element vectors V1 and V2.
|
|
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)
|
|
|
|
// Concatenate every other element of 8-element vectors V1 and V2.
|
|
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
|
|
|
|
// Shuffle v1 with some elements being undefined
|
|
__builtin_shufflevector(v1, v1, 3, -1, 1, -1)
|
|
|
|
**Description**:
|
|
|
|
The first two arguments to ``__builtin_shufflevector`` are vectors that have
|
|
the same element type. The remaining arguments are a list of integers that
|
|
specify the elements indices of the first two vectors that should be extracted
|
|
and returned in a new vector. These element indices are numbered sequentially
|
|
starting with the first vector, continuing into the second vector. Thus, if
|
|
``vec1`` is a 4-element vector, index 5 would refer to the second element of
|
|
``vec2``. An index of -1 can be used to indicate that the corresponding element
|
|
in the returned vector is a don't care and can be optimized by the backend.
|
|
|
|
The result of ``__builtin_shufflevector`` is a vector with the same element
|
|
type as ``vec1``/``vec2`` but that has an element count equal to the number of
|
|
indices specified.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
|
|
|
|
.. _langext-__builtin_convertvector:
|
|
|
|
``__builtin_convertvector``
|
|
---------------------------
|
|
|
|
``__builtin_convertvector`` is used to express generic vector
|
|
type-conversion operations. The input vector and the output vector
|
|
type must have the same number of elements.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_convertvector(src_vec, dst_vec_type)
|
|
|
|
**Examples**:
|
|
|
|
.. code-block:: c++
|
|
|
|
typedef double vector4double __attribute__((__vector_size__(32)));
|
|
typedef float vector4float __attribute__((__vector_size__(16)));
|
|
typedef short vector4short __attribute__((__vector_size__(8)));
|
|
vector4float vf; vector4short vs;
|
|
|
|
// convert from a vector of 4 floats to a vector of 4 doubles.
|
|
__builtin_convertvector(vf, vector4double)
|
|
// equivalent to:
|
|
(vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
|
|
|
|
// convert from a vector of 4 shorts to a vector of 4 floats.
|
|
__builtin_convertvector(vs, vector4float)
|
|
// equivalent to:
|
|
(vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
|
|
|
|
**Description**:
|
|
|
|
The first argument to ``__builtin_convertvector`` is a vector, and the second
|
|
argument is a vector type with the same number of elements as the first
|
|
argument.
|
|
|
|
The result of ``__builtin_convertvector`` is a vector with the same element
|
|
type as the second argument, with a value defined in terms of the action of a
|
|
C-style cast applied to each element of the first argument.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_convertvector)``.
|
|
|
|
``__builtin_bitreverse``
|
|
------------------------
|
|
|
|
* ``__builtin_bitreverse8``
|
|
* ``__builtin_bitreverse16``
|
|
* ``__builtin_bitreverse32``
|
|
* ``__builtin_bitreverse64``
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_bitreverse32(x)
|
|
|
|
**Examples**:
|
|
|
|
.. code-block:: c++
|
|
|
|
uint8_t rev_x = __builtin_bitreverse8(x);
|
|
uint16_t rev_x = __builtin_bitreverse16(x);
|
|
uint32_t rev_y = __builtin_bitreverse32(y);
|
|
uint64_t rev_z = __builtin_bitreverse64(z);
|
|
|
|
**Description**:
|
|
|
|
The '``__builtin_bitreverse``' family of builtins is used to reverse
|
|
the bitpattern of an integer value; for example ``0b10110110`` becomes
|
|
``0b01101101``.
|
|
|
|
``__builtin_unreachable``
|
|
-------------------------
|
|
|
|
``__builtin_unreachable`` is used to indicate that a specific point in the
|
|
program cannot be reached, even if the compiler might otherwise think it can.
|
|
This is useful to improve optimization and eliminates certain warnings. For
|
|
example, without the ``__builtin_unreachable`` in the example below, the
|
|
compiler assumes that the inline asm can fall through and prints a "function
|
|
declared '``noreturn``' should not return" warning.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_unreachable()
|
|
|
|
**Example of use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
void myabort(void) __attribute__((noreturn));
|
|
void myabort(void) {
|
|
asm("int3");
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
**Description**:
|
|
|
|
The ``__builtin_unreachable()`` builtin has completely undefined behavior.
|
|
Since it has undefined behavior, it is a statement that it is never reached and
|
|
the optimizer can take advantage of this to produce better code. This builtin
|
|
takes no arguments and produces a void result.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_unreachable)``.
|
|
|
|
``__builtin_unpredictable``
|
|
---------------------------
|
|
|
|
``__builtin_unpredictable`` is used to indicate that a branch condition is
|
|
unpredictable by hardware mechanisms such as branch prediction logic.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
__builtin_unpredictable(long long)
|
|
|
|
**Example of use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
if (__builtin_unpredictable(x > 0)) {
|
|
foo();
|
|
}
|
|
|
|
**Description**:
|
|
|
|
The ``__builtin_unpredictable()`` builtin is expected to be used with control
|
|
flow conditions such as in ``if`` and ``switch`` statements.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_unpredictable)``.
