llvm-project/clang/lib/Serialization/ASTReader.cpp

11318 lines
405 KiB
C++

//===- ASTReader.cpp - AST File Reader ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTReader class, which reads AST files.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/ODRHash.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/MemoryBufferCache.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/PCHContainerOperations.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/Token.h"
#include "clang/Sema/ObjCMethodList.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Weak.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ASTDeserializationListener.h"
#include "clang/Serialization/ContinuousRangeMap.h"
#include "clang/Serialization/GlobalModuleIndex.h"
#include "clang/Serialization/Module.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "clang/Serialization/ModuleManager.h"
#include "clang/Serialization/SerializationDiagnostic.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <ctime>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
using namespace clang;
using namespace clang::serialization;
using namespace clang::serialization::reader;
using llvm::BitstreamCursor;
//===----------------------------------------------------------------------===//
// ChainedASTReaderListener implementation
//===----------------------------------------------------------------------===//
bool
ChainedASTReaderListener::ReadFullVersionInformation(StringRef FullVersion) {
return First->ReadFullVersionInformation(FullVersion) ||
Second->ReadFullVersionInformation(FullVersion);
}
void ChainedASTReaderListener::ReadModuleName(StringRef ModuleName) {
First->ReadModuleName(ModuleName);
Second->ReadModuleName(ModuleName);
}
void ChainedASTReaderListener::ReadModuleMapFile(StringRef ModuleMapPath) {
First->ReadModuleMapFile(ModuleMapPath);
Second->ReadModuleMapFile(ModuleMapPath);
}
bool
ChainedASTReaderListener::ReadLanguageOptions(const LangOptions &LangOpts,
bool Complain,
bool AllowCompatibleDifferences) {
return First->ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences) ||
Second->ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences);
}
bool ChainedASTReaderListener::ReadTargetOptions(
const TargetOptions &TargetOpts, bool Complain,
bool AllowCompatibleDifferences) {
return First->ReadTargetOptions(TargetOpts, Complain,
AllowCompatibleDifferences) ||
Second->ReadTargetOptions(TargetOpts, Complain,
AllowCompatibleDifferences);
}
bool ChainedASTReaderListener::ReadDiagnosticOptions(
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
return First->ReadDiagnosticOptions(DiagOpts, Complain) ||
Second->ReadDiagnosticOptions(DiagOpts, Complain);
}
bool
ChainedASTReaderListener::ReadFileSystemOptions(const FileSystemOptions &FSOpts,
bool Complain) {
return First->ReadFileSystemOptions(FSOpts, Complain) ||
Second->ReadFileSystemOptions(FSOpts, Complain);
}
bool ChainedASTReaderListener::ReadHeaderSearchOptions(
const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath,
bool Complain) {
return First->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
Complain) ||
Second->ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
Complain);
}
bool ChainedASTReaderListener::ReadPreprocessorOptions(
const PreprocessorOptions &PPOpts, bool Complain,
std::string &SuggestedPredefines) {
return First->ReadPreprocessorOptions(PPOpts, Complain,
SuggestedPredefines) ||
Second->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines);
}
void ChainedASTReaderListener::ReadCounter(const serialization::ModuleFile &M,
unsigned Value) {
First->ReadCounter(M, Value);
Second->ReadCounter(M, Value);
}
bool ChainedASTReaderListener::needsInputFileVisitation() {
return First->needsInputFileVisitation() ||
Second->needsInputFileVisitation();
}
bool ChainedASTReaderListener::needsSystemInputFileVisitation() {
return First->needsSystemInputFileVisitation() ||
Second->needsSystemInputFileVisitation();
}
void ChainedASTReaderListener::visitModuleFile(StringRef Filename,
ModuleKind Kind) {
First->visitModuleFile(Filename, Kind);
Second->visitModuleFile(Filename, Kind);
}
bool ChainedASTReaderListener::visitInputFile(StringRef Filename,
bool isSystem,
bool isOverridden,
bool isExplicitModule) {
bool Continue = false;
if (First->needsInputFileVisitation() &&
(!isSystem || First->needsSystemInputFileVisitation()))
Continue |= First->visitInputFile(Filename, isSystem, isOverridden,
isExplicitModule);
if (Second->needsInputFileVisitation() &&
(!isSystem || Second->needsSystemInputFileVisitation()))
Continue |= Second->visitInputFile(Filename, isSystem, isOverridden,
isExplicitModule);
return Continue;
}
void ChainedASTReaderListener::readModuleFileExtension(
const ModuleFileExtensionMetadata &Metadata) {
First->readModuleFileExtension(Metadata);
Second->readModuleFileExtension(Metadata);
}
//===----------------------------------------------------------------------===//
// PCH validator implementation
//===----------------------------------------------------------------------===//
ASTReaderListener::~ASTReaderListener() = default;
/// Compare the given set of language options against an existing set of
/// language options.
///
/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
/// \param AllowCompatibleDifferences If true, differences between compatible
/// language options will be permitted.
