forked from OSchip/llvm-project
2463 lines
92 KiB
C++
2463 lines
92 KiB
C++
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for statements.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
|
|
Expr *E = expr.get();
|
|
if (!E) // FIXME: FullExprArg has no error state?
|
|
return StmtError();
|
|
|
|
// C99 6.8.3p2: The expression in an expression statement is evaluated as a
|
|
// void expression for its side effects. Conversion to void allows any
|
|
// operand, even incomplete types.
|
|
|
|
// Same thing in for stmt first clause (when expr) and third clause.
|
|
return Owned(static_cast<Stmt*>(E));
|
|
}
|
|
|
|
|
|
StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
|
|
bool HasLeadingEmptyMacro) {
|
|
return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
|
|
}
|
|
|
|
StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
|
|
SourceLocation EndLoc) {
|
|
DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
|
|
|
|
// If we have an invalid decl, just return an error.
|
|
if (DG.isNull()) return StmtError();
|
|
|
|
return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
|
|
}
|
|
|
|
void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
|
|
DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
|
|
|
|
// If we have an invalid decl, just return.
|
|
if (DG.isNull() || !DG.isSingleDecl()) return;
|
|
VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
|
|
|
|
// suppress any potential 'unused variable' warning.
|
|
var->setUsed();
|
|
|
|
// foreach variables are never actually initialized in the way that
|
|
// the parser came up with.
|
|
var->setInit(0);
|
|
|
|
// In ARC, we don't need to retain the iteration variable of a fast
|
|
// enumeration loop. Rather than actually trying to catch that
|
|
// during declaration processing, we remove the consequences here.
|
|
if (getLangOptions().ObjCAutoRefCount) {
|
|
QualType type = var->getType();
|
|
|
|
// Only do this if we inferred the lifetime. Inferred lifetime
|
|
// will show up as a local qualifier because explicit lifetime
|
|
// should have shown up as an AttributedType instead.
|
|
if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
|
|
// Add 'const' and mark the variable as pseudo-strong.
|
|
var->setType(type.withConst());
|
|
var->setARCPseudoStrong(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
|
|
///
|
|
/// Adding a cast to void (or other expression wrappers) will prevent the
|
|
/// warning from firing.
|
|
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
|
|
SourceLocation Loc;
|
|
bool IsNotEqual, CanAssign;
|
|
|
|
if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
|
|
if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
|
|
return false;
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
IsNotEqual = Op->getOpcode() == BO_NE;
|
|
CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
|
|
} else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
|
|
if (Op->getOperator() != OO_EqualEqual &&
|
|
Op->getOperator() != OO_ExclaimEqual)
|
|
return false;
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
|
|
CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
|
|
} else {
|
|
// Not a typo-prone comparison.
|
|
return false;
|
|
}
|
|
|
|
// Suppress warnings when the operator, suspicious as it may be, comes from
|
|
// a macro expansion.
|
|
if (Loc.isMacroID())
|
|
return false;
|
|
|
|
S.Diag(Loc, diag::warn_unused_comparison)
|
|
<< (unsigned)IsNotEqual << E->getSourceRange();
|
|
|
|
// If the LHS is a plausible entity to assign to, provide a fixit hint to
|
|
// correct common typos.
|
|
if (CanAssign) {
|
|
if (IsNotEqual)
|
|
S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
|
|
<< FixItHint::CreateReplacement(Loc, "|=");
|
|
else
|
|
S.Diag(Loc, diag::note_equality_comparison_to_assign)
|
|
<< FixItHint::CreateReplacement(Loc, "=");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
|
|
if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
|
|
return DiagnoseUnusedExprResult(Label->getSubStmt());
|
|
|
|
const Expr *E = dyn_cast_or_null<Expr>(S);
|
|
if (!E)
|
|
return;
|
|
|
|
SourceLocation Loc;
|
|
SourceRange R1, R2;
|
|
if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
|
|
return;
|
|
|
|
// Okay, we have an unused result. Depending on what the base expression is,
|
|
// we might want to make a more specific diagnostic. Check for one of these
|
|
// cases now.
|
|
unsigned DiagID = diag::warn_unused_expr;
|
|
if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
|
|
E = Temps->getSubExpr();
|
|
if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
|
|
E = TempExpr->getSubExpr();
|
|
|
|
if (DiagnoseUnusedComparison(*this, E))
|
|
return;
|
|
|
|
E = E->IgnoreParenImpCasts();
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
if (E->getType()->isVoidType())
|
|
return;
|
|
|
|
// If the callee has attribute pure, const, or warn_unused_result, warn with
|
|
// a more specific message to make it clear what is happening.
|
|
if (const Decl *FD = CE->getCalleeDecl()) {
|
|
if (FD->getAttr<WarnUnusedResultAttr>()) {
|
|
Diag(Loc, diag::warn_unused_result) << R1 << R2;
|
|
return;
|
|
}
|
|
if (FD->getAttr<PureAttr>()) {
|
|
Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
|
|
return;
|
|
}
|
|
if (FD->getAttr<ConstAttr>()) {
|
|
Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
|
|
return;
|
|
}
|
|
}
|
|
} else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
|
|
if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
|
|
Diag(Loc, diag::err_arc_unused_init_message) << R1;
|
|
return;
|
|
}
|
|
const ObjCMethodDecl *MD = ME->getMethodDecl();
|
|
if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
|
|
Diag(Loc, diag::warn_unused_result) << R1 << R2;
|
|
return;
|
|
}
|
|
} else if (isa<ObjCPropertyRefExpr>(E)) {
|
|
DiagID = diag::warn_unused_property_expr;
|
|
} else if (const CXXFunctionalCastExpr *FC
|
|
= dyn_cast<CXXFunctionalCastExpr>(E)) {
|
|
if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
|
|
isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
|
|
return;
|
|
}
|
|
// Diagnose "(void*) blah" as a typo for "(void) blah".
|
|
else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
|
|
TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
|
|
QualType T = TI->getType();
|
|
|
|
// We really do want to use the non-canonical type here.
|
|
if (T == Context.VoidPtrTy) {
|
|
PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
|
|
|
|
Diag(Loc, diag::warn_unused_voidptr)
|
|
<< FixItHint::CreateRemoval(TL.getStarLoc());
|
|
return;
|
|
}
|
|
}
|
|
|
|
DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
|
|
MultiStmtArg elts, bool isStmtExpr) {
|
|
unsigned NumElts = elts.size();
|
|
Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
|
|
// If we're in C89 mode, check that we don't have any decls after stmts. If
|
|
// so, emit an extension diagnostic.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
|
|
// Note that __extension__ can be around a decl.
|
|
unsigned i = 0;
|
|
// Skip over all declarations.
|
|
for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
|
|
/*empty*/;
|
|
|
|
// We found the end of the list or a statement. Scan for another declstmt.
|
|
for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
|
|
/*empty*/;
|
|
|
|
if (i != NumElts) {
|
|
Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
|
|
Diag(D->getLocation(), diag::ext_mixed_decls_code);
|
|
}
|
|
}
|
|
// Warn about unused expressions in statements.
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// Ignore statements that are last in a statement expression.
|
|
if (isStmtExpr && i == NumElts - 1)
|
|
continue;
|
|
|
|
DiagnoseUnusedExprResult(Elts[i]);
|
|
}
|
|
|
|
return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
|
|
SourceLocation DotDotDotLoc, Expr *RHSVal,
|
|
SourceLocation ColonLoc) {
|
|
assert((LHSVal != 0) && "missing expression in case statement");
|
|
|
|
// C99 6.8.4.2p3: The expression shall be an integer constant.
|
|
// However, GCC allows any evaluatable integer expression.
|
|
if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
|
|
VerifyIntegerConstantExpression(LHSVal))
|
|
return StmtError();
|
|
|
|
// GCC extension: The expression shall be an integer constant.
|
|
|
|
if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
|
|
VerifyIntegerConstantExpression(RHSVal)) {
|
|
RHSVal = 0; // Recover by just forgetting about it.
|
|
}
|
|
|
|
if (getCurFunction()->SwitchStack.empty()) {
|
|
Diag(CaseLoc, diag::err_case_not_in_switch);
|
|
return StmtError();
|
|
}
|
|
|
|
CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
|
|
ColonLoc);
|
|
getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
|
|
return Owned(CS);
|
|
}
|
|
|
|
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
|
|
void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
|
|
DiagnoseUnusedExprResult(SubStmt);
|
|
|
|
CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
|
|
CS->setSubStmt(SubStmt);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
|
|
Stmt *SubStmt, Scope *CurScope) {
|
|
DiagnoseUnusedExprResult(SubStmt);
|
|
|
|
if (getCurFunction()->SwitchStack.empty()) {
|
|
Diag(DefaultLoc, diag::err_default_not_in_switch);
|
|
return Owned(SubStmt);
|
|
}
|
|
|
|
DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
|
|
getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
|
|
return Owned(DS);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
|
|
SourceLocation ColonLoc, Stmt *SubStmt) {
|
|
|
|
// If the label was multiply defined, reject it now.
|
|
if (TheDecl->getStmt()) {
|
|
Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
|
|
Diag(TheDecl->getLocation(), diag::note_previous_definition);
|
|
return Owned(SubStmt);
|
|
}
|
|
|
|
// Otherwise, things are good. Fill in the declaration and return it.
|
|
LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
|
|
TheDecl->setStmt(LS);
|
|
if (!TheDecl->isGnuLocal())
|
|
TheDecl->setLocation(IdentLoc);
|
|
return Owned(LS);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
|
|
Stmt *thenStmt, SourceLocation ElseLoc,
|
|
Stmt *elseStmt) {
|
|
ExprResult CondResult(CondVal.release());
|
|
|
|
VarDecl *ConditionVar = 0;
|
|
if (CondVar) {
|
|
ConditionVar = cast<VarDecl>(CondVar);
|
|
CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
|
|
if (CondResult.isInvalid())
|
|
return StmtError();
|
|
}
|
|
Expr *ConditionExpr = CondResult.takeAs<Expr>();
|
|
if (!ConditionExpr)
|
|
return StmtError();
|
|
|
|
DiagnoseUnusedExprResult(thenStmt);
|
|
|
|
// Warn if the if block has a null body without an else value.