|
|
|
|
``__sync_swap``
|
|
---------------
|
|
|
|
``__sync_swap`` is used to atomically swap integers or pointers in memory.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c++
|
|
|
|
type __sync_swap(type *ptr, type value, ...)
|
|
|
|
**Example of Use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
int old_value = __sync_swap(&value, new_value);
|
|
|
|
**Description**:
|
|
|
|
The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
|
|
atomic intrinsics to allow code to atomically swap the current value with the
|
|
new value. More importantly, it helps developers write more efficient and
|
|
correct code by avoiding expensive loops around
|
|
``__sync_bool_compare_and_swap()`` or relying on the platform specific
|
|
implementation details of ``__sync_lock_test_and_set()``. The
|
|
``__sync_swap()`` builtin is a full barrier.
|
|
|
|
``__builtin_addressof``
|
|
-----------------------
|
|
|
|
``__builtin_addressof`` performs the functionality of the built-in ``&``
|
|
operator, ignoring any ``operator&`` overload. This is useful in constant
|
|
expressions in C++11, where there is no other way to take the address of an
|
|
object that overloads ``operator&``.
|
|
|
|
**Example of use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
template<typename T> constexpr T *addressof(T &value) {
|
|
return __builtin_addressof(value);
|
|
}
|
|
|
|
``__builtin_operator_new`` and ``__builtin_operator_delete``
|
|
------------------------------------------------------------
|
|
|
|
``__builtin_operator_new`` allocates memory just like a non-placement non-class
|
|
*new-expression*. This is exactly like directly calling the normal
|
|
non-placement ``::operator new``, except that it allows certain optimizations
|
|
that the C++ standard does not permit for a direct function call to
|
|
``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
|
|
merging allocations).
|
|
|
|
Likewise, ``__builtin_operator_delete`` deallocates memory just like a
|
|
non-class *delete-expression*, and is exactly like directly calling the normal
|
|
``::operator delete``, except that it permits optimizations. Only the unsized
|
|
form of ``__builtin_operator_delete`` is currently available.
|
|
|
|
These builtins are intended for use in the implementation of ``std::allocator``
|
|
and other similar allocation libraries, and are only available in C++.
|
|
|
|
Multiprecision Arithmetic Builtins
|
|
----------------------------------
|
|
|
|
Clang provides a set of builtins which expose multiprecision arithmetic in a
|
|
manner amenable to C. They all have the following form:
|
|
|
|
.. code-block:: c
|
|
|
|
unsigned x = ..., y = ..., carryin = ..., carryout;
|
|
unsigned sum = __builtin_addc(x, y, carryin, &carryout);
|
|
|
|
Thus one can form a multiprecision addition chain in the following manner:
|
|
|
|
.. code-block:: c
|
|
|
|
unsigned *x, *y, *z, carryin=0, carryout;
|
|
z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
|
|
carryin = carryout;
|
|
z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
|
|
carryin = carryout;
|
|
z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
|
|
carryin = carryout;
|
|
z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
|
|
|
|
The complete list of builtins are:
|
|
|
|
.. code-block:: c
|
|
|
|
unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
|
|
unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
|
|
unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
|
|
unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
|
|
unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
|
|
unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
|
|
unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
|
|
unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
|
|
unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
|
|
unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
|
|
|
|
Checked Arithmetic Builtins
|
|
---------------------------
|
|
|
|
Clang provides a set of builtins that implement checked arithmetic for security
|
|
critical applications in a manner that is fast and easily expressable in C. As
|
|
an example of their usage:
|
|
|
|
.. code-block:: c
|
|
|
|
errorcode_t security_critical_application(...) {
|
|
unsigned x, y, result;
|
|
...
|
|
if (__builtin_mul_overflow(x, y, &result))
|
|
return kErrorCodeHackers;
|
|
...
|
|
use_multiply(result);
|
|
...
|
|
}
|
|
|
|
Clang provides the following checked arithmetic builtins:
|
|
|
|
.. code-block:: c
|
|
|
|
bool __builtin_add_overflow (type1 x, type2 y, type3 *sum);
|
|
bool __builtin_sub_overflow (type1 x, type2 y, type3 *diff);
|
|
bool __builtin_mul_overflow (type1 x, type2 y, type3 *prod);
|
|
bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
|
|
bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
|
|
bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
|
|
bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
|
|
bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
|
|
bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
|
|
bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
|
|
bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
|
|
bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
|
|
bool __builtin_sadd_overflow (int x, int y, int *sum);
|
|
bool __builtin_saddl_overflow (long x, long y, long *sum);
|
|
bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
|
|
bool __builtin_ssub_overflow (int x, int y, int *diff);
|
|
bool __builtin_ssubl_overflow (long x, long y, long *diff);
|
|
bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
|
|
bool __builtin_smul_overflow (int x, int y, int *prod);
|
|
bool __builtin_smull_overflow (long x, long y, long *prod);
|
|
bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
|
|
|
|
Each builtin performs the specified mathematical operation on the
|
|
first two arguments and stores the result in the third argument. If
|
|
possible, the result will be equal to mathematically-correct result
|
|
and the builtin will return 0. Otherwise, the builtin will return
|
|
1 and the result will be equal to the unique value that is equivalent
|
|
to the mathematically-correct result modulo two raised to the *k*
|
|
power, where *k* is the number of bits in the result type. The
|
|
behavior of these builtins is well-defined for all argument values.