///
/// \returns true if the languagae options mis-match, false otherwise.
static bool checkLanguageOptions(const LangOptions &LangOpts,
const LangOptions &ExistingLangOpts,
DiagnosticsEngine *Diags,
bool AllowCompatibleDifferences = true) {
#define LANGOPT(Name, Bits, Default, Description) \
if (ExistingLangOpts.Name != LangOpts.Name) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_mismatch) \
<< Description << LangOpts.Name << ExistingLangOpts.Name; \
return true; \
}
#define VALUE_LANGOPT(Name, Bits, Default, Description) \
if (ExistingLangOpts.Name != LangOpts.Name) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_value_mismatch) \
<< Description; \
return true; \
}
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
if (ExistingLangOpts.get##Name() != LangOpts.get##Name()) { \
if (Diags) \
Diags->Report(diag::err_pch_langopt_value_mismatch) \
<< Description; \
return true; \
}
#define COMPATIBLE_LANGOPT(Name, Bits, Default, Description) \
if (!AllowCompatibleDifferences) \
LANGOPT(Name, Bits, Default, Description)
#define COMPATIBLE_ENUM_LANGOPT(Name, Bits, Default, Description) \
if (!AllowCompatibleDifferences) \
ENUM_LANGOPT(Name, Bits, Default, Description)
#define COMPATIBLE_VALUE_LANGOPT(Name, Bits, Default, Description) \
if (!AllowCompatibleDifferences) \
VALUE_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
#define BENIGN_VALUE_LANGOPT(Name, Type, Bits, Default, Description)
#include "clang/Basic/LangOptions.def"
if (ExistingLangOpts.ModuleFeatures != LangOpts.ModuleFeatures) {
if (Diags)
Diags->Report(diag::err_pch_langopt_value_mismatch) << "module features";
return true;
}
if (ExistingLangOpts.ObjCRuntime != LangOpts.ObjCRuntime) {
if (Diags)
Diags->Report(diag::err_pch_langopt_value_mismatch)
<< "target Objective-C runtime";
return true;
}
if (ExistingLangOpts.CommentOpts.BlockCommandNames !=
LangOpts.CommentOpts.BlockCommandNames) {
if (Diags)
Diags->Report(diag::err_pch_langopt_value_mismatch)
<< "block command names";
return true;
}
// Sanitizer feature mismatches are treated as compatible differences. If
// compatible differences aren't allowed, we still only want to check for
// mismatches of non-modular sanitizers (the only ones which can affect AST
// generation).
if (!AllowCompatibleDifferences) {
SanitizerMask ModularSanitizers = getPPTransparentSanitizers();
SanitizerSet ExistingSanitizers = ExistingLangOpts.Sanitize;
SanitizerSet ImportedSanitizers = LangOpts.Sanitize;
ExistingSanitizers.clear(ModularSanitizers);
ImportedSanitizers.clear(ModularSanitizers);
if (ExistingSanitizers.Mask != ImportedSanitizers.Mask) {
const std::string Flag = "-fsanitize=";
if (Diags) {
#define SANITIZER(NAME, ID) \
{ \
bool InExistingModule = ExistingSanitizers.has(SanitizerKind::ID); \
bool InImportedModule = ImportedSanitizers.has(SanitizerKind::ID); \
if (InExistingModule != InImportedModule) \
Diags->Report(diag::err_pch_targetopt_feature_mismatch) \
<< InExistingModule << (Flag + NAME); \
}
#include "clang/Basic/Sanitizers.def"
}
return true;
}
}
return false;
}
/// Compare the given set of target options against an existing set of
/// target options.
///
/// \param Diags If non-NULL, diagnostics will be emitted via this engine.
///
/// \returns true if the target options mis-match, false otherwise.
static bool checkTargetOptions(const TargetOptions &TargetOpts,
const TargetOptions &ExistingTargetOpts,
DiagnosticsEngine *Diags,
bool AllowCompatibleDifferences = true) {
#define CHECK_TARGET_OPT(Field, Name) \
if (TargetOpts.Field != ExistingTargetOpts.Field) { \
if (Diags) \
Diags->Report(diag::err_pch_targetopt_mismatch) \
<< Name << TargetOpts.Field << ExistingTargetOpts.Field; \
return true; \
}
// The triple and ABI must match exactly.
CHECK_TARGET_OPT(Triple, "target");
CHECK_TARGET_OPT(ABI, "target ABI");
// We can tolerate different CPUs in many cases, notably when one CPU
// supports a strict superset of another. When allowing compatible
// differences skip this check.
if (!AllowCompatibleDifferences)
CHECK_TARGET_OPT(CPU, "target CPU");
#undef CHECK_TARGET_OPT
// Compare feature sets.