|
|
// this helps prevent bugs due to typos, such as
|
|
// if (condition);
|
|
// do_stuff();
|
|
//
|
|
if (!elseStmt) {
|
|
if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
|
|
// But do not warn if the body is a macro that expands to nothing, e.g:
|
|
//
|
|
// #define CALL(x)
|
|
// if (condition)
|
|
// CALL(0);
|
|
//
|
|
if (!stmt->hasLeadingEmptyMacro())
|
|
Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
|
|
}
|
|
|
|
DiagnoseUnusedExprResult(elseStmt);
|
|
|
|
return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
|
|
thenStmt, ElseLoc, elseStmt));
|
|
}
|
|
|
|
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
|
|
/// the specified width and sign. If an overflow occurs, detect it and emit
|
|
/// the specified diagnostic.
|
|
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
|
|
unsigned NewWidth, bool NewSign,
|
|
SourceLocation Loc,
|
|
unsigned DiagID) {
|
|
// Perform a conversion to the promoted condition type if needed.
|
|
if (NewWidth > Val.getBitWidth()) {
|
|
// If this is an extension, just do it.
|
|
Val = Val.extend(NewWidth);
|
|
Val.setIsSigned(NewSign);
|
|
|
|
// If the input was signed and negative and the output is
|
|
// unsigned, don't bother to warn: this is implementation-defined
|
|
// behavior.
|
|
// FIXME: Introduce a second, default-ignored warning for this case?
|
|
} else if (NewWidth < Val.getBitWidth()) {
|
|
// If this is a truncation, check for overflow.
|
|
llvm::APSInt ConvVal(Val);
|
|
ConvVal = ConvVal.trunc(NewWidth);
|
|
ConvVal.setIsSigned(NewSign);
|
|
ConvVal = ConvVal.extend(Val.getBitWidth());
|
|
ConvVal.setIsSigned(Val.isSigned());
|
|
if (ConvVal != Val)
|
|
Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
|
|
|
|
// Regardless of whether a diagnostic was emitted, really do the
|
|
// truncation.
|
|
Val = Val.trunc(NewWidth);
|
|
Val.setIsSigned(NewSign);
|
|
} else if (NewSign != Val.isSigned()) {
|
|
// Convert the sign to match the sign of the condition. This can cause
|
|
// overflow as well: unsigned(INTMIN)
|
|
// We don't diagnose this overflow, because it is implementation-defined
|
|
// behavior.
|
|
// FIXME: Introduce a second, default-ignored warning for this case?
|
|
llvm::APSInt OldVal(Val);
|
|
Val.setIsSigned(NewSign);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct CaseCompareFunctor {
|
|
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
|
|
const llvm::APSInt &RHS) {
|
|
return LHS.first < RHS;
|
|
}
|
|
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
|
|
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
|
|
return LHS.first < RHS.first;
|
|
}
|
|
bool operator()(const llvm::APSInt &LHS,
|
|
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
|
|
return LHS < RHS.first;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// CmpCaseVals - Comparison predicate for sorting case values.
|
|
///
|
|
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
|
|
const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
|
|
if (lhs.first < rhs.first)
|
|
return true;
|
|
|
|
if (lhs.first == rhs.first &&
|
|
lhs.second->getCaseLoc().getRawEncoding()
|
|
< rhs.second->getCaseLoc().getRawEncoding())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// CmpEnumVals - Comparison predicate for sorting enumeration values.
|
|
///
|
|
static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
|
|
const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
|
|
{
|
|
return lhs.first < rhs.first;
|
|
}
|
|
|
|
/// EqEnumVals - Comparison preficate for uniqing enumeration values.
|
|
///
|
|
static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
|
|
const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
|
|
{
|
|
return lhs.first == rhs.first;
|
|
}
|
|
|
|
/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
|
|
/// potentially integral-promoted expression @p expr.
|
|
static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
|
|
if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
|
|
expr = cleanups->getSubExpr();
|
|
while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
|
|
if (impcast->getCastKind() != CK_IntegralCast) break;
|
|
expr = impcast->getSubExpr();
|
|
}
|
|
return expr->getType();
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
|
|
Decl *CondVar) {
|
|
ExprResult CondResult;
|
|
|
|
VarDecl *ConditionVar = 0;
|
|
if (CondVar) {
|
|
ConditionVar = cast<VarDecl>(CondVar);
|
|
CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
|
|
if (CondResult.isInvalid())
|
|
return StmtError();
|
|
|
|
Cond = CondResult.release();
|
|
}
|
|
|
|
if (!Cond)
|
|
return StmtError();
|
|
|
|
CondResult
|
|
= ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
|
|
PDiag(diag::err_typecheck_statement_requires_integer),
|
|
PDiag(diag::err_switch_incomplete_class_type)
|
|
<< Cond->getSourceRange(),
|
|
PDiag(diag::err_switch_explicit_conversion),
|
|
PDiag(diag::note_switch_conversion),
|
|
PDiag(diag::err_switch_multiple_conversions),
|
|
PDiag(diag::note_switch_conversion),
|
|
PDiag(0));
|
|
if (CondResult.isInvalid()) return StmtError();
|
|
Cond = CondResult.take();
|
|
|
|
// C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
|
|
CondResult = UsualUnaryConversions(Cond);
|
|
if (CondResult.isInvalid()) return StmtError();
|
|
Cond = CondResult.take();
|
|
|
|
if (!CondVar) {
|
|
CheckImplicitConversions(Cond, SwitchLoc);
|
|
CondResult = MaybeCreateExprWithCleanups(Cond);
|
|
if (CondResult.isInvalid())
|
|
return StmtError();
|
|
Cond = CondResult.take();
|
|
}
|
|
|
|
getCurFunction()->setHasBranchIntoScope();
|
|
|
|
SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
|
|
getCurFunction()->SwitchStack.push_back(SS);
|
|
return Owned(SS);
|
|
}
|
|
|
|
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
|
|
if (Val.getBitWidth() < BitWidth)
|
|
Val = Val.extend(BitWidth);
|
|
else if (Val.getBitWidth() > BitWidth)
|
|
Val = Val.trunc(BitWidth);
|
|
Val.setIsSigned(IsSigned);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
|
|
Stmt *BodyStmt) {
|
|
SwitchStmt *SS = cast<SwitchStmt>(Switch);
|
|
assert(SS == getCurFunction()->SwitchStack.back() &&
|
|
"switch stack missing push/pop!");
|
|
|
|
SS->setBody(BodyStmt, SwitchLoc);
|
|
getCurFunction()->SwitchStack.pop_back();
|
|
|
|
Expr *CondExpr = SS->getCond();
|
|
if (!CondExpr) return StmtError();
|
|
|
|
QualType CondType = CondExpr->getType();
|
|
|
|
Expr *CondExprBeforePromotion = CondExpr;
|
|
QualType CondTypeBeforePromotion =
|
|
GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
|
|
|
|
// C++ 6.4.2.p2:
|
|
// Integral promotions are performed (on the switch condition).
|
|
//
|
|
// A case value unrepresentable by the original switch condition
|
|
// type (before the promotion) doesn't make sense, even when it can
|
|
// be represented by the promoted type. Therefore we need to find
|
|
// the pre-promotion type of the switch condition.
|
|
if (!CondExpr->isTypeDependent()) {
|
|
// We have already converted the expression to an integral or enumeration
|
|
// type, when we started the switch statement. If we don't have an
|
|
// appropriate type now, just return an error.
|
|
if (!CondType->isIntegralOrEnumerationType())
|
|
return StmtError();
|
|
|
|
if (CondExpr->isKnownToHaveBooleanValue()) {
|
|
// switch(bool_expr) {...} is often a programmer error, e.g.
|
|
// switch(n && mask) { ... } // Doh - should be "n & mask".
|
|
// One can always use an if statement instead of switch(bool_expr).
|
|
Diag(SwitchLoc, diag::warn_bool_switch_condition)
|
|
<< CondExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
// Get the bitwidth of the switched-on value before promotions. We must
|
|
// convert the integer case values to this width before comparison.
|
|
bool HasDependentValue
|
|
= CondExpr->isTypeDependent() || CondExpr->isValueDependent();
|
|
unsigned CondWidth
|
|
= HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
|
|
bool CondIsSigned
|
|
= CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
|
|
|
|
// Accumulate all of the case values in a vector so that we can sort them
|
|
// and detect duplicates. This vector contains the APInt for the case after
|
|
// it has been converted to the condition type.
|
|
typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
|
|
CaseValsTy CaseVals;
|
|
|
|
// Keep track of any GNU case ranges we see. The APSInt is the low value.
|
|
typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
|
|
CaseRangesTy CaseRanges;
|
|
|
|
DefaultStmt *TheDefaultStmt = 0;
|
|
|
|
bool CaseListIsErroneous = false;
|
|
|
|
for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
|
|
SC = SC->getNextSwitchCase()) {
|
|
|
|
if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
|
|
if (TheDefaultStmt) {
|
|
Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
|
|
Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
|
|
|
|
// FIXME: Remove the default statement from the switch block so that
|
|
// we'll return a valid AST. This requires recursing down the AST and
|
|
// finding it, not something we are set up to do right now. For now,
|
|
// just lop the entire switch stmt out of the AST.
|
|
CaseListIsErroneous = true;
|
|
}
|
|
TheDefaultStmt = DS;
|
|
|
|
} else {
|
|
CaseStmt *CS = cast<CaseStmt>(SC);
|
|
|
|
// We already verified that the expression has a i-c-e value (C99
|
|
// 6.8.4.2p3) - get that value now.
|
|
Expr *Lo = CS->getLHS();
|
|
|
|
if (Lo->isTypeDependent() || Lo->isValueDependent()) {
|
|
HasDependentValue = true;
|
|
break;
|
|
}
|
|
|
|
llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
|
|
|
|
// Convert the value to the same width/sign as the condition.
|
|
ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
|
|
Lo->getLocStart(),
|
|
diag::warn_case_value_overflow);
|
|
|
|
// If the LHS is not the same type as the condition, insert an implicit
|
|
// cast.
|
|
Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
|
|
CS->setLHS(Lo);
|
|
|
|
// If this is a case range, remember it in CaseRanges, otherwise CaseVals.