|
|
|
|
The first three builtins work generically for operands of any integer type,
|
|
including boolean types. The operands need not have the same type as each
|
|
other, or as the result. The other builtins may implicitly promote or
|
|
convert their operands before performing the operation.
|
|
|
|
Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc.
|
|
|
|
Floating point builtins
|
|
---------------------------------------
|
|
|
|
``__builtin_canonicalize``
|
|
--------------------------
|
|
|
|
.. code-block:: c
|
|
|
|
double __builtin_canonicalize(double);
|
|
float __builtin_canonicalizef(float);
|
|
long double__builtin_canonicalizel(long double);
|
|
|
|
Returns the platform specific canonical encoding of a floating point
|
|
number. This canonicalization is useful for implementing certain
|
|
numeric primitives such as frexp. See `LLVM canonicalize intrinsic
|
|
<http://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic>`_ for
|
|
more information on the semantics.
|
|
|
|
String builtins
|
|
---------------
|
|
|
|
Clang provides constant expression evaluation support for builtins forms of
|
|
the following functions from the C standard library ``<string.h>`` header:
|
|
|
|
* ``memchr``
|
|
* ``memcmp``
|
|
* ``strchr``
|
|
* ``strcmp``
|
|
* ``strlen``
|
|
* ``strncmp``
|
|
* ``wcschr``
|
|
* ``wcscmp``
|
|
* ``wcslen``
|
|
* ``wcsncmp``
|
|
* ``wmemchr``
|
|
* ``wmemcmp``
|
|
|
|
In each case, the builtin form has the name of the C library function prefixed
|
|
by ``__builtin_``. Example:
|
|
|
|
.. code-block:: c
|
|
|
|
void *p = __builtin_memchr("foobar", 'b', 5);
|
|
|
|
In addition to the above, one further builtin is provided:
|
|
|
|
.. code-block:: c
|
|
|
|
char *__builtin_char_memchr(const char *haystack, int needle, size_t size);
|
|
|
|
``__builtin_char_memchr(a, b, c)`` is identical to
|
|
``(char*)__builtin_memchr(a, b, c)`` except that its use is permitted within
|
|
constant expressions in C++11 onwards (where a cast from ``void*`` to ``char*``
|
|
is disallowed in general).
|
|
|
|
Support for constant expression evaluation for the above builtins be detected
|
|
with ``__has_feature(cxx_constexpr_string_builtins)``.
|
|
|
|
.. _langext-__c11_atomic:
|
|
|
|
__c11_atomic builtins
|
|
---------------------
|
|
|
|
Clang provides a set of builtins which are intended to be used to implement
|
|
C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
|
|
``_explicit`` form of the corresponding C11 operation, and are named with a
|
|
``__c11_`` prefix. The supported operations, and the differences from
|
|
the corresponding C11 operations, are:
|
|
|
|
* ``__c11_atomic_init``
|
|
* ``__c11_atomic_thread_fence``
|
|
* ``__c11_atomic_signal_fence``
|
|
* ``__c11_atomic_is_lock_free`` (The argument is the size of the
|
|
``_Atomic(...)`` object, instead of its address)
|
|
* ``__c11_atomic_store``
|
|
* ``__c11_atomic_load``
|
|
* ``__c11_atomic_exchange``
|
|
* ``__c11_atomic_compare_exchange_strong``
|
|
* ``__c11_atomic_compare_exchange_weak``
|
|
* ``__c11_atomic_fetch_add``
|
|
* ``__c11_atomic_fetch_sub``
|
|
* ``__c11_atomic_fetch_and``
|
|
* ``__c11_atomic_fetch_or``
|
|
* ``__c11_atomic_fetch_xor``
|
|
|
|
The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
|
|
``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
|
|
provided, with values corresponding to the enumerators of C11's
|
|
``memory_order`` enumeration.
|
|
|
|
(Note that Clang additionally provides GCC-compatible ``__atomic_*``
|
|
builtins and OpenCL 2.0 ``__opencl_atomic_*`` builtins. The OpenCL 2.0
|
|
atomic builtins are an explicit form of the corresponding OpenCL 2.0
|
|
builtin function, and are named with a ``__opencl_`` prefix. The macros
|
|
``__OPENCL_MEMORY_SCOPE_WORK_ITEM``, ``__OPENCL_MEMORY_SCOPE_WORK_GROUP``,
|
|
``__OPENCL_MEMORY_SCOPE_DEVICE``, ``__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES``,
|
|
and ``__OPENCL_MEMORY_SCOPE_SUB_GROUP`` are provided, with values
|
|
corresponding to the enumerators of OpenCL's ``memory_scope`` enumeration.)
|
|
|
|
Low-level ARM exclusive memory builtins
|
|
---------------------------------------
|
|
|
|
Clang provides overloaded builtins giving direct access to the three key ARM
|
|
instructions for implementing atomic operations.