SmallVector<StringRef, 4> ExistingFeatures(
ExistingTargetOpts.FeaturesAsWritten.begin(),
ExistingTargetOpts.FeaturesAsWritten.end());
SmallVector<StringRef, 4> ReadFeatures(TargetOpts.FeaturesAsWritten.begin(),
TargetOpts.FeaturesAsWritten.end());
llvm::sort(ExistingFeatures.begin(), ExistingFeatures.end());
llvm::sort(ReadFeatures.begin(), ReadFeatures.end());
// We compute the set difference in both directions explicitly so that we can
// diagnose the differences differently.
SmallVector<StringRef, 4> UnmatchedExistingFeatures, UnmatchedReadFeatures;
std::set_difference(
ExistingFeatures.begin(), ExistingFeatures.end(), ReadFeatures.begin(),
ReadFeatures.end(), std::back_inserter(UnmatchedExistingFeatures));
std::set_difference(ReadFeatures.begin(), ReadFeatures.end(),
ExistingFeatures.begin(), ExistingFeatures.end(),
std::back_inserter(UnmatchedReadFeatures));
// If we are allowing compatible differences and the read feature set is
// a strict subset of the existing feature set, there is nothing to diagnose.
if (AllowCompatibleDifferences && UnmatchedReadFeatures.empty())
return false;
if (Diags) {
for (StringRef Feature : UnmatchedReadFeatures)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< /* is-existing-feature */ false << Feature;
for (StringRef Feature : UnmatchedExistingFeatures)
Diags->Report(diag::err_pch_targetopt_feature_mismatch)
<< /* is-existing-feature */ true << Feature;
}
return !UnmatchedReadFeatures.empty() || !UnmatchedExistingFeatures.empty();
}
bool
PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts,
bool Complain,
bool AllowCompatibleDifferences) {
const LangOptions &ExistingLangOpts = PP.getLangOpts();
return checkLanguageOptions(LangOpts, ExistingLangOpts,
Complain ? &Reader.Diags : nullptr,
AllowCompatibleDifferences);
}
bool PCHValidator::ReadTargetOptions(const TargetOptions &TargetOpts,
bool Complain,
bool AllowCompatibleDifferences) {
const TargetOptions &ExistingTargetOpts = PP.getTargetInfo().getTargetOpts();
return checkTargetOptions(TargetOpts, ExistingTargetOpts,
Complain ? &Reader.Diags : nullptr,
AllowCompatibleDifferences);
}
namespace {
using MacroDefinitionsMap =
llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/>>;
using DeclsMap = llvm::DenseMap<DeclarationName, SmallVector<NamedDecl *, 8>>;
} // namespace
static bool checkDiagnosticGroupMappings(DiagnosticsEngine &StoredDiags,
DiagnosticsEngine &Diags,
bool Complain) {
using Level = DiagnosticsEngine::Level;
// Check current mappings for new -Werror mappings, and the stored mappings
// for cases that were explicitly mapped to *not* be errors that are now
// errors because of options like -Werror.
DiagnosticsEngine *MappingSources[] = { &Diags, &StoredDiags };
for (DiagnosticsEngine *MappingSource : MappingSources) {
for (auto DiagIDMappingPair : MappingSource->getDiagnosticMappings()) {
diag::kind DiagID = DiagIDMappingPair.first;
Level CurLevel = Diags.getDiagnosticLevel(DiagID, SourceLocation());
if (CurLevel < DiagnosticsEngine::Error)
continue; // not significant
Level StoredLevel =
StoredDiags.getDiagnosticLevel(DiagID, SourceLocation());
if (StoredLevel < DiagnosticsEngine::Error) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror=" +
Diags.getDiagnosticIDs()->getWarningOptionForDiag(DiagID).str();
return true;
}
}
}
return false;
}
static bool isExtHandlingFromDiagsError(DiagnosticsEngine &Diags) {
diag::Severity Ext = Diags.getExtensionHandlingBehavior();
if (Ext == diag::Severity::Warning && Diags.getWarningsAsErrors())
return true;
return Ext >= diag::Severity::Error;
}
static bool checkDiagnosticMappings(DiagnosticsEngine &StoredDiags,
DiagnosticsEngine &Diags,
bool IsSystem, bool Complain) {
// Top-level options
if (IsSystem) {
if (Diags.getSuppressSystemWarnings())
return false;
// If -Wsystem-headers was not enabled before, be conservative
if (StoredDiags.getSuppressSystemWarnings()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Wsystem-headers";
return true;
}
}
if (Diags.getWarningsAsErrors() && !StoredDiags.getWarningsAsErrors()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror";
return true;
}
if (Diags.getWarningsAsErrors() && Diags.getEnableAllWarnings() &&
!StoredDiags.getEnableAllWarnings()) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-Weverything -Werror";
return true;
}
if (isExtHandlingFromDiagsError(Diags) &&
!isExtHandlingFromDiagsError(StoredDiags)) {
if (Complain)
Diags.Report(diag::err_pch_diagopt_mismatch) << "-pedantic-errors";
return true;
}
return checkDiagnosticGroupMappings(StoredDiags, Diags, Complain);
}
/// Return the top import module if it is implicit, nullptr otherwise.
static Module *getTopImportImplicitModule(ModuleManager &ModuleMgr,
Preprocessor &PP) {
// If the original import came from a file explicitly generated by the user,
// don't check the diagnostic mappings.