|
|
if (CS->getRHS()) {
|
|
if (CS->getRHS()->isTypeDependent() ||
|
|
CS->getRHS()->isValueDependent()) {
|
|
HasDependentValue = true;
|
|
break;
|
|
}
|
|
CaseRanges.push_back(std::make_pair(LoVal, CS));
|
|
} else
|
|
CaseVals.push_back(std::make_pair(LoVal, CS));
|
|
}
|
|
}
|
|
|
|
if (!HasDependentValue) {
|
|
// If we don't have a default statement, check whether the
|
|
// condition is constant.
|
|
llvm::APSInt ConstantCondValue;
|
|
bool HasConstantCond = false;
|
|
bool ShouldCheckConstantCond = false;
|
|
if (!HasDependentValue && !TheDefaultStmt) {
|
|
Expr::EvalResult Result;
|
|
HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
|
|
if (HasConstantCond) {
|
|
assert(Result.Val.isInt() && "switch condition evaluated to non-int");
|
|
ConstantCondValue = Result.Val.getInt();
|
|
ShouldCheckConstantCond = true;
|
|
|
|
assert(ConstantCondValue.getBitWidth() == CondWidth &&
|
|
ConstantCondValue.isSigned() == CondIsSigned);
|
|
}
|
|
}
|
|
|
|
// Sort all the scalar case values so we can easily detect duplicates.
|
|
std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
|
|
|
|
if (!CaseVals.empty()) {
|
|
for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
|
|
if (ShouldCheckConstantCond &&
|
|
CaseVals[i].first == ConstantCondValue)
|
|
ShouldCheckConstantCond = false;
|
|
|
|
if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
|
|
// If we have a duplicate, report it.
|
|
Diag(CaseVals[i].second->getLHS()->getLocStart(),
|
|
diag::err_duplicate_case) << CaseVals[i].first.toString(10);
|
|
Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
|
|
diag::note_duplicate_case_prev);
|
|
// FIXME: We really want to remove the bogus case stmt from the
|
|
// substmt, but we have no way to do this right now.
|
|
CaseListIsErroneous = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Detect duplicate case ranges, which usually don't exist at all in
|
|
// the first place.
|
|
if (!CaseRanges.empty()) {
|
|
// Sort all the case ranges by their low value so we can easily detect
|
|
// overlaps between ranges.
|
|
std::stable_sort(CaseRanges.begin(), CaseRanges.end());
|
|
|
|
// Scan the ranges, computing the high values and removing empty ranges.
|
|
std::vector<llvm::APSInt> HiVals;
|
|
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
|
|
llvm::APSInt &LoVal = CaseRanges[i].first;
|
|
CaseStmt *CR = CaseRanges[i].second;
|
|
Expr *Hi = CR->getRHS();
|
|
llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
|
|
|
|
// Convert the value to the same width/sign as the condition.
|
|
ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
|
|
Hi->getLocStart(),
|
|
diag::warn_case_value_overflow);
|
|
|
|
// If the LHS is not the same type as the condition, insert an implicit
|
|
// cast.
|
|
Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
|
|
CR->setRHS(Hi);
|
|
|
|
// If the low value is bigger than the high value, the case is empty.
|
|
if (LoVal > HiVal) {
|
|
Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
|
|
<< SourceRange(CR->getLHS()->getLocStart(),
|
|
Hi->getLocEnd());
|
|
CaseRanges.erase(CaseRanges.begin()+i);
|
|
--i, --e;
|
|
continue;
|
|
}
|
|
|
|
if (ShouldCheckConstantCond &&
|
|
LoVal <= ConstantCondValue &&
|
|
ConstantCondValue <= HiVal)
|
|
ShouldCheckConstantCond = false;
|
|
|
|
HiVals.push_back(HiVal);
|
|
}
|
|
|
|
// Rescan the ranges, looking for overlap with singleton values and other
|
|
// ranges. Since the range list is sorted, we only need to compare case
|
|
// ranges with their neighbors.
|
|
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
|
|
llvm::APSInt &CRLo = CaseRanges[i].first;
|
|
llvm::APSInt &CRHi = HiVals[i];
|
|
CaseStmt *CR = CaseRanges[i].second;
|
|
|
|
// Check to see whether the case range overlaps with any
|
|
// singleton cases.
|
|
CaseStmt *OverlapStmt = 0;
|
|
llvm::APSInt OverlapVal(32);
|
|
|
|
// Find the smallest value >= the lower bound. If I is in the
|
|
// case range, then we have overlap.
|
|
CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
|
|
CaseVals.end(), CRLo,
|
|
CaseCompareFunctor());
|
|
if (I != CaseVals.end() && I->first < CRHi) {
|
|
OverlapVal = I->first; // Found overlap with scalar.
|
|
OverlapStmt = I->second;
|
|
}
|
|
|
|
// Find the smallest value bigger than the upper bound.
|
|
I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
|
|
if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
|
|
OverlapVal = (I-1)->first; // Found overlap with scalar.
|
|
OverlapStmt = (I-1)->second;
|
|
}
|
|
|
|
// Check to see if this case stmt overlaps with the subsequent
|
|
// case range.
|
|
if (i && CRLo <= HiVals[i-1]) {
|
|
OverlapVal = HiVals[i-1]; // Found overlap with range.
|
|
OverlapStmt = CaseRanges[i-1].second;
|
|
}
|
|
|
|
if (OverlapStmt) {
|
|
// If we have a duplicate, report it.
|
|
Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
|
|
<< OverlapVal.toString(10);
|
|
Diag(OverlapStmt->getLHS()->getLocStart(),
|
|
diag::note_duplicate_case_prev);
|
|
// FIXME: We really want to remove the bogus case stmt from the
|
|
// substmt, but we have no way to do this right now.
|
|
CaseListIsErroneous = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Complain if we have a constant condition and we didn't find a match.
|
|
if (!CaseListIsErroneous && ShouldCheckConstantCond) {
|
|
// TODO: it would be nice if we printed enums as enums, chars as
|
|
// chars, etc.
|
|
Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
|
|
<< ConstantCondValue.toString(10)
|
|
<< CondExpr->getSourceRange();
|
|
}
|
|
|
|
// Check to see if switch is over an Enum and handles all of its
|
|
// values. We only issue a warning if there is not 'default:', but
|
|
// we still do the analysis to preserve this information in the AST
|
|
// (which can be used by flow-based analyes).
|
|
//
|
|
const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
|
|
|
|
// If switch has default case, then ignore it.
|
|
if (!CaseListIsErroneous && !HasConstantCond && ET) {
|
|
const EnumDecl *ED = ET->getDecl();
|
|
typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
|
|
EnumValsTy;
|
|
EnumValsTy EnumVals;
|
|
|
|
// Gather all enum values, set their type and sort them,
|
|
// allowing easier comparison with CaseVals.
|
|
for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
|
|
EDI != ED->enumerator_end(); ++EDI) {
|
|
llvm::APSInt Val = EDI->getInitVal();
|
|
AdjustAPSInt(Val, CondWidth, CondIsSigned);
|
|
EnumVals.push_back(std::make_pair(Val, *EDI));
|
|
}
|
|
std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
|
|
EnumValsTy::iterator EIend =
|
|
std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
|
|
|
|
// See which case values aren't in enum.
|
|
// TODO: we might want to check whether case values are out of the
|
|
// enum even if we don't want to check whether all cases are handled.
|
|
if (!TheDefaultStmt) {
|
|
EnumValsTy::const_iterator EI = EnumVals.begin();
|
|
for (CaseValsTy::const_iterator CI = CaseVals.begin();
|
|
CI != CaseVals.end(); CI++) {
|
|
while (EI != EIend && EI->first < CI->first)
|
|
EI++;
|
|
if (EI == EIend || EI->first > CI->first)
|
|
Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
|
|
<< ED->getDeclName();
|
|
}
|
|
// See which of case ranges aren't in enum
|
|
EI = EnumVals.begin();
|
|
for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
|
|
RI != CaseRanges.end() && EI != EIend; RI++) {
|
|
while (EI != EIend && EI->first < RI->first)
|
|
EI++;
|
|
|
|
if (EI == EIend || EI->first != RI->first) {
|
|
Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
|
|
<< ED->getDeclName();
|
|
}
|
|
|
|
llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
|
|
AdjustAPSInt(Hi, CondWidth, CondIsSigned);
|
|
while (EI != EIend && EI->first < Hi)
|
|
EI++;
|
|
if (EI == EIend || EI->first != Hi)
|
|
Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
|
|
<< ED->getDeclName();
|
|
}
|
|
}
|
|
|
|
// Check which enum vals aren't in switch
|
|
CaseValsTy::const_iterator CI = CaseVals.begin();
|
|
CaseRangesTy::const_iterator RI = CaseRanges.begin();
|
|
bool hasCasesNotInSwitch = false;
|
|
|
|
SmallVector<DeclarationName,8> UnhandledNames;
|
|
|
|
for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
|
|
// Drop unneeded case values
|
|
llvm::APSInt CIVal;
|
|
while (CI != CaseVals.end() && CI->first < EI->first)
|
|
CI++;
|
|
|
|
if (CI != CaseVals.end() && CI->first == EI->first)
|
|
continue;
|
|
|
|
// Drop unneeded case ranges
|
|
for (; RI != CaseRanges.end(); RI++) {
|
|
llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
|
|
AdjustAPSInt(Hi, CondWidth, CondIsSigned);
|
|
if (EI->first <= Hi)
|
|
break;
|
|
}
|
|
|
|
if (RI == CaseRanges.end() || EI->first < RI->first) {
|
|
hasCasesNotInSwitch = true;
|
|
if (!TheDefaultStmt)
|
|
UnhandledNames.push_back(EI->second->getDeclName());
|
|
}
|
|
}
|
|
|
|
// Produce a nice diagnostic if multiple values aren't handled.
|
|
switch (UnhandledNames.size()) {
|
|
case 0: break;
|
|
case 1:
|
|
Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
|
|
<< UnhandledNames[0];
|
|
break;
|
|
case 2:
|
|
Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
|
|
<< UnhandledNames[0] << UnhandledNames[1];
|
|
break;
|
|
case 3:
|
|
Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
|
|
<< UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
|
|
break;
|
|
default:
|
|
Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
|
|
<< (unsigned)UnhandledNames.size()
|
|
<< UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
|
|
break;
|
|
}
|
|
|
|
if (!hasCasesNotInSwitch)
|
|
SS->setAllEnumCasesCovered();
|
|
}
|
|
}
|
|
|
|
// FIXME: If the case list was broken is some way, we don't have a good system
|
|
// to patch it up. Instead, just return the whole substmt as broken.