|
|
|
|
.. code-block:: c
|
|
|
|
T __builtin_arm_ldrex(const volatile T *addr);
|
|
T __builtin_arm_ldaex(const volatile T *addr);
|
|
int __builtin_arm_strex(T val, volatile T *addr);
|
|
int __builtin_arm_stlex(T val, volatile T *addr);
|
|
void __builtin_arm_clrex(void);
|
|
|
|
The types ``T`` currently supported are:
|
|
|
|
* Integer types with width at most 64 bits (or 128 bits on AArch64).
|
|
* Floating-point types
|
|
* Pointer types.
|
|
|
|
Note that the compiler does not guarantee it will not insert stores which clear
|
|
the exclusive monitor in between an ``ldrex`` type operation and its paired
|
|
``strex``. In practice this is only usually a risk when the extra store is on
|
|
the same cache line as the variable being modified and Clang will only insert
|
|
stack stores on its own, so it is best not to use these operations on variables
|
|
with automatic storage duration.
|
|
|
|
Also, loads and stores may be implicit in code written between the ``ldrex`` and
|
|
``strex``. Clang will not necessarily mitigate the effects of these either, so
|
|
care should be exercised.
|
|
|
|
For these reasons the higher level atomic primitives should be preferred where
|
|
possible.
|
|
|
|
Non-temporal load/store builtins
|
|
--------------------------------
|
|
|
|
Clang provides overloaded builtins allowing generation of non-temporal memory
|
|
accesses.
|
|
|
|
.. code-block:: c
|
|
|
|
T __builtin_nontemporal_load(T *addr);
|
|
void __builtin_nontemporal_store(T value, T *addr);
|
|
|
|
The types ``T`` currently supported are:
|
|
|
|
* Integer types.
|
|
* Floating-point types.
|
|
* Vector types.
|
|
|
|
Note that the compiler does not guarantee that non-temporal loads or stores
|
|
will be used.
|
|
|
|
C++ Coroutines support builtins
|
|
--------------------------------
|
|
|
|
.. warning::
|
|
This is a work in progress. Compatibility across Clang/LLVM releases is not
|
|
guaranteed.
|
|
|
|
Clang provides experimental builtins to support C++ Coroutines as defined by
|
|
http://wg21.link/P0057. The following four are intended to be used by the
|
|
standard library to implement `std::experimental::coroutine_handle` type.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c
|
|
|
|
void __builtin_coro_resume(void *addr);
|
|
void __builtin_coro_destroy(void *addr);
|
|
bool __builtin_coro_done(void *addr);
|
|
void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)
|
|
|
|
**Example of use**:
|
|
|
|
.. code-block:: c++
|
|
|
|
template <> struct coroutine_handle<void> {
|
|
void resume() const { __builtin_coro_resume(ptr); }
|
|
void destroy() const { __builtin_coro_destroy(ptr); }
|
|
bool done() const { return __builtin_coro_done(ptr); }
|
|
// ...
|
|
protected:
|
|
void *ptr;
|
|
};
|
|
|
|
template <typename Promise> struct coroutine_handle : coroutine_handle<> {
|
|
// ...
|
|
Promise &promise() const {
|
|
return *reinterpret_cast<Promise *>(
|
|
__builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
|
|
}
|
|
static coroutine_handle from_promise(Promise &promise) {
|
|
coroutine_handle p;
|
|
p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
|
|
/*from-promise=*/true);
|
|
return p;
|
|
}
|
|
};
|
|
|
|
|
|
Other coroutine builtins are either for internal clang use or for use during
|
|
development of the coroutine feature. See `Coroutines in LLVM
|
|
<http://llvm.org/docs/Coroutines.html#intrinsics>`_ for
|
|
more information on their semantics. Note that builtins matching the intrinsics
|
|
that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc,
|
|
llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to
|
|
an appropriate value during the emission.
|
|
|
|
**Syntax**:
|
|
|
|
.. code-block:: c
|
|
|
|
size_t __builtin_coro_size()
|
|
void *__builtin_coro_frame()
|
|
void *__builtin_coro_free(void *coro_frame)
|
|
|
|
void *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
|
|
bool __builtin_coro_alloc()
|
|
void *__builtin_coro_begin(void *memory)
|
|
void __builtin_coro_end(void *coro_frame, bool unwind)
|
|
char __builtin_coro_suspend(bool final)
|
|
bool __builtin_coro_param(void *original, void *copy)
|
|
|
|
Note that there is no builtin matching the `llvm.coro.save` intrinsic. LLVM
|
|
automatically will insert one if the first argument to `llvm.coro.suspend` is
|
|
token `none`. If a user calls `__builin_suspend`, clang will insert `token none`
|
|
as the first argument to the intrinsic.
|
|
|
|
Non-standard C++11 Attributes
|
|
=============================
|
|
|
|
Clang's non-standard C++11 attributes live in the ``clang`` attribute
|
|
namespace.
|
|
|
|
Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
|
|
are accepted with the ``__attribute__((foo))`` syntax are also accepted as
|
|
``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
|
|
(see the list of `GCC function attributes
|
|
<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
|
|
attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
|
|
`GCC type attributes
|
|
<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
|
|
implementation, these attributes must appertain to the *declarator-id* in a
|
|
declaration, which means they must go either at the start of the declaration or
|
|
immediately after the name being declared.