// FIXME: currently this is approximated by checking whether this is not a
// module import of an implicitly-loaded module file.
// Note: ModuleMgr.rbegin() may not be the current module, but it must be in
// the transitive closure of its imports, since unrelated modules cannot be
// imported until after this module finishes validation.
ModuleFile *TopImport = &*ModuleMgr.rbegin();
while (!TopImport->ImportedBy.empty())
TopImport = TopImport->ImportedBy[0];
if (TopImport->Kind != MK_ImplicitModule)
return nullptr;
StringRef ModuleName = TopImport->ModuleName;
assert(!ModuleName.empty() && "diagnostic options read before module name");
Module *M = PP.getHeaderSearchInfo().lookupModule(ModuleName);
assert(M && "missing module");
return M;
}
bool PCHValidator::ReadDiagnosticOptions(
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, bool Complain) {
DiagnosticsEngine &ExistingDiags = PP.getDiagnostics();
IntrusiveRefCntPtr<DiagnosticIDs> DiagIDs(ExistingDiags.getDiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
new DiagnosticsEngine(DiagIDs, DiagOpts.get()));
// This should never fail, because we would have processed these options
// before writing them to an ASTFile.
ProcessWarningOptions(*Diags, *DiagOpts, /*Report*/false);
ModuleManager &ModuleMgr = Reader.getModuleManager();
assert(ModuleMgr.size() >= 1 && "what ASTFile is this then");
Module *TopM = getTopImportImplicitModule(ModuleMgr, PP);
if (!TopM)
return false;
// FIXME: if the diagnostics are incompatible, save a DiagnosticOptions that
// contains the union of their flags.
return checkDiagnosticMappings(*Diags, ExistingDiags, TopM->IsSystem,
Complain);
}
/// Collect the macro definitions provided by the given preprocessor
/// options.
static void
collectMacroDefinitions(const PreprocessorOptions &PPOpts,
MacroDefinitionsMap &Macros,
SmallVectorImpl<StringRef> *MacroNames = nullptr) {
for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
StringRef Macro = PPOpts.Macros[I].first;
bool IsUndef = PPOpts.Macros[I].second;
std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
StringRef MacroName = MacroPair.first;
StringRef MacroBody = MacroPair.second;
// For an #undef'd macro, we only care about the name.
if (IsUndef) {
if (MacroNames && !Macros.count(MacroName))
MacroNames->push_back(MacroName);
Macros[MacroName] = std::make_pair("", true);
continue;
}
// For a #define'd macro, figure out the actual definition.
if (MacroName.size() == Macro.size())
MacroBody = "1";
else {
// Note: GCC drops anything following an end-of-line character.
StringRef::size_type End = MacroBody.find_first_of("\n\r");
MacroBody = MacroBody.substr(0, End);
}
if (MacroNames && !Macros.count(MacroName))
MacroNames->push_back(MacroName);
Macros[MacroName] = std::make_pair(MacroBody, false);
}
}
/// Check the preprocessor options deserialized from the control block
/// against the preprocessor options in an existing preprocessor.
///
/// \param Diags If non-null, produce diagnostics for any mismatches incurred.
/// \param Validate If true, validate preprocessor options. If false, allow
/// macros defined by \p ExistingPPOpts to override those defined by
/// \p PPOpts in SuggestedPredefines.
static bool checkPreprocessorOptions(const PreprocessorOptions &PPOpts,
const PreprocessorOptions &ExistingPPOpts,
DiagnosticsEngine *Diags,
FileManager &FileMgr,
std::string &SuggestedPredefines,
const LangOptions &LangOpts,
bool Validate = true) {
// Check macro definitions.
MacroDefinitionsMap ASTFileMacros;
collectMacroDefinitions(PPOpts, ASTFileMacros);
MacroDefinitionsMap ExistingMacros;
SmallVector<StringRef, 4> ExistingMacroNames;
collectMacroDefinitions(ExistingPPOpts, ExistingMacros, &ExistingMacroNames);
for (unsigned I = 0, N = ExistingMacroNames.size(); I != N; ++I) {
// Dig out the macro definition in the existing preprocessor options.