|
|
if (CaseListIsErroneous)
|
|
return StmtError();
|
|
|
|
return Owned(SS);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
|
|
Decl *CondVar, Stmt *Body) {
|
|
ExprResult CondResult(Cond.release());
|
|
|
|
VarDecl *ConditionVar = 0;
|
|
if (CondVar) {
|
|
ConditionVar = cast<VarDecl>(CondVar);
|
|
CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
|
|
if (CondResult.isInvalid())
|
|
return StmtError();
|
|
}
|
|
Expr *ConditionExpr = CondResult.take();
|
|
if (!ConditionExpr)
|
|
return StmtError();
|
|
|
|
DiagnoseUnusedExprResult(Body);
|
|
|
|
return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
|
|
Body, WhileLoc));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
|
|
SourceLocation WhileLoc, SourceLocation CondLParen,
|
|
Expr *Cond, SourceLocation CondRParen) {
|
|
assert(Cond && "ActOnDoStmt(): missing expression");
|
|
|
|
ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
|
|
if (CondResult.isInvalid() || CondResult.isInvalid())
|
|
return StmtError();
|
|
Cond = CondResult.take();
|
|
|
|
CheckImplicitConversions(Cond, DoLoc);
|
|
CondResult = MaybeCreateExprWithCleanups(Cond);
|
|
if (CondResult.isInvalid())
|
|
return StmtError();
|
|
Cond = CondResult.take();
|
|
|
|
DiagnoseUnusedExprResult(Body);
|
|
|
|
return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
|
|
Stmt *First, FullExprArg second, Decl *secondVar,
|
|
FullExprArg third,
|
|
SourceLocation RParenLoc, Stmt *Body) {
|
|
if (!getLangOptions().CPlusPlus) {
|
|
if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
|
|
// C99 6.8.5p3: The declaration part of a 'for' statement shall only
|
|
// declare identifiers for objects having storage class 'auto' or
|
|
// 'register'.
|
|
for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
|
|
DI!=DE; ++DI) {
|
|
VarDecl *VD = dyn_cast<VarDecl>(*DI);
|
|
if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
|
|
VD = 0;
|
|
if (VD == 0)
|
|
Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
|
|
// FIXME: mark decl erroneous!
|
|
}
|
|
}
|
|
}
|
|
|
|
ExprResult SecondResult(second.release());
|
|
VarDecl *ConditionVar = 0;
|
|
if (secondVar) {
|
|
ConditionVar = cast<VarDecl>(secondVar);
|
|
SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
|
|
if (SecondResult.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
Expr *Third = third.release().takeAs<Expr>();
|
|
|
|
DiagnoseUnusedExprResult(First);
|
|
DiagnoseUnusedExprResult(Third);
|
|
DiagnoseUnusedExprResult(Body);
|
|
|
|
return Owned(new (Context) ForStmt(Context, First,
|
|
SecondResult.take(), ConditionVar,
|
|
Third, Body, ForLoc, LParenLoc,
|
|
RParenLoc));
|
|
}
|
|
|
|
/// In an Objective C collection iteration statement:
|
|
/// for (x in y)
|
|
/// x can be an arbitrary l-value expression. Bind it up as a
|
|
/// full-expression.
|
|
StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
|
|
CheckImplicitConversions(E);
|
|
ExprResult Result = MaybeCreateExprWithCleanups(E);
|
|
if (Result.isInvalid()) return StmtError();
|
|
return Owned(static_cast<Stmt*>(Result.get()));
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
|
|
assert(collection);
|
|
|
|
// Bail out early if we've got a type-dependent expression.
|
|
if (collection->isTypeDependent()) return Owned(collection);
|
|
|
|
// Perform normal l-value conversion.
|
|
ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
|
|
if (result.isInvalid())
|
|
return ExprError();
|
|
collection = result.take();
|
|
|
|
// The operand needs to have object-pointer type.
|
|
// TODO: should we do a contextual conversion?
|
|
const ObjCObjectPointerType *pointerType =
|
|
collection->getType()->getAs<ObjCObjectPointerType>();
|
|
if (!pointerType)
|
|
return Diag(forLoc, diag::err_collection_expr_type)
|
|
<< collection->getType() << collection->getSourceRange();
|
|
|
|
// Check that the operand provides
|
|
// - countByEnumeratingWithState:objects:count:
|
|
const ObjCObjectType *objectType = pointerType->getObjectType();
|
|
ObjCInterfaceDecl *iface = objectType->getInterface();
|
|
|
|
// If we have a forward-declared type, we can't do this check.
|
|
if (iface && iface->isForwardDecl()) {
|
|
// This is ill-formed under ARC.
|
|
if (getLangOptions().ObjCAutoRefCount) {
|
|
Diag(forLoc, diag::err_arc_collection_forward)
|
|
<< pointerType->getPointeeType() << collection->getSourceRange();
|
|
}
|
|
|
|
// Otherwise, if we have any useful type information, check that
|
|
// the type declares the appropriate method.
|
|
} else if (iface || !objectType->qual_empty()) {
|
|
IdentifierInfo *selectorIdents[] = {
|
|
&Context.Idents.get("countByEnumeratingWithState"),
|
|
&Context.Idents.get("objects"),
|
|
&Context.Idents.get("count")
|
|
};
|
|
Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
|
|
|
|
ObjCMethodDecl *method = 0;
|
|
|
|
// If there's an interface, look in both the public and private APIs.
|
|
if (iface) {
|
|
method = iface->lookupInstanceMethod(selector);
|
|
if (!method) method = LookupPrivateInstanceMethod(selector, iface);
|
|
}
|
|
|
|
// Also check protocol qualifiers.
|
|
if (!method)
|
|
method = LookupMethodInQualifiedType(selector, pointerType,
|
|
/*instance*/ true);
|
|
|
|
// If we didn't find it anywhere, give up.
|
|
if (!method) {
|
|
Diag(forLoc, diag::warn_collection_expr_type)
|
|
<< collection->getType() << selector << collection->getSourceRange();
|
|
}
|
|
|
|
// TODO: check for an incompatible signature?
|
|
}
|
|
|
|
// Wrap up any cleanups in the expression.
|
|
return Owned(MaybeCreateExprWithCleanups(collection));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
|
|
SourceLocation LParenLoc,
|
|
Stmt *First, Expr *Second,
|
|
SourceLocation RParenLoc, Stmt *Body) {
|
|
if (First) {
|
|
QualType FirstType;
|
|
if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
|
|
if (!DS->isSingleDecl())
|
|
return StmtError(Diag((*DS->decl_begin())->getLocation(),
|
|
diag::err_toomany_element_decls));
|
|
|
|
VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
|
|
FirstType = D->getType();
|
|
// C99 6.8.5p3: The declaration part of a 'for' statement shall only
|
|
// declare identifiers for objects having storage class 'auto' or
|
|
// 'register'.
|
|
if (!D->hasLocalStorage())
|
|
return StmtError(Diag(D->getLocation(),
|
|
diag::err_non_variable_decl_in_for));
|
|
} else {
|
|
Expr *FirstE = cast<Expr>(First);
|
|
if (!FirstE->isTypeDependent() && !FirstE->isLValue())
|
|
return StmtError(Diag(First->getLocStart(),
|
|
diag::err_selector_element_not_lvalue)
|
|
<< First->getSourceRange());
|
|
|
|
FirstType = static_cast<Expr*>(First)->getType();
|
|
}
|
|
if (!FirstType->isDependentType() &&
|
|
!FirstType->isObjCObjectPointerType() &&
|
|
!FirstType->isBlockPointerType())
|
|
Diag(ForLoc, diag::err_selector_element_type)
|
|
<< FirstType << First->getSourceRange();
|
|
}
|
|
|
|
return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
|
|
ForLoc, RParenLoc));
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum BeginEndFunction {
|
|
BEF_begin,
|
|
BEF_end
|
|
};
|
|
|
|
/// Build a variable declaration for a for-range statement.
|
|
static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
|
|
QualType Type, const char *Name) {
|
|
DeclContext *DC = SemaRef.CurContext;
|
|
IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
|
|
TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
|
|
VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
|
|
TInfo, SC_Auto, SC_None);
|
|
Decl->setImplicit();
|
|
return Decl;
|
|
}
|
|
|
|
/// Finish building a variable declaration for a for-range statement.
|
|
/// \return true if an error occurs.
|
|
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
|
|
SourceLocation Loc, int diag) {
|
|
// Deduce the type for the iterator variable now rather than leaving it to
|
|
// AddInitializerToDecl, so we can produce a more suitable diagnostic.
|
|
TypeSourceInfo *InitTSI = 0;
|
|
if (Init->getType()->isVoidType() ||
|
|
!SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
|
|
SemaRef.Diag(Loc, diag) << Init->getType();
|
|
if (!InitTSI) {
|
|
Decl->setInvalidDecl();
|
|
return true;
|
|
}
|
|
Decl->setTypeSourceInfo(InitTSI);
|
|
Decl->setType(InitTSI->getType());
|
|
|
|
// In ARC, infer lifetime.
|
|
// FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
|
|
// we're doing the equivalent of fast iteration.
|
|
if (SemaRef.getLangOptions().ObjCAutoRefCount &&
|
|
SemaRef.inferObjCARCLifetime(Decl))
|
|
Decl->setInvalidDecl();
|
|
|
|
SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
|
|
/*TypeMayContainAuto=*/false);
|
|
SemaRef.FinalizeDeclaration(Decl);
|
|
SemaRef.CurContext->addHiddenDecl(Decl);
|
|
return false;
|
|
}
|
|
|
|
/// Produce a note indicating which begin/end function was implicitly called
|
|
/// by a C++0x for-range statement. This is often not obvious from the code,
|
|
/// nor from the diagnostics produced when analysing the implicit expressions
|
|
/// required in a for-range statement.