|
|
|
|
For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
|
|
also applies the GNU ``noreturn`` attribute to ``f``.
|
|
|
|
.. code-block:: c++
|
|
|
|
[[gnu::unused]] int a, f [[gnu::noreturn]] ();
|
|
|
|
Target-Specific Extensions
|
|
==========================
|
|
|
|
Clang supports some language features conditionally on some targets.
|
|
|
|
ARM/AArch64 Language Extensions
|
|
-------------------------------
|
|
|
|
Memory Barrier Intrinsics
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
|
|
in the `ARM C Language Extensions Release 2.0
|
|
<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
|
|
Note that these intrinsics are implemented as motion barriers that block
|
|
reordering of memory accesses and side effect instructions. Other instructions
|
|
like simple arithmetic may be reordered around the intrinsic. If you expect to
|
|
have no reordering at all, use inline assembly instead.
|
|
|
|
X86/X86-64 Language Extensions
|
|
------------------------------
|
|
|
|
The X86 backend has these language extensions:
|
|
|
|
Memory references to specified segments
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Annotating a pointer with address space #256 causes it to be code generated
|
|
relative to the X86 GS segment register, address space #257 causes it to be
|
|
relative to the X86 FS segment, and address space #258 causes it to be
|
|
relative to the X86 SS segment. Note that this is a very very low-level
|
|
feature that should only be used if you know what you're doing (for example in
|
|
an OS kernel).
|
|
|
|
Here is an example:
|
|
|
|
.. code-block:: c++
|
|
|
|
#define GS_RELATIVE __attribute__((address_space(256)))
|
|
int foo(int GS_RELATIVE *P) {
|
|
return *P;
|
|
}
|
|
|
|
Which compiles to (on X86-32):
|
|
|
|
.. code-block:: gas
|
|
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
movl %gs:(%eax), %eax
|
|
ret
|
|
|
|
Extensions for Static Analysis
|
|
==============================
|
|
|
|
Clang supports additional attributes that are useful for documenting program
|
|
invariants and rules for static analysis tools, such as the `Clang Static
|
|
Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
|
|
in the analyzer's `list of source-level annotations
|
|
<http://clang-analyzer.llvm.org/annotations.html>`_.
|
|
|
|
|
|
Extensions for Dynamic Analysis
|
|
===============================
|
|
|
|
Use ``__has_feature(address_sanitizer)`` to check if the code is being built
|
|
with :doc:`AddressSanitizer`.
|
|
|
|
Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
|
|
with :doc:`ThreadSanitizer`.
|
|
|
|
Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
|
|
with :doc:`MemorySanitizer`.
|
|
|
|
Use ``__has_feature(safe_stack)`` to check if the code is being built
|
|
with :doc:`SafeStack`.
|
|
|
|
|
|
Extensions for selectively disabling optimization
|
|
=================================================
|
|
|
|
Clang provides a mechanism for selectively disabling optimizations in functions
|
|
and methods.
|
|
|
|
To disable optimizations in a single function definition, the GNU-style or C++11
|
|
non-standard attribute ``optnone`` can be used.
|
|
|
|
.. code-block:: c++
|
|
|
|
// The following functions will not be optimized.
|
|
// GNU-style attribute
|
|
__attribute__((optnone)) int foo() {
|
|
// ... code
|
|
}
|
|
// C++11 attribute
|
|
[[clang::optnone]] int bar() {
|
|
// ... code
|
|
}
|
|
|
|
To facilitate disabling optimization for a range of function definitions, a
|
|
range-based pragma is provided. Its syntax is ``#pragma clang optimize``
|
|
followed by ``off`` or ``on``.
|
|
|
|
All function definitions in the region between an ``off`` and the following
|
|
``on`` will be decorated with the ``optnone`` attribute unless doing so would
|
|
conflict with explicit attributes already present on the function (e.g. the
|
|
ones that control inlining).
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang optimize off
|
|
// This function will be decorated with optnone.
|
|
int foo() {
|
|
// ... code
|
|
}
|
|
|
|
// optnone conflicts with always_inline, so bar() will not be decorated.
|
|
__attribute__((always_inline)) int bar() {
|
|
// ... code
|
|
}
|
|
#pragma clang optimize on
|
|
|
|
If no ``on`` is found to close an ``off`` region, the end of the region is the
|
|
end of the compilation unit.
|
|
|
|
Note that a stray ``#pragma clang optimize on`` does not selectively enable
|
|
additional optimizations when compiling at low optimization levels. This feature
|
|
can only be used to selectively disable optimizations.
|
|
|
|
The pragma has an effect on functions only at the point of their definition; for
|
|
function templates, this means that the state of the pragma at the point of an
|
|
instantiation is not necessarily relevant. Consider the following example:
|
|
|
|
.. code-block:: c++
|
|
|
|
template<typename T> T twice(T t) {
|
|
return 2 * t;
|
|
}
|
|
|
|
#pragma clang optimize off
|
|
template<typename T> T thrice(T t) {
|
|
return 3 * t;
|
|
}
|
|
|
|
int container(int a, int b) {
|
|
return twice(a) + thrice(b);
|
|
}
|
|
#pragma clang optimize on
|
|
|
|
In this example, the definition of the template function ``twice`` is outside
|
|
the pragma region, whereas the definition of ``thrice`` is inside the region.