StringRef MacroName = ExistingMacroNames[I];
std::pair<StringRef, bool> Existing = ExistingMacros[MacroName];
// Check whether we know anything about this macro name or not.
llvm::StringMap<std::pair<StringRef, bool /*IsUndef*/>>::iterator Known =
ASTFileMacros.find(MacroName);
if (!Validate || Known == ASTFileMacros.end()) {
// FIXME: Check whether this identifier was referenced anywhere in the
// AST file. If so, we should reject the AST file. Unfortunately, this
// information isn't in the control block. What shall we do about it?
if (Existing.second) {
SuggestedPredefines += "#undef ";
SuggestedPredefines += MacroName.str();
SuggestedPredefines += '\n';
} else {
SuggestedPredefines += "#define ";
SuggestedPredefines += MacroName.str();
SuggestedPredefines += ' ';
SuggestedPredefines += Existing.first.str();
SuggestedPredefines += '\n';
}
continue;
}
// If the macro was defined in one but undef'd in the other, we have a
// conflict.
if (Existing.second != Known->second.second) {
if (Diags) {
Diags->Report(diag::err_pch_macro_def_undef)
<< MacroName << Known->second.second;
}
return true;
}
// If the macro was #undef'd in both, or if the macro bodies are identical,
// it's fine.
if (Existing.second || Existing.first == Known->second.first)
continue;
// The macro bodies differ; complain.
if (Diags) {
Diags->Report(diag::err_pch_macro_def_conflict)
<< MacroName << Known->second.first << Existing.first;
}
return true;
}
// Check whether we're using predefines.
if (PPOpts.UsePredefines != ExistingPPOpts.UsePredefines && Validate) {
if (Diags) {
Diags->Report(diag::err_pch_undef) << ExistingPPOpts.UsePredefines;
}
return true;
}
// Detailed record is important since it is used for the module cache hash.
if (LangOpts.Modules &&
PPOpts.DetailedRecord != ExistingPPOpts.DetailedRecord && Validate) {
if (Diags) {
Diags->Report(diag::err_pch_pp_detailed_record) << PPOpts.DetailedRecord;
}
return true;
}
// Compute the #include and #include_macros lines we need.
for (unsigned I = 0, N = ExistingPPOpts.Includes.size(); I != N; ++I) {
StringRef File = ExistingPPOpts.Includes[I];
if (File == ExistingPPOpts.ImplicitPCHInclude)
continue;
if (std::find(PPOpts.Includes.begin(), PPOpts.Includes.end(), File)
!= PPOpts.Includes.end())
continue;
SuggestedPredefines += "#include \"";
SuggestedPredefines += File;
SuggestedPredefines += "\"\n";
}
for (unsigned I = 0, N = ExistingPPOpts.MacroIncludes.size(); I != N; ++I) {
StringRef File = ExistingPPOpts.MacroIncludes[I];
if (std::find(PPOpts.MacroIncludes.begin(), PPOpts.MacroIncludes.end(),
File)
!= PPOpts.MacroIncludes.end())
continue;
SuggestedPredefines += "#__include_macros \"";
SuggestedPredefines += File;
SuggestedPredefines += "\"\n##\n";
}
return false;
}
bool PCHValidator::ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) {
const PreprocessorOptions &ExistingPPOpts = PP.getPreprocessorOpts();
return checkPreprocessorOptions(PPOpts, ExistingPPOpts,
Complain? &Reader.Diags : nullptr,
PP.getFileManager(),
SuggestedPredefines,
PP.getLangOpts());
}
bool SimpleASTReaderListener::ReadPreprocessorOptions(
const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) {
return checkPreprocessorOptions(PPOpts,
PP.getPreprocessorOpts(),
nullptr,
PP.getFileManager(),
SuggestedPredefines,
PP.getLangOpts(),
false);
}
/// Check the header search options deserialized from the control block
/// against the header search options in an existing preprocessor.
///
/// \param Diags If non-null, produce diagnostics for any mismatches incurred.
static bool checkHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
StringRef SpecificModuleCachePath,
StringRef ExistingModuleCachePath,
DiagnosticsEngine *Diags,
const LangOptions &LangOpts) {
if (LangOpts.Modules) {
if (SpecificModuleCachePath != ExistingModuleCachePath) {
if (Diags)
Diags->Report(diag::err_pch_modulecache_mismatch)
<< SpecificModuleCachePath << ExistingModuleCachePath;
return true;
}
}
return false;
}
bool PCHValidator::ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
StringRef SpecificModuleCachePath,
bool Complain) {
return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
PP.getHeaderSearchInfo().getModuleCachePath(),
Complain ? &Reader.Diags : nullptr,
PP.getLangOpts());
}
void PCHValidator::ReadCounter(const ModuleFile &M, unsigned Value) {
PP.setCounterValue(Value);
}
//===----------------------------------------------------------------------===//
// AST reader implementation
//===----------------------------------------------------------------------===//
void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener,
bool TakeOwnership) {
DeserializationListener = Listener;
OwnsDeserializationListener = TakeOwnership;
}
unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) {