|
|
void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
|
|
BeginEndFunction BEF) {
|
|
CallExpr *CE = dyn_cast<CallExpr>(E);
|
|
if (!CE)
|
|
return;
|
|
FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
|
|
if (!D)
|
|
return;
|
|
SourceLocation Loc = D->getLocation();
|
|
|
|
std::string Description;
|
|
bool IsTemplate = false;
|
|
if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
|
|
Description = SemaRef.getTemplateArgumentBindingsText(
|
|
FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
|
|
IsTemplate = true;
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::note_for_range_begin_end)
|
|
<< BEF << IsTemplate << Description << E->getType();
|
|
}
|
|
|
|
/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
|
|
/// given LookupResult is non-empty, it is assumed to describe a member which
|
|
/// will be invoked. Otherwise, the function will be found via argument
|
|
/// dependent lookup.
|
|
static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
|
|
SourceLocation Loc,
|
|
VarDecl *Decl,
|
|
BeginEndFunction BEF,
|
|
const DeclarationNameInfo &NameInfo,
|
|
LookupResult &MemberLookup,
|
|
Expr *Range) {
|
|
ExprResult CallExpr;
|
|
if (!MemberLookup.empty()) {
|
|
ExprResult MemberRef =
|
|
SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
|
|
/*IsPtr=*/false, CXXScopeSpec(),
|
|
/*Qualifier=*/0, MemberLookup,
|
|
/*TemplateArgs=*/0);
|
|
if (MemberRef.isInvalid())
|
|
return ExprError();
|
|
CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
|
|
Loc, 0);
|
|
if (CallExpr.isInvalid())
|
|
return ExprError();
|
|
} else {
|
|
UnresolvedSet<0> FoundNames;
|
|
// C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
|
|
// std is an associated namespace.
|
|
UnresolvedLookupExpr *Fn =
|
|
UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
|
|
NestedNameSpecifierLoc(), NameInfo,
|
|
/*NeedsADL=*/true, /*Overloaded=*/false,
|
|
FoundNames.begin(), FoundNames.end(),
|
|
/*LookInStdNamespace=*/true);
|
|
CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
|
|
0);
|
|
if (CallExpr.isInvalid()) {
|
|
SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
|
|
<< Range->getType();
|
|
return ExprError();
|
|
}
|
|
}
|
|
if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
|
|
diag::err_for_range_iter_deduction_failure)) {
|
|
NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
|
|
return ExprError();
|
|
}
|
|
return CallExpr;
|
|
}
|
|
|
|
}
|
|
|
|
/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
|
|
///
|
|
/// C++0x [stmt.ranged]:
|
|
/// A range-based for statement is equivalent to
|
|
///
|
|
/// {
|
|
/// auto && __range = range-init;
|
|
/// for ( auto __begin = begin-expr,
|
|
/// __end = end-expr;
|
|
/// __begin != __end;
|
|
/// ++__begin ) {
|
|
/// for-range-declaration = *__begin;
|
|
/// statement
|
|
/// }
|
|
/// }
|
|
///
|
|
/// The body of the loop is not available yet, since it cannot be analysed until
|
|
/// we have determined the type of the for-range-declaration.
|
|
StmtResult
|
|
Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
|
|
Stmt *First, SourceLocation ColonLoc, Expr *Range,
|
|
SourceLocation RParenLoc) {
|
|
if (!First || !Range)
|
|
return StmtError();
|
|
|
|
DeclStmt *DS = dyn_cast<DeclStmt>(First);
|
|
assert(DS && "first part of for range not a decl stmt");
|
|
|
|
if (!DS->isSingleDecl()) {
|
|
Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
|
|
return StmtError();
|
|
}
|
|
if (DS->getSingleDecl()->isInvalidDecl())
|
|
return StmtError();
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
|
|
return StmtError();
|
|
|
|
// Build auto && __range = range-init
|
|
SourceLocation RangeLoc = Range->getLocStart();
|
|
VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
|
|
Context.getAutoRRefDeductType(),
|
|
"__range");
|
|
if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
|
|
diag::err_for_range_deduction_failure))
|
|
return StmtError();
|
|
|
|
// Claim the type doesn't contain auto: we've already done the checking.
|
|
DeclGroupPtrTy RangeGroup =
|
|
BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
|
|
StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
|
|
if (RangeDecl.isInvalid())
|
|
return StmtError();
|
|
|
|
return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
|
|
/*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
|
|
StmtResult
|
|
Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
|
|
Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
|
|
Expr *Inc, Stmt *LoopVarDecl,
|
|
SourceLocation RParenLoc) {
|
|
Scope *S = getCurScope();
|
|
|
|
DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
|
|
VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
|
|
QualType RangeVarType = RangeVar->getType();
|
|
|
|
DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
|
|
VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
|
|
|
|
StmtResult BeginEndDecl = BeginEnd;
|
|
ExprResult NotEqExpr = Cond, IncrExpr = Inc;
|
|
|
|
if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
|
|
SourceLocation RangeLoc = RangeVar->getLocation();
|
|
|
|
ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
|
|
RangeVarType.getNonReferenceType(),
|
|
VK_LValue, ColonLoc);
|
|
if (RangeRef.isInvalid())
|
|
return StmtError();
|
|
|
|
QualType AutoType = Context.getAutoDeductType();
|
|
Expr *Range = RangeVar->getInit();
|
|
if (!Range)
|
|
return StmtError();
|
|
QualType RangeType = Range->getType();
|
|
|
|
if (RequireCompleteType(RangeLoc, RangeType,
|
|
PDiag(diag::err_for_range_incomplete_type)))
|
|
return StmtError();
|
|
|
|
// Build auto __begin = begin-expr, __end = end-expr.
|
|
VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
|
|
"__begin");
|
|
VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
|
|
"__end");
|
|
|
|
// Build begin-expr and end-expr and attach to __begin and __end variables.
|
|
ExprResult BeginExpr, EndExpr;
|
|
if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
|
|
// - if _RangeT is an array type, begin-expr and end-expr are __range and
|
|
// __range + __bound, respectively, where __bound is the array bound. If
|
|
// _RangeT is an array of unknown size or an array of incomplete type,
|
|
// the program is ill-formed;
|
|
|
|
// begin-expr is __range.
|
|
BeginExpr = RangeRef;
|
|
if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
|
|
diag::err_for_range_iter_deduction_failure)) {
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
return StmtError();
|
|
}
|
|
|
|
// Find the array bound.
|
|
ExprResult BoundExpr;
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
|
|
BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
|
|
Context.getPointerDiffType(),
|
|
RangeLoc));
|
|
else if (const VariableArrayType *VAT =
|
|
dyn_cast<VariableArrayType>(UnqAT))
|
|
BoundExpr = VAT->getSizeExpr();
|
|
else {
|
|
// Can't be a DependentSizedArrayType or an IncompleteArrayType since
|
|
// UnqAT is not incomplete and Range is not type-dependent.
|
|
llvm_unreachable("Unexpected array type in for-range");
|
|
}
|
|
|
|
// end-expr is __range + __bound.
|
|
EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
|
|
BoundExpr.get());
|
|
if (EndExpr.isInvalid())
|
|
return StmtError();
|
|
if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
|
|
diag::err_for_range_iter_deduction_failure)) {
|
|
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
|
|
return StmtError();
|
|
}
|
|
} else {
|
|
DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
|
|
ColonLoc);
|
|
DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
|
|
ColonLoc);
|
|
|
|
LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
|
|
LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
|
|
|
|
if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
|
|
// - if _RangeT is a class type, the unqualified-ids begin and end are
|
|
// looked up in the scope of class _RangeT as if by class member access
|
|
// lookup (3.4.5), and if either (or both) finds at least one
|
|
// declaration, begin-expr and end-expr are __range.begin() and
|
|
// __range.end(), respectively;
|
|
LookupQualifiedName(BeginMemberLookup, D);
|
|
LookupQualifiedName(EndMemberLookup, D);
|
|
|
|
if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
|
|
Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
|
|
<< RangeType << BeginMemberLookup.empty();
|
|
return StmtError();
|
|
}
|
|
} else {
|
|
// - otherwise, begin-expr and end-expr are begin(__range) and
|
|
// end(__range), respectively, where begin and end are looked up with
|
|
// argument-dependent lookup (3.4.2). For the purposes of this name
|
|
// lookup, namespace std is an associated namespace.
|
|
}
|
|
|
|
BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
|
|
BEF_begin, BeginNameInfo,
|
|
BeginMemberLookup, RangeRef.get());
|
|
if (BeginExpr.isInvalid())
|
|
return StmtError();
|
|
|
|
EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
|
|
BEF_end, EndNameInfo,
|
|
EndMemberLookup, RangeRef.get());
|
|
if (EndExpr.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
// C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
|
|
QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
|
|
if (!Context.hasSameType(BeginType, EndType)) {
|
|
Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
|
|
<< BeginType << EndType;
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
|
|
}
|
|
|
|
Decl *BeginEndDecls[] = { BeginVar, EndVar };
|
|
// Claim the type doesn't contain auto: we've already done the checking.
|
|
DeclGroupPtrTy BeginEndGroup =
|
|
BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
|
|
BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
|
|
|
|
ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
|
|
BeginType.getNonReferenceType(),
|
|
VK_LValue, ColonLoc);
|
|
ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
|
|
VK_LValue, ColonLoc);
|
|
|
|
// Build and check __begin != __end expression.
|
|
NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
|
|
BeginRef.get(), EndRef.get());
|
|
NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
|
|
NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
|
|
if (NotEqExpr.isInvalid()) {
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
if (!Context.hasSameType(BeginType, EndType))
|
|
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
|
|
return StmtError();
|
|
}
|
|
|
|
// Build and check ++__begin expression.
|
|
IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
|
|
IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
|
|
if (IncrExpr.isInvalid()) {
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
return StmtError();
|
|
}
|
|
|
|
// Build and check *__begin expression.
|
|
ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
|
|
if (DerefExpr.isInvalid()) {
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
return StmtError();
|
|
}
|
|
|
|
// Attach *__begin as initializer for VD.
|
|
if (!LoopVar->isInvalidDecl()) {
|
|
AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
|
|
/*TypeMayContainAuto=*/true);
|
|
if (LoopVar->isInvalidDecl())
|
|
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
|
}
|
|
} else {
|
|
// The range is implicitly used as a placeholder when it is dependent.