|
|
The ``container`` function is also in the region and will not be optimized, but
|
|
it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
|
|
these two instantiations, ``twice`` will be optimized (because its definition
|
|
was outside the region) and ``thrice`` will not be optimized.
|
|
|
|
Extensions for loop hint optimizations
|
|
======================================
|
|
|
|
The ``#pragma clang loop`` directive is used to specify hints for optimizing the
|
|
subsequent for, while, do-while, or c++11 range-based for loop. The directive
|
|
provides options for vectorization, interleaving, unrolling and
|
|
distribution. Loop hints can be specified before any loop and will be ignored if
|
|
the optimization is not safe to apply.
|
|
|
|
Vectorization and Interleaving
|
|
------------------------------
|
|
|
|
A vectorized loop performs multiple iterations of the original loop
|
|
in parallel using vector instructions. The instruction set of the target
|
|
processor determines which vector instructions are available and their vector
|
|
widths. This restricts the types of loops that can be vectorized. The vectorizer
|
|
automatically determines if the loop is safe and profitable to vectorize. A
|
|
vector instruction cost model is used to select the vector width.
|
|
|
|
Interleaving multiple loop iterations allows modern processors to further
|
|
improve instruction-level parallelism (ILP) using advanced hardware features,
|
|
such as multiple execution units and out-of-order execution. The vectorizer uses
|
|
a cost model that depends on the register pressure and generated code size to
|
|
select the interleaving count.
|
|
|
|
Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
|
|
by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
|
|
manually enable vectorization or interleaving.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop vectorize(enable)
|
|
#pragma clang loop interleave(enable)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
The vector width is specified by ``vectorize_width(_value_)`` and the interleave
|
|
count is specified by ``interleave_count(_value_)``, where
|
|
_value_ is a positive integer. This is useful for specifying the optimal
|
|
width/count of the set of target architectures supported by your application.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop vectorize_width(2)
|
|
#pragma clang loop interleave_count(2)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
Specifying a width/count of 1 disables the optimization, and is equivalent to
|
|
``vectorize(disable)`` or ``interleave(disable)``.
|
|
|
|
Loop Unrolling
|
|
--------------
|
|
|
|
Unrolling a loop reduces the loop control overhead and exposes more
|
|
opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
|
|
eliminates the loop and replaces it with an enumerated sequence of loop
|
|
iterations. Full unrolling is only possible if the loop trip count is known at
|
|
compile time. Partial unrolling replicates the loop body within the loop and
|
|
reduces the trip count.
|
|
|
|
If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the
|
|
loop if the trip count is known at compile time. If the fully unrolled code size
|
|
is greater than an internal limit the loop will be partially unrolled up to this
|
|
limit. If the trip count is not known at compile time the loop will be partially
|
|
unrolled with a heuristically chosen unroll factor.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop unroll(enable)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
|
|
loop if the trip count is known at compile time identically to
|
|
``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled
|
|
if the loop count is not known at compile time.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop unroll(full)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
|
|
_value_ is a positive integer. If this value is greater than the trip count the
|
|
loop will be fully unrolled. Otherwise the loop is partially unrolled subject
|
|
to the same code size limit as with ``unroll(enable)``.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop unroll_count(8)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
|
|
|
|
Loop Distribution
|
|
-----------------
|
|
|
|
Loop Distribution allows splitting a loop into multiple loops. This is
|
|
beneficial for example when the entire loop cannot be vectorized but some of the
|
|
resulting loops can.
|
|
|
|
If ``distribute(enable))`` is specified and the loop has memory dependencies
|
|
that inhibit vectorization, the compiler will attempt to isolate the offending
|
|
operations into a new loop. This optimization is not enabled by default, only
|
|
loops marked with the pragma are considered.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop distribute(enable)
|
|
for (i = 0; i < N; ++i) {
|
|
S1: A[i + 1] = A[i] + B[i];
|
|
S2: C[i] = D[i] * E[i];
|
|
}
|
|
|
|
This loop will be split into two loops between statements S1 and S2. The
|
|
second loop containing S2 will be vectorized.
|
|
|
|
Loop Distribution is currently not enabled by default in the optimizer because
|
|
it can hurt performance in some cases. For example, instruction-level
|
|
parallelism could be reduced by sequentializing the execution of the
|
|
statements S1 and S2 above.
|
|
|
|
If Loop Distribution is turned on globally with
|
|
``-mllvm -enable-loop-distribution``, specifying ``distribute(disable)`` can
|
|
be used the disable it on a per-loop basis.
|
|
|
|
Additional Information
|
|
----------------------
|
|
|
|
For convenience multiple loop hints can be specified on a single line.