return serialization::ComputeHash(Sel);
}
std::pair<unsigned, unsigned>
ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTSelectorLookupTrait::internal_key_type
ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) {
using namespace llvm::support;
SelectorTable &SelTable = Reader.getContext().Selectors;
unsigned N = endian::readNext<uint16_t, little, unaligned>(d);
IdentifierInfo *FirstII = Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d));
if (N == 0)
return SelTable.getNullarySelector(FirstII);
else if (N == 1)
return SelTable.getUnarySelector(FirstII);
SmallVector<IdentifierInfo *, 16> Args;
Args.push_back(FirstII);
for (unsigned I = 1; I != N; ++I)
Args.push_back(Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d)));
return SelTable.getSelector(N, Args.data());
}
ASTSelectorLookupTrait::data_type
ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d,
unsigned DataLen) {
using namespace llvm::support;
data_type Result;
Result.ID = Reader.getGlobalSelectorID(
F, endian::readNext<uint32_t, little, unaligned>(d));
unsigned FullInstanceBits = endian::readNext<uint16_t, little, unaligned>(d);
unsigned FullFactoryBits = endian::readNext<uint16_t, little, unaligned>(d);
Result.InstanceBits = FullInstanceBits & 0x3;
Result.InstanceHasMoreThanOneDecl = (FullInstanceBits >> 2) & 0x1;
Result.FactoryBits = FullFactoryBits & 0x3;
Result.FactoryHasMoreThanOneDecl = (FullFactoryBits >> 2) & 0x1;
unsigned NumInstanceMethods = FullInstanceBits >> 3;
unsigned NumFactoryMethods = FullFactoryBits >> 3;
// Load instance methods
for (unsigned I = 0; I != NumInstanceMethods; ++I) {
if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
F, endian::readNext<uint32_t, little, unaligned>(d)))
Result.Instance.push_back(Method);
}
// Load factory methods
for (unsigned I = 0; I != NumFactoryMethods; ++I) {
if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs<ObjCMethodDecl>(
F, endian::readNext<uint32_t, little, unaligned>(d)))
Result.Factory.push_back(Method);
}
return Result;
}
unsigned ASTIdentifierLookupTraitBase::ComputeHash(const internal_key_type& a) {
return llvm::djbHash(a);
}
std::pair<unsigned, unsigned>
ASTIdentifierLookupTraitBase::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTIdentifierLookupTraitBase::internal_key_type
ASTIdentifierLookupTraitBase::ReadKey(const unsigned char* d, unsigned n) {
assert(n >= 2 && d[n-1] == '\0');
return StringRef((const char*) d, n-1);
}
/// Whether the given identifier is "interesting".
static bool isInterestingIdentifier(ASTReader &Reader, IdentifierInfo &II,
bool IsModule) {
return II.hadMacroDefinition() ||
II.isPoisoned() ||
(IsModule ? II.hasRevertedBuiltin() : II.getObjCOrBuiltinID()) ||
II.hasRevertedTokenIDToIdentifier() ||
(!(IsModule && Reader.getPreprocessor().getLangOpts().CPlusPlus) &&
II.getFETokenInfo<void>());
}
static bool readBit(unsigned &Bits) {
bool Value = Bits & 0x1;
Bits >>= 1;
return Value;
}
IdentID ASTIdentifierLookupTrait::ReadIdentifierID(const unsigned char *d) {
using namespace llvm::support;
unsigned RawID = endian::readNext<uint32_t, little, unaligned>(d);
return Reader.getGlobalIdentifierID(F, RawID >> 1);
}
static void markIdentifierFromAST(ASTReader &Reader, IdentifierInfo &II) {
if (!II.isFromAST()) {
II.setIsFromAST();
bool IsModule = Reader.getPreprocessor().getCurrentModule() != nullptr;
if (isInterestingIdentifier(Reader, II, IsModule))
II.setChangedSinceDeserialization();
}
}
IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k,
const unsigned char* d,
unsigned DataLen) {
using namespace llvm::support;
unsigned RawID = endian::readNext<uint32_t, little, unaligned>(d);
bool IsInteresting = RawID & 0x01;
// Wipe out the "is interesting" bit.
RawID = RawID >> 1;
// Build the IdentifierInfo and link the identifier ID with it.
IdentifierInfo *II = KnownII;
if (!II) {
II = &Reader.getIdentifierTable().getOwn(k);
KnownII = II;
}
markIdentifierFromAST(Reader, *II);
Reader.markIdentifierUpToDate(II);
IdentID ID = Reader.getGlobalIdentifierID(F, RawID);
if (!IsInteresting) {
// For uninteresting identifiers, there's nothing else to do. Just notify
// the reader that we've finished loading this identifier.
Reader.SetIdentifierInfo(ID, II);
return II;
}
unsigned ObjCOrBuiltinID = endian::readNext<uint16_t, little, unaligned>(d);
unsigned Bits = endian::readNext<uint16_t, little, unaligned>(d);
bool CPlusPlusOperatorKeyword = readBit(Bits);
bool HasRevertedTokenIDToIdentifier = readBit(Bits);
bool HasRevertedBuiltin = readBit(Bits);
bool Poisoned = readBit(Bits);
bool ExtensionToken = readBit(Bits);
bool HadMacroDefinition = readBit(Bits);
assert(Bits == 0 && "Extra bits in the identifier?");
DataLen -= 8;
// Set or check the various bits in the IdentifierInfo structure.