|
|
RangeVar->setUsed();
|
|
}
|
|
|
|
return Owned(new (Context) CXXForRangeStmt(RangeDS,
|
|
cast_or_null<DeclStmt>(BeginEndDecl.get()),
|
|
NotEqExpr.take(), IncrExpr.take(),
|
|
LoopVarDS, /*Body=*/0, ForLoc,
|
|
ColonLoc, RParenLoc));
|
|
}
|
|
|
|
/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
|
|
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
|
|
/// body cannot be performed until after the type of the range variable is
|
|
/// determined.
|
|
StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
|
|
if (!S || !B)
|
|
return StmtError();
|
|
|
|
cast<CXXForRangeStmt>(S)->setBody(B);
|
|
return S;
|
|
}
|
|
|
|
StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation LabelLoc,
|
|
LabelDecl *TheDecl) {
|
|
getCurFunction()->setHasBranchIntoScope();
|
|
TheDecl->setUsed();
|
|
return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
|
|
Expr *E) {
|
|
// Convert operand to void*
|
|
if (!E->isTypeDependent()) {
|
|
QualType ETy = E->getType();
|
|
QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
|
|
ExprResult ExprRes = Owned(E);
|
|
AssignConvertType ConvTy =
|
|
CheckSingleAssignmentConstraints(DestTy, ExprRes);
|
|
if (ExprRes.isInvalid())
|
|
return StmtError();
|
|
E = ExprRes.take();
|
|
if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
|
|
return StmtError();
|
|
}
|
|
|
|
getCurFunction()->setHasIndirectGoto();
|
|
|
|
return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
|
|
Scope *S = CurScope->getContinueParent();
|
|
if (!S) {
|
|
// C99 6.8.6.2p1: A break shall appear only in or as a loop body.
|
|
return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
|
|
}
|
|
|
|
return Owned(new (Context) ContinueStmt(ContinueLoc));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
|
|
Scope *S = CurScope->getBreakParent();
|
|
if (!S) {
|
|
// C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
|
|
return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
|
|
}
|
|
|
|
return Owned(new (Context) BreakStmt(BreakLoc));
|
|
}
|
|
|
|
/// \brief Determine whether the given expression is a candidate for
|
|
/// copy elision in either a return statement or a throw expression.
|
|
///
|
|
/// \param ReturnType If we're determining the copy elision candidate for
|
|
/// a return statement, this is the return type of the function. If we're
|
|
/// determining the copy elision candidate for a throw expression, this will
|
|
/// be a NULL type.
|
|
///
|
|
/// \param E The expression being returned from the function or block, or
|
|
/// being thrown.
|
|
///
|
|
/// \param AllowFunctionParameter Whether we allow function parameters to
|
|
/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
|
|
/// we re-use this logic to determine whether we should try to move as part of
|
|
/// a return or throw (which does allow function parameters).
|
|
///
|
|
/// \returns The NRVO candidate variable, if the return statement may use the
|
|
/// NRVO, or NULL if there is no such candidate.
|
|
const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
|
|
Expr *E,
|
|
bool AllowFunctionParameter) {
|
|
QualType ExprType = E->getType();
|
|
// - in a return statement in a function with ...
|
|
// ... a class return type ...
|
|
if (!ReturnType.isNull()) {
|
|
if (!ReturnType->isRecordType())
|
|
return 0;
|
|
// ... the same cv-unqualified type as the function return type ...
|
|
if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
|
|
return 0;
|
|
}
|
|
|
|
// ... the expression is the name of a non-volatile automatic object
|
|
// (other than a function or catch-clause parameter)) ...
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
|
|
if (!DR)
|
|
return 0;
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
if (!VD)
|
|
return 0;
|
|
|
|
if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
|
|
!VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
|
|
!VD->getType().isVolatileQualified() &&
|
|
((VD->getKind() == Decl::Var) ||
|
|
(AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
|
|
return VD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Perform the initialization of a potentially-movable value, which
|
|
/// is the result of return value.
|
|
///
|
|
/// This routine implements C++0x [class.copy]p33, which attempts to treat
|
|
/// returned lvalues as rvalues in certain cases (to prefer move construction),
|
|
/// then falls back to treating them as lvalues if that failed.
|
|
ExprResult
|
|
Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
|
|
const VarDecl *NRVOCandidate,
|
|
QualType ResultType,
|
|
Expr *Value,
|
|
bool AllowNRVO) {
|
|
// C++0x [class.copy]p33:
|
|
// When the criteria for elision of a copy operation are met or would
|
|
// be met save for the fact that the source object is a function
|
|
// parameter, and the object to be copied is designated by an lvalue,
|
|
// overload resolution to select the constructor for the copy is first
|
|
// performed as if the object were designated by an rvalue.
|
|
ExprResult Res = ExprError();
|
|
if (AllowNRVO &&
|
|
(NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
|
|
ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
|
|
Value->getType(), CK_LValueToRValue,
|
|
Value, VK_XValue);
|
|
|
|
Expr *InitExpr = &AsRvalue;
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateCopy(Value->getLocStart(),
|
|
Value->getLocStart());
|
|
InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
|
|
|
|
// [...] If overload resolution fails, or if the type of the first
|
|
// parameter of the selected constructor is not an rvalue reference
|
|
// to the object's type (possibly cv-qualified), overload resolution
|
|
// is performed again, considering the object as an lvalue.
|
|
if (Seq) {
|
|
for (InitializationSequence::step_iterator Step = Seq.step_begin(),
|
|
StepEnd = Seq.step_end();
|
|
Step != StepEnd; ++Step) {
|
|
if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
|
|
continue;
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= cast<CXXConstructorDecl>(Step->Function.Function);
|
|
|
|
const RValueReferenceType *RRefType
|
|
= Constructor->getParamDecl(0)->getType()
|
|
->getAs<RValueReferenceType>();
|
|
|
|
// If we don't meet the criteria, break out now.
|
|
if (!RRefType ||
|
|
!Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
|
|
Context.getTypeDeclType(Constructor->getParent())))
|
|
break;
|
|
|
|
// Promote "AsRvalue" to the heap, since we now need this
|
|
// expression node to persist.
|
|
Value = ImplicitCastExpr::Create(Context, Value->getType(),
|
|
CK_LValueToRValue, Value, 0,
|
|
VK_XValue);
|
|
|
|
// Complete type-checking the initialization of the return type
|
|
// using the constructor we found.
|
|
Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Either we didn't meet the criteria for treating an lvalue as an rvalue,
|
|
// above, or overload resolution failed. Either way, we need to try
|
|
// (again) now with the return value expression as written.
|
|
if (Res.isInvalid())
|
|
Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
|
|
///
|
|
StmtResult
|
|
Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
|
|
// If this is the first return we've seen in the block, infer the type of
|
|
// the block from it.
|
|
BlockScopeInfo *CurBlock = getCurBlock();
|
|
if (CurBlock->ReturnType.isNull()) {
|
|
if (RetValExp) {
|
|
// Don't call UsualUnaryConversions(), since we don't want to do
|
|
// integer promotions here.
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
RetValExp = Result.take();
|
|
|
|
if (!RetValExp->isTypeDependent()) {
|
|
CurBlock->ReturnType = RetValExp->getType();
|
|
if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
|
|
// We have to remove a 'const' added to copied-in variable which was
|
|
// part of the implementation spec. and not the actual qualifier for
|
|
// the variable.
|
|
if (CDRE->isConstQualAdded())
|
|
CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
|
|
}
|
|
} else
|
|
CurBlock->ReturnType = Context.DependentTy;
|
|
} else
|
|
CurBlock->ReturnType = Context.VoidTy;
|
|
}
|
|
QualType FnRetType = CurBlock->ReturnType;
|
|
|
|
if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
|
|
Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
|
|
<< getCurFunctionOrMethodDecl()->getDeclName();
|
|
return StmtError();
|
|
}
|
|
|
|
// Otherwise, verify that this result type matches the previous one. We are
|
|
// pickier with blocks than for normal functions because we don't have GCC
|
|
// compatibility to worry about here.
|
|
const VarDecl *NRVOCandidate = 0;
|
|
if (FnRetType->isDependentType()) {
|
|
// Delay processing for now. TODO: there are lots of dependent
|
|
// types we can conclusively prove aren't void.
|
|
} else if (FnRetType->isVoidType()) {
|
|
if (RetValExp &&
|
|
!(getLangOptions().CPlusPlus &&
|
|
(RetValExp->isTypeDependent() ||
|
|
RetValExp->getType()->isVoidType()))) {
|
|
Diag(ReturnLoc, diag::err_return_block_has_expr);
|
|
RetValExp = 0;
|
|
}
|
|
} else if (!RetValExp) {
|
|
return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
|
|
} else if (!RetValExp->isTypeDependent()) {
|
|
// we have a non-void block with an expression, continue checking
|
|
|
|
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
|
|
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
|
|
// function return.
|
|
|
|
// In C++ the return statement is handled via a copy initialization.
|
|
// the C version of which boils down to CheckSingleAssignmentConstraints.
|
|
NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
|
|
InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
|
|
FnRetType,
|
|
NRVOCandidate != 0);
|
|
ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
|
|
FnRetType, RetValExp);
|
|
if (Res.isInvalid()) {
|
|
// FIXME: Cleanup temporaries here, anyway?
|
|
return StmtError();
|
|
}
|
|
RetValExp = Res.take();
|
|
CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
|
|
}
|
|
|
|
if (RetValExp) {
|
|
CheckImplicitConversions(RetValExp, ReturnLoc);
|
|
RetValExp = MaybeCreateExprWithCleanups(RetValExp);
|
|
}
|
|
ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
|
|
NRVOCandidate);
|
|
|
|
// If we need to check for the named return value optimization, save the
|
|
// return statement in our scope for later processing.
|
|
if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
|
|
!CurContext->isDependentContext())
|
|
FunctionScopes.back()->Returns.push_back(Result);
|
|
|
|
return Owned(Result);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
|
|
// Check for unexpanded parameter packs.
|
|
if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
|
|
return StmtError();
|
|
|
|
if (getCurBlock())
|
|
return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
|
|
|
|
QualType FnRetType;
|
|
QualType DeclaredRetType;
|
|
if (const FunctionDecl *FD = getCurFunctionDecl()) {
|
|
FnRetType = FD->getResultType();
|
|
DeclaredRetType = FnRetType;
|
|
if (FD->hasAttr<NoReturnAttr>() ||
|
|
FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
|
|
Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
|
|
<< getCurFunctionOrMethodDecl()->getDeclName();
|
|
} else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
|
|
DeclaredRetType = MD->getResultType();
|
|
if (MD->hasRelatedResultType() && MD->getClassInterface()) {
|
|
// In the implementation of a method with a related return type, the
|
|
// type used to type-check the validity of return statements within the
|
|
// method body is a pointer to the type of the class being implemented.