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang loop vectorize_width(4) interleave_count(8)
|
|
for(...) {
|
|
...
|
|
}
|
|
|
|
If an optimization cannot be applied any hints that apply to it will be ignored.
|
|
For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
|
|
proven safe to vectorize. To identify and diagnose optimization issues use
|
|
`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
|
|
user guide for details.
|
|
|
|
Extensions to specify floating-point flags
|
|
====================================================
|
|
|
|
The ``#pragma clang fp`` pragma allows floating-point options to be specified
|
|
for a section of the source code. This pragma can only appear at file scope or
|
|
at the start of a compound statement (excluding comments). When using within a
|
|
compound statement, the pragma is active within the scope of the compound
|
|
statement.
|
|
|
|
Currently, only FP contraction can be controlled with the pragma. ``#pragma
|
|
clang fp contract`` specifies whether the compiler should contract a multiply
|
|
and an addition (or subtraction) into a fused FMA operation when supported by
|
|
the target.
|
|
|
|
The pragma can take three values: ``on``, ``fast`` and ``off``. The ``on``
|
|
option is identical to using ``#pragma STDC FP_CONTRACT(ON)`` and it allows
|
|
fusion as specified the language standard. The ``fast`` option allows fusiong
|
|
in cases when the language standard does not make this possible (e.g. across
|
|
statements in C)
|
|
|
|
.. code-block:: c++
|
|
|
|
for(...) {
|
|
#pragma clang fp contract(fast)
|
|
a = b[i] * c[i];
|
|
d[i] += a;
|
|
}
|
|
|
|
|
|
The pragma can also be used with ``off`` which turns FP contraction off for a
|
|
section of the code. This can be useful when fast contraction is otherwise
|
|
enabled for the translation unit with the ``-ffp-contract=fast`` flag.
|
|
|
|
Specifying an attribute for multiple declarations (#pragma clang attribute)
|
|
===========================================================================
|
|
|
|
The ``#pragma clang attribute`` directive can be used to apply an attribute to
|
|
multiple declarations. The ``#pragma clang attribute push`` variation of the
|
|
directive pushes a new attribute to the attribute stack. The declarations that
|
|
follow the pragma receive the attributes that are on the attribute stack, until
|
|
the stack is cleared using a ``#pragma clang attribute pop`` directive. Multiple
|
|
push directives can be nested inside each other.
|
|
|
|
The attributes that are used in the ``#pragma clang attribute`` directives
|
|
can be written using the GNU-style syntax:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang attribute push(__attribute__((annotate("custom"))), apply_to = function)
|
|
|
|
void function(); // The function now has the annotate("custom") attribute
|
|
|
|
#pragma clang attribute pop
|
|
|
|
The attributes can also be written using the C++11 style syntax:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang attribute push([[noreturn]], apply_to = function)
|
|
|
|
void function(); // The function now has the [[noreturn]] attribute
|
|
|
|
#pragma clang attribute pop
|
|
|
|
The ``__declspec`` style syntax is also supported:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang attribute push(__declspec(dllexport), apply_to = function)
|
|
|
|
void function(); // The function now has the __declspec(dllexport) attribute
|
|
|
|
#pragma clang attribute pop
|
|
|
|
A single push directive accepts only one attribute regardless of the syntax
|
|
used.
|
|
|
|
Subject Match Rules
|
|
-------------------
|
|
|
|
The set of declarations that receive a single attribute from the attribute stack
|
|
depends on the subject match rules that were specified in the pragma. Subject
|
|
match rules are specified after the attribute. The compiler expects an
|
|
identifier that corresponds to the subject set specifier. The ``apply_to``
|
|
specifier is currently the only supported subject set specifier. It allows you
|
|
to specify match rules that form a subset of the attribute's allowed subject
|
|
set, i.e. the compiler doesn't require all of the attribute's subjects. For
|
|
example, an attribute like ``[[nodiscard]]`` whose subject set includes
|
|
``enum``, ``record`` and ``hasType(functionType)``, requires the presence of at
|
|
least one of these rules after ``apply_to``:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang attribute push([[nodiscard]], apply_to = enum)
|
|
|
|
enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]]
|
|
|
|
struct Record1 { }; // The struct will *not* receive [[nodiscard]]
|
|
|
|
#pragma clang attribute pop
|
|
|
|
#pragma clang attribute push([[nodiscard]], apply_to = any(record, enum))
|
|
|
|
enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]]
|
|
|
|
struct Record2 { }; // The struct *will* receive [[nodiscard]]
|
|
|
|
#pragma clang attribute pop
|
|
|
|
// This is an error, since [[nodiscard]] can't be applied to namespaces:
|
|
#pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace))
|
|
|
|
#pragma clang attribute pop
|
|
|
|
Multiple match rules can be specified using the ``any`` match rule, as shown
|
|
in the example above. The ``any`` rule applies attributes to all declarations
|
|
that are matched by at least one of the rules in the ``any``. It doesn't nest
|
|
and can't be used inside the other match rules. Redundant match rules or rules
|
|
that conflict with one another should not be used inside of ``any``.
|
|
|
|
Clang supports the following match rules:
|
|
|
|
- ``function``: Can be used to apply attributes to functions. This includes C++
|
|
member functions, static functions, operators, and constructors/destructors.