// Token IDs are read-only.
if (HasRevertedTokenIDToIdentifier && II->getTokenID() != tok::identifier)
II->revertTokenIDToIdentifier();
if (!F.isModule())
II->setObjCOrBuiltinID(ObjCOrBuiltinID);
else if (HasRevertedBuiltin && II->getBuiltinID()) {
II->revertBuiltin();
assert((II->hasRevertedBuiltin() ||
II->getObjCOrBuiltinID() == ObjCOrBuiltinID) &&
"Incorrect ObjC keyword or builtin ID");
}
assert(II->isExtensionToken() == ExtensionToken &&
"Incorrect extension token flag");
(void)ExtensionToken;
if (Poisoned)
II->setIsPoisoned(true);
assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
"Incorrect C++ operator keyword flag");
(void)CPlusPlusOperatorKeyword;
// If this identifier is a macro, deserialize the macro
// definition.
if (HadMacroDefinition) {
uint32_t MacroDirectivesOffset =
endian::readNext<uint32_t, little, unaligned>(d);
DataLen -= 4;
Reader.addPendingMacro(II, &F, MacroDirectivesOffset);
}
Reader.SetIdentifierInfo(ID, II);
// Read all of the declarations visible at global scope with this
// name.
if (DataLen > 0) {
SmallVector<uint32_t, 4> DeclIDs;
for (; DataLen > 0; DataLen -= 4)
DeclIDs.push_back(Reader.getGlobalDeclID(
F, endian::readNext<uint32_t, little, unaligned>(d)));
Reader.SetGloballyVisibleDecls(II, DeclIDs);
}
return II;
}
DeclarationNameKey::DeclarationNameKey(DeclarationName Name)
: Kind(Name.getNameKind()) {
switch (Kind) {
case DeclarationName::Identifier:
Data = (uint64_t)Name.getAsIdentifierInfo();
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr();
break;
case DeclarationName::CXXOperatorName:
Data = Name.getCXXOverloadedOperator();
break;
case DeclarationName::CXXLiteralOperatorName:
Data = (uint64_t)Name.getCXXLiteralIdentifier();
break;
case DeclarationName::CXXDeductionGuideName:
Data = (uint64_t)Name.getCXXDeductionGuideTemplate()
->getDeclName().getAsIdentifierInfo();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
Data = 0;
break;
}
}
unsigned DeclarationNameKey::getHash() const {
llvm::FoldingSetNodeID ID;
ID.AddInteger(Kind);
switch (Kind) {
case DeclarationName::Identifier:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXDeductionGuideName:
ID.AddString(((IdentifierInfo*)Data)->getName());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
ID.AddInteger(serialization::ComputeHash(Selector(Data)));
break;
case DeclarationName::CXXOperatorName:
ID.AddInteger((OverloadedOperatorKind)Data);
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
break;
}
return ID.ComputeHash();
}
ModuleFile *
ASTDeclContextNameLookupTrait::ReadFileRef(const unsigned char *&d) {
using namespace llvm::support;
uint32_t ModuleFileID = endian::readNext<uint32_t, little, unaligned>(d);
return Reader.getLocalModuleFile(F, ModuleFileID);
}
std::pair<unsigned, unsigned>
ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char *&d) {
using namespace llvm::support;
unsigned KeyLen = endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = endian::readNext<uint16_t, little, unaligned>(d);
return std::make_pair(KeyLen, DataLen);
}
ASTDeclContextNameLookupTrait::internal_key_type
ASTDeclContextNameLookupTrait::ReadKey(const unsigned char *d, unsigned) {
using namespace llvm::support;
auto Kind = (DeclarationName::NameKind)*d++;
uint64_t Data;
switch (Kind) {
case DeclarationName::Identifier:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXDeductionGuideName:
Data = (uint64_t)Reader.getLocalIdentifier(
F, endian::readNext<uint32_t, little, unaligned>(d));
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Data =
(uint64_t)Reader.getLocalSelector(
F, endian::readNext<uint32_t, little, unaligned>(
d)).getAsOpaquePtr();
break;
case DeclarationName::CXXOperatorName:
Data = *d++; // OverloadedOperatorKind
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
Data = 0;
break;
}
return DeclarationNameKey(Kind, Data);
}
void ASTDeclContextNameLookupTrait::ReadDataInto(internal_key_type,
const unsigned char *d,
unsigned DataLen,
data_type_builder &Val) {
using namespace llvm::support;
for (unsigned NumDecls = DataLen / 4; NumDecls; --NumDecls) {
uint32_t LocalID = endian::readNext<uint32_t, little, unaligned>(d);
Val.insert(Reader.getGlobalDeclID(F, LocalID));
}
}
bool ASTReader::ReadLexicalDeclContextStorage(ModuleFile &M,
BitstreamCursor &Cursor,
uint64_t Offset,
DeclContext *DC) {
assert(Offset != 0);
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Offset);
RecordData Record;
StringRef Blob;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
if (RecCode != DECL_CONTEXT_LEXICAL) {
Error("Expected lexical block");
return true;
}
assert(!isa<TranslationUnitDecl>(DC) &&
"expected a TU_UPDATE_LEXICAL record for TU");
// If we are handling a C++ class template instantiation, we can see multiple
// lexical updates for the same record. It's important that we select only one
// of them, so that field numbering works properly. Just pick the first one we
// see.