|
|
FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
|
|
FnRetType = Context.getObjCObjectPointerType(FnRetType);
|
|
} else {
|
|
FnRetType = DeclaredRetType;
|
|
}
|
|
} else // If we don't have a function/method context, bail.
|
|
return StmtError();
|
|
|
|
ReturnStmt *Result = 0;
|
|
if (FnRetType->isVoidType()) {
|
|
if (RetValExp) {
|
|
if (!RetValExp->isTypeDependent()) {
|
|
// C99 6.8.6.4p1 (ext_ since GCC warns)
|
|
unsigned D = diag::ext_return_has_expr;
|
|
if (RetValExp->getType()->isVoidType())
|
|
D = diag::ext_return_has_void_expr;
|
|
else {
|
|
ExprResult Result = Owned(RetValExp);
|
|
Result = IgnoredValueConversions(Result.take());
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
RetValExp = Result.take();
|
|
RetValExp = ImpCastExprToType(RetValExp,
|
|
Context.VoidTy, CK_ToVoid).take();
|
|
}
|
|
|
|
// return (some void expression); is legal in C++.
|
|
if (D != diag::ext_return_has_void_expr ||
|
|
!getLangOptions().CPlusPlus) {
|
|
NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
|
|
|
|
int FunctionKind = 0;
|
|
if (isa<ObjCMethodDecl>(CurDecl))
|
|
FunctionKind = 1;
|
|
else if (isa<CXXConstructorDecl>(CurDecl))
|
|
FunctionKind = 2;
|
|
else if (isa<CXXDestructorDecl>(CurDecl))
|
|
FunctionKind = 3;
|
|
|
|
Diag(ReturnLoc, D)
|
|
<< CurDecl->getDeclName() << FunctionKind
|
|
<< RetValExp->getSourceRange();
|
|
}
|
|
}
|
|
|
|
CheckImplicitConversions(RetValExp, ReturnLoc);
|
|
RetValExp = MaybeCreateExprWithCleanups(RetValExp);
|
|
}
|
|
|
|
Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
|
|
} else if (!RetValExp && !FnRetType->isDependentType()) {
|
|
unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
|
|
// C99 6.8.6.4p1 (ext_ since GCC warns)
|
|
if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
|
|
|
|
if (FunctionDecl *FD = getCurFunctionDecl())
|
|
Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
|
|
else
|
|
Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
|
|
Result = new (Context) ReturnStmt(ReturnLoc);
|
|
} else {
|
|
const VarDecl *NRVOCandidate = 0;
|
|
if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
|
|
// we have a non-void function with an expression, continue checking
|
|
|
|
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
|
|
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
|
|
// function return.
|
|
|
|
// In C++ the return statement is handled via a copy initialization,
|
|
// the C version of which boils down to CheckSingleAssignmentConstraints.
|
|
NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
|
|
InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
|
|
FnRetType,
|
|
NRVOCandidate != 0);
|
|
ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
|
|
FnRetType, RetValExp);
|
|
if (Res.isInvalid()) {
|
|
// FIXME: Cleanup temporaries here, anyway?
|
|
return StmtError();
|
|
}
|
|
|
|
RetValExp = Res.takeAs<Expr>();
|
|
if (RetValExp)
|
|
CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
|
|
}
|
|
|
|
if (RetValExp) {
|
|
// If we type-checked an Objective-C method's return type based
|
|
// on a related return type, we may need to adjust the return
|
|
// type again. Do so now.
|
|
if (DeclaredRetType != FnRetType) {
|
|
ExprResult result = PerformImplicitConversion(RetValExp,
|
|
DeclaredRetType,
|
|
AA_Returning);
|
|
if (result.isInvalid()) return StmtError();
|
|
RetValExp = result.take();
|
|
}
|
|
|
|
CheckImplicitConversions(RetValExp, ReturnLoc);
|
|
RetValExp = MaybeCreateExprWithCleanups(RetValExp);
|
|
}
|
|
Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
|
|
}
|
|
|
|
// If we need to check for the named return value optimization, save the
|
|
// return statement in our scope for later processing.
|
|
if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
|
|
!CurContext->isDependentContext())
|
|
FunctionScopes.back()->Returns.push_back(Result);
|
|
|
|
return Owned(Result);
|
|
}
|
|
|
|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
|
|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
|
|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
|
|
/// provide a strong guidance to not use it.
|
|
///
|
|
/// This method checks to see if the argument is an acceptable l-value and
|
|
/// returns false if it is a case we can handle.
|
|
static bool CheckAsmLValue(const Expr *E, Sema &S) {
|
|
// Type dependent expressions will be checked during instantiation.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->isLValue())
|
|
return false; // Cool, this is an lvalue.
|
|
|
|
// Okay, this is not an lvalue, but perhaps it is the result of a cast that we
|
|
// are supposed to allow.
|
|
const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
|
|
if (E != E2 && E2->isLValue()) {
|
|
if (!S.getLangOptions().HeinousExtensions)
|
|
S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
else
|
|
S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
// Accept, even if we emitted an error diagnostic.
|
|
return false;
|
|
}
|
|
|
|
// None of the above, just randomly invalid non-lvalue.
|
|
return true;
|
|
}
|
|
|
|
/// isOperandMentioned - Return true if the specified operand # is mentioned
|
|
/// anywhere in the decomposed asm string.
|
|
static bool isOperandMentioned(unsigned OpNo,
|
|
ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
|
|
for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
|
|
const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
|
|
if (!Piece.isOperand()) continue;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (Piece.getOperandNo() == OpNo)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg constraints, MultiExprArg exprs,
|
|
Expr *asmString, MultiExprArg clobbers,
|
|
SourceLocation RParenLoc, bool MSAsm) {
|
|
unsigned NumClobbers = clobbers.size();
|
|
StringLiteral **Constraints =
|
|
reinterpret_cast<StringLiteral**>(constraints.get());
|
|
Expr **Exprs = exprs.get();
|
|
StringLiteral *AsmString = cast<StringLiteral>(asmString);
|
|
StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
|
|
|
|
// The parser verifies that there is a string literal here.
|
|
if (!AsmString->isAscii())
|
|
return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
|
|
<< AsmString->getSourceRange());
|
|
|
|
for (unsigned i = 0; i != NumOutputs; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef OutputName;
|
|
if (Names[i])
|
|
OutputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
|
|
if (!Context.getTargetInfo().validateOutputConstraint(Info))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_output_constraint)
|
|
<< Info.getConstraintStr());
|
|
|
|
// Check that the output exprs are valid lvalues.
|
|
Expr *OutputExpr = Exprs[i];
|
|
if (CheckAsmLValue(OutputExpr, *this)) {
|
|
return StmtError(Diag(OutputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_output)
|
|
<< OutputExpr->getSourceRange());
|
|
}
|
|
|
|
OutputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
|
|
|
|
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef InputName;
|
|
if (Names[i])
|
|
InputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
|
|
if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
|
|
NumOutputs, Info)) {
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_input_constraint)
|
|
<< Info.getConstraintStr());
|
|
}
|
|
|
|
Expr *InputExpr = Exprs[i];
|
|
|
|
// Only allow void types for memory constraints.
|
|
if (Info.allowsMemory() && !Info.allowsRegister()) {
|
|
if (CheckAsmLValue(InputExpr, *this))
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_input)
|
|
<< Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
|
|
if (Info.allowsRegister()) {
|
|
if (InputExpr->getType()->isVoidType()) {
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_type_in_input)
|
|
<< InputExpr->getType() << Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
}
|
|
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
Exprs[i] = Result.take();
|
|
InputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
// Check that the clobbers are valid.
|
|
for (unsigned i = 0; i != NumClobbers; i++) {
|
|
StringLiteral *Literal = Clobbers[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef Clobber = Literal->getString();
|
|
|
|
if (!Context.getTargetInfo().isValidClobber(Clobber))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_unknown_register_name) << Clobber);
|
|
}
|
|
|
|
AsmStmt *NS =
|
|
new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
|
|
NumOutputs, NumInputs, Names, Constraints, Exprs,
|
|
AsmString, NumClobbers, Clobbers, RParenLoc);
|
|
// Validate the asm string, ensuring it makes sense given the operands we
|
|
// have.
|
|
SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
|
|
unsigned DiagOffs;
|
|
if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
|
|
Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
|
|
<< AsmString->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
// Validate tied input operands for type mismatches.
|
|
for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
|
|
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
|
|
|
|
// If this is a tied constraint, verify that the output and input have
|
|
// either exactly the same type, or that they are int/ptr operands with the
|
|
// same size (int/long, int*/long, are ok etc).
|
|
if (!Info.hasTiedOperand()) continue;
|
|
|
|
unsigned TiedTo = Info.getTiedOperand();
|
|
unsigned InputOpNo = i+NumOutputs;
|
|
Expr *OutputExpr = Exprs[TiedTo];
|
|
Expr *InputExpr = Exprs[InputOpNo];
|
|
|
|
if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
|
|
continue;
|
|
|
|
QualType InTy = InputExpr->getType();
|
|
QualType OutTy = OutputExpr->getType();
|
|
if (Context.hasSameType(InTy, OutTy))
|
|
continue; // All types can be tied to themselves.
|
|
|
|
// Decide if the input and output are in the same domain (integer/ptr or
|
|
// floating point.
|
|
enum AsmDomain {
|
|
AD_Int, AD_FP, AD_Other
|
|
} InputDomain, OutputDomain;
|
|
|
|
if (InTy->isIntegerType() || InTy->isPointerType())
|
|
InputDomain = AD_Int;
|
|
else if (InTy->isRealFloatingType())
|
|
InputDomain = AD_FP;
|
|
else
|
|
InputDomain = AD_Other;
|
|
|
|
if (OutTy->isIntegerType() || OutTy->isPointerType())
|
|
OutputDomain = AD_Int;
|
|
else if (OutTy->isRealFloatingType())
|
|
OutputDomain = AD_FP;
|
|
else
|
|
OutputDomain = AD_Other;
|
|
|
|
// They are ok if they are the same size and in the same domain. This
|
|
// allows tying things like:
|
|
// void* to int*
|
|
// void* to int if they are the same size.