|
|
|
|
- ``function(is_member)``: Can be used to apply attributes to C++ member
|
|
functions. This includes members like static functions, operators, and
|
|
constructors/destructors.
|
|
|
|
- ``hasType(functionType)``: Can be used to apply attributes to functions, C++
|
|
member functions, and variables/fields whose type is a function pointer. It
|
|
does not apply attributes to Objective-C methods or blocks.
|
|
|
|
- ``type_alias``: Can be used to apply attributes to ``typedef`` declarations
|
|
and C++11 type aliases.
|
|
|
|
- ``record``: Can be used to apply attributes to ``struct``, ``class``, and
|
|
``union`` declarations.
|
|
|
|
- ``record(unless(is_union))``: Can be used to apply attributes only to
|
|
``struct`` and ``class`` declarations.
|
|
|
|
- ``enum``: Can be be used to apply attributes to enumeration declarations.
|
|
|
|
- ``enum_constant``: Can be used to apply attributes to enumerators.
|
|
|
|
- ``variable``: Can be used to apply attributes to variables, including
|
|
local variables, parameters, global variables, and static member variables.
|
|
It does not apply attributes to instance member variables or Objective-C
|
|
ivars.
|
|
|
|
- ``variable(is_thread_local)``: Can be used to apply attributes to thread-local
|
|
variables only.
|
|
|
|
- ``variable(is_global)``: Can be used to apply attributes to global variables
|
|
only.
|
|
|
|
- ``variable(is_parameter)``: Can be used to apply attributes to parameters
|
|
only.
|
|
|
|
- ``variable(unless(is_parameter))``: Can be used to apply attributes to all
|
|
the variables that are not parameters.
|
|
|
|
- ``field``: Can be used to apply attributes to non-static member variables
|
|
in a record. This includes Objective-C ivars.
|
|
|
|
- ``namespace``: Can be used to apply attributes to ``namespace`` declarations.
|
|
|
|
- ``objc_interface``: Can be used to apply attributes to ``@interface``
|
|
declarations.
|
|
|
|
- ``objc_protocol``: Can be used to apply attributes to ``@protocol``
|
|
declarations.
|
|
|
|
- ``objc_category``: Can be used to apply attributes to category declarations,
|
|
including class extensions.
|
|
|
|
- ``objc_method``: Can be used to apply attributes to Objective-C methods,
|
|
including instance and class methods. Implicit methods like implicit property
|
|
getters and setters do not receive the attribute.
|
|
|
|
- ``objc_method(is_instance)``: Can be used to apply attributes to Objective-C
|
|
instance methods.
|
|
|
|
- ``objc_property``: Can be used to apply attributes to ``@property``
|
|
declarations.
|
|
|
|
- ``block``: Can be used to apply attributes to block declarations. This does
|
|
not include variables/fields of block pointer type.
|
|
|
|
The use of ``unless`` in match rules is currently restricted to a strict set of
|
|
sub-rules that are used by the supported attributes. That means that even though
|
|
``variable(unless(is_parameter))`` is a valid match rule,
|
|
``variable(unless(is_thread_local))`` is not.
|
|
|
|
Supported Attributes
|
|
--------------------
|
|
|
|
Not all attributes can be used with the ``#pragma clang attribute`` directive.
|
|
Notably, statement attributes like ``[[fallthrough]]`` or type attributes
|
|
like ``address_space`` aren't supported by this directive. You can determine
|
|
whether or not an attribute is supported by the pragma by referring to the
|
|
:doc:`individual documentation for that attribute <AttributeReference>`.
|
|
|
|
The attributes are applied to all matching declarations individually, even when
|
|
the attribute is semantically incorrect. The attributes that aren't applied to
|
|
any declaration are not verified semantically.
|
|
|
|
Specifying section names for global objects (#pragma clang section)
|
|
===================================================================
|
|
|
|
The ``#pragma clang section`` directive provides a means to assign section-names
|
|
to global variables, functions and static variables.
|
|
|
|
The section names can be specified as:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"
|
|
|
|
The section names can be reverted back to default name by supplying an empty
|
|
string to the section kind, for example:
|
|
|
|
.. code-block:: c++
|
|
|
|
#pragma clang section bss="" data="" text="" rodata=""
|
|
|
|
The ``#pragma clang section`` directive obeys the following rules:
|
|
|
|
* The pragma applies to all global variable, statics and function declarations
|
|
from the pragma to the end of the translation unit.
|
|
|
|
* The pragma clang section is enabled automatically, without need of any flags.
|
|
|
|
* This feature is only defined to work sensibly for ELF targets.
|
|
|
|
* If section name is specified through _attribute_((section("myname"))), then
|
|
the attribute name gains precedence.
|
|
|
|
* Global variables that are initialized to zero will be placed in the named
|
|
bss section, if one is present.
|
|
|
|
* The ``#pragma clang section`` directive does not does try to infer section-kind
|
|
from the name. For example, naming a section "``.bss.mySec``" does NOT mean
|
|
it will be a bss section name.
|
|
|
|
* The decision about which section-kind applies to each global is taken in the back-end.
|
|
Once the section-kind is known, appropriate section name, as specified by the user using
|
|
``#pragma clang section`` directive, is applied to that global.
|