auto &Lex = LexicalDecls[DC];
if (!Lex.first) {
Lex = std::make_pair(
&M, llvm::makeArrayRef(
reinterpret_cast<const llvm::support::unaligned_uint32_t *>(
Blob.data()),
Blob.size() / 4));
}
DC->setHasExternalLexicalStorage(true);
return false;
}
bool ASTReader::ReadVisibleDeclContextStorage(ModuleFile &M,
BitstreamCursor &Cursor,
uint64_t Offset,
DeclID ID) {
assert(Offset != 0);
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Offset);
RecordData Record;
StringRef Blob;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record, &Blob);
if (RecCode != DECL_CONTEXT_VISIBLE) {
Error("Expected visible lookup table block");
return true;
}
// We can't safely determine the primary context yet, so delay attaching the
// lookup table until we're done with recursive deserialization.
auto *Data = (const unsigned char*)Blob.data();
PendingVisibleUpdates[ID].push_back(PendingVisibleUpdate{&M, Data});
return false;
}
void ASTReader::Error(StringRef Msg) const {
Error(diag::err_fe_pch_malformed, Msg);
if (PP.getLangOpts().Modules && !Diags.isDiagnosticInFlight() &&
!PP.getHeaderSearchInfo().getModuleCachePath().empty()) {
Diag(diag::note_module_cache_path)
<< PP.getHeaderSearchInfo().getModuleCachePath();
}
}
void ASTReader::Error(unsigned DiagID,
StringRef Arg1, StringRef Arg2) const {
if (Diags.isDiagnosticInFlight())
Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2);
else
Diag(DiagID) << Arg1 << Arg2;
}
//===----------------------------------------------------------------------===//
// Source Manager Deserialization
//===----------------------------------------------------------------------===//
/// Read the line table in the source manager block.
/// \returns true if there was an error.
bool ASTReader::ParseLineTable(ModuleFile &F,
const RecordData &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
FileIDs[-1] = -1; // For unspecified filenames.
for (unsigned I = 0; Record[Idx]; ++I) {
// Extract the file name
auto Filename = ReadPath(F, Record, Idx);
FileIDs[I] = LineTable.getLineTableFilenameID(Filename);
}
++Idx;
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = Record[Idx++];
assert(FID >= 0 && "Serialized line entries for non-local file.");
// Remap FileID from 1-based old view.
FID += F.SLocEntryBaseID - 1;
// Extract the line entries
unsigned NumEntries = Record[Idx++];
assert(NumEntries && "no line entries for file ID");
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = FileIDs[Record[Idx++]];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FileID::get(FID), Entries);
}
return false;
}
/// Read a source manager block
bool ASTReader::ReadSourceManagerBlock(ModuleFile &F) {
using namespace SrcMgr;
BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor;
// Set the source-location entry cursor to the current position in
// the stream. This cursor will be used to read the contents of the
// source manager block initially, and then lazily read
// source-location entries as needed.
SLocEntryCursor = F.Stream;
// The stream itself is going to skip over the source manager block.
if (F.Stream.SkipBlock()) {
Error("malformed block record in AST file");
return true;
}
// Enter the source manager block.
if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) {
Error("malformed source manager block record in AST file");
return true;
}
RecordData Record;
while (true) {
llvm::BitstreamEntry E = SLocEntryCursor.advanceSkippingSubblocks();
switch (E.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return true;
case llvm::BitstreamEntry::EndBlock:
return false;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
StringRef Blob;
switch (SLocEntryCursor.readRecord(E.ID, Record, &Blob)) {
default: // Default behavior: ignore.
break;
case SM_SLOC_FILE_ENTRY:
case SM_SLOC_BUFFER_ENTRY:
case SM_SLOC_EXPANSION_ENTRY:
// Once we hit one of the source location entries, we're done.
return false;
}
}
}
/// If a header file is not found at the path that we expect it to be
/// and the PCH file was moved from its original location, try to resolve the
/// file by assuming that header+PCH were moved together and the header is in
/// the same place relative to the PCH.
static std::string
resolveFileRelativeToOriginalDir(const std::string &Filename,
const std::string &OriginalDir,
const std::string &CurrDir) {
assert(OriginalDir != CurrDir &&
"No point trying to resolve the file if the PCH dir didn't change");
using namespace llvm::sys;
SmallString<128> filePath(Filename);
fs::make_absolute(filePath);
assert(path::is_absolute(OriginalDir));
SmallString<128> currPCHPath(CurrDir);
path::const_iterator fileDirI