|
|
// double to long double if they are the same size.
|
|
//
|
|
uint64_t OutSize = Context.getTypeSize(OutTy);
|
|
uint64_t InSize = Context.getTypeSize(InTy);
|
|
if (OutSize == InSize && InputDomain == OutputDomain &&
|
|
InputDomain != AD_Other)
|
|
continue;
|
|
|
|
// If the smaller input/output operand is not mentioned in the asm string,
|
|
// then we can promote the smaller one to a larger input and the asm string
|
|
// won't notice.
|
|
bool SmallerValueMentioned = false;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (isOperandMentioned(InputOpNo, Pieces)) {
|
|
// This is a use in the asm string of the smaller operand. Since we
|
|
// codegen this by promoting to a wider value, the asm will get printed
|
|
// "wrong".
|
|
SmallerValueMentioned |= InSize < OutSize;
|
|
}
|
|
if (isOperandMentioned(TiedTo, Pieces)) {
|
|
// If this is a reference to the output, and if the output is the larger
|
|
// value, then it's ok because we'll promote the input to the larger type.
|
|
SmallerValueMentioned |= OutSize < InSize;
|
|
}
|
|
|
|
// If the smaller value wasn't mentioned in the asm string, and if the
|
|
// output was a register, just extend the shorter one to the size of the
|
|
// larger one.
|
|
if (!SmallerValueMentioned && InputDomain != AD_Other &&
|
|
OutputConstraintInfos[TiedTo].allowsRegister())
|
|
continue;
|
|
|
|
// Either both of the operands were mentioned or the smaller one was
|
|
// mentioned. One more special case that we'll allow: if the tied input is
|
|
// integer, unmentioned, and is a constant, then we'll allow truncating it
|
|
// down to the size of the destination.
|
|
if (InputDomain == AD_Int && OutputDomain == AD_Int &&
|
|
!isOperandMentioned(InputOpNo, Pieces) &&
|
|
InputExpr->isEvaluatable(Context)) {
|
|
CastKind castKind =
|
|
(OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
|
|
InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
|
|
Exprs[InputOpNo] = InputExpr;
|
|
NS->setInputExpr(i, InputExpr);
|
|
continue;
|
|
}
|
|
|
|
Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_tying_incompatible_types)
|
|
<< InTy << OutTy << OutputExpr->getSourceRange()
|
|
<< InputExpr->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
return Owned(NS);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
|
|
SourceLocation RParen, Decl *Parm,
|
|
Stmt *Body) {
|
|
VarDecl *Var = cast_or_null<VarDecl>(Parm);
|
|
if (Var && Var->isInvalidDecl())
|
|
return StmtError();
|
|
|
|
return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
|
|
return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
|
|
MultiStmtArg CatchStmts, Stmt *Finally) {
|
|
if (!getLangOptions().ObjCExceptions)
|
|
Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
|
|
|
|
getCurFunction()->setHasBranchProtectedScope();
|
|
unsigned NumCatchStmts = CatchStmts.size();
|
|
return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
|
|
CatchStmts.release(),
|
|
NumCatchStmts,
|
|
Finally));
|
|
}
|
|
|
|
StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
|
|
Expr *Throw) {
|
|
if (Throw) {
|
|
Throw = MaybeCreateExprWithCleanups(Throw);
|
|
ExprResult Result = DefaultLvalueConversion(Throw);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
Throw = Result.take();
|
|
QualType ThrowType = Throw->getType();
|
|
// Make sure the expression type is an ObjC pointer or "void *".
|
|
if (!ThrowType->isDependentType() &&
|
|
!ThrowType->isObjCObjectPointerType()) {
|
|
const PointerType *PT = ThrowType->getAs<PointerType>();
|
|
if (!PT || !PT->getPointeeType()->isVoidType())
|
|
return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
|
|
<< Throw->getType() << Throw->getSourceRange());
|
|
}
|
|
}
|
|
|
|
return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
|
|
Scope *CurScope) {
|
|
if (!getLangOptions().ObjCExceptions)
|
|
Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
|
|
|
|
if (!Throw) {
|
|
// @throw without an expression designates a rethrow (which much occur
|
|
// in the context of an @catch clause).
|
|
Scope *AtCatchParent = CurScope;
|
|
while (AtCatchParent && !AtCatchParent->isAtCatchScope())
|
|
AtCatchParent = AtCatchParent->getParent();
|
|
if (!AtCatchParent)
|
|
return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
|
|
}
|
|
|
|
return BuildObjCAtThrowStmt(AtLoc, Throw);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
|
|
ExprResult result = DefaultLvalueConversion(operand);
|
|
if (result.isInvalid())
|
|
return ExprError();
|
|
operand = result.take();
|
|
|
|
// Make sure the expression type is an ObjC pointer or "void *".
|
|
QualType type = operand->getType();
|
|
if (!type->isDependentType() &&
|
|
!type->isObjCObjectPointerType()) {
|
|
const PointerType *pointerType = type->getAs<PointerType>();
|
|
if (!pointerType || !pointerType->getPointeeType()->isVoidType())
|
|
return Diag(atLoc, diag::error_objc_synchronized_expects_object)
|
|
<< type << operand->getSourceRange();
|
|
}
|
|
|
|
// The operand to @synchronized is a full-expression.
|
|
return MaybeCreateExprWithCleanups(operand);
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
|
|
Stmt *SyncBody) {
|
|
// We can't jump into or indirect-jump out of a @synchronized block.
|
|
getCurFunction()->setHasBranchProtectedScope();
|
|
return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
|
|
}
|
|
|
|
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
|
|
/// and creates a proper catch handler from them.
|
|
StmtResult
|
|
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
|
|
Stmt *HandlerBlock) {
|
|
// There's nothing to test that ActOnExceptionDecl didn't already test.
|
|
return Owned(new (Context) CXXCatchStmt(CatchLoc,
|
|
cast_or_null<VarDecl>(ExDecl),
|
|
HandlerBlock));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
|
|
getCurFunction()->setHasBranchProtectedScope();
|
|
return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TypeWithHandler {
|
|
QualType t;
|
|
CXXCatchStmt *stmt;
|
|
public:
|
|
TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
|
|
: t(type), stmt(statement) {}
|
|
|
|
// An arbitrary order is fine as long as it places identical
|
|
// types next to each other.
|
|
bool operator<(const TypeWithHandler &y) const {
|
|
if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
|
|
return true;
|
|
if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
|
|
return false;
|
|
else
|
|
return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
|
|
}
|
|
|
|
bool operator==(const TypeWithHandler& other) const {
|
|
return t == other.t;
|
|
}
|
|
|
|
CXXCatchStmt *getCatchStmt() const { return stmt; }
|
|
SourceLocation getTypeSpecStartLoc() const {
|
|
return stmt->getExceptionDecl()->getTypeSpecStartLoc();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
|
|
/// handlers and creates a try statement from them.
|
|
StmtResult
|
|
Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
|
|
MultiStmtArg RawHandlers) {
|
|
// Don't report an error if 'try' is used in system headers.
|
|
if (!getLangOptions().CXXExceptions &&
|
|
!getSourceManager().isInSystemHeader(TryLoc))
|
|
Diag(TryLoc, diag::err_exceptions_disabled) << "try";
|
|
|
|
unsigned NumHandlers = RawHandlers.size();
|
|
assert(NumHandlers > 0 &&
|
|
"The parser shouldn't call this if there are no handlers.");
|
|
Stmt **Handlers = RawHandlers.get();
|
|
|
|
SmallVector<TypeWithHandler, 8> TypesWithHandlers;
|
|
|
|
for (unsigned i = 0; i < NumHandlers; ++i) {
|
|
CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
|
|
if (!Handler->getExceptionDecl()) {
|
|
if (i < NumHandlers - 1)
|
|
return StmtError(Diag(Handler->getLocStart(),
|
|
diag::err_early_catch_all));
|
|
|
|
continue;
|
|
}
|
|
|
|
const QualType CaughtType = Handler->getCaughtType();
|
|
const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
|
|
TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
|
|
}
|
|
|
|
// Detect handlers for the same type as an earlier one.
|
|
if (NumHandlers > 1) {
|
|
llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
|
|
|
|
TypeWithHandler prev = TypesWithHandlers[0];
|
|
for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
|
|
TypeWithHandler curr = TypesWithHandlers[i];
|
|
|
|
if (curr == prev) {
|
|
Diag(curr.getTypeSpecStartLoc(),
|
|
diag::warn_exception_caught_by_earlier_handler)
|
|
<< curr.getCatchStmt()->getCaughtType().getAsString();
|
|
Diag(prev.getTypeSpecStartLoc(),
|
|
diag::note_previous_exception_handler)
|
|
<< prev.getCatchStmt()->getCaughtType().getAsString();
|
|
}
|
|
|
|
prev = curr;
|
|
}
|
|
}
|
|
|
|
getCurFunction()->setHasBranchProtectedScope();
|
|
|
|
// FIXME: We should detect handlers that cannot catch anything because an
|
|
// earlier handler catches a superclass. Need to find a method that is not
|
|
// quadratic for this.
|
|
// Neither of these are explicitly forbidden, but every compiler detects them
|
|
// and warns.
|
|
|
|
return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
|
|
Handlers, NumHandlers));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnSEHTryBlock(bool IsCXXTry,
|
|
SourceLocation TryLoc,
|
|
Stmt *TryBlock,
|
|
Stmt *Handler) {
|
|
assert(TryBlock && Handler);
|
|
|
|
getCurFunction()->setHasBranchProtectedScope();
|
|
|
|
return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnSEHExceptBlock(SourceLocation Loc,
|
|
Expr *FilterExpr,
|
|
Stmt *Block) {
|
|
assert(FilterExpr && Block);
|
|
|
|
if(!FilterExpr->getType()->isIntegerType()) {
|
|
return StmtError(Diag(FilterExpr->getExprLoc(),
|
|
diag::err_filter_expression_integral)
|
|
<< FilterExpr->getType());
|
|
}
|
|
|
|
return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
|
|
}
|
|
|
|
StmtResult
|
|
Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
|
|
Stmt *Block) {
|
|
assert(Block);
|
|
return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
|
|
}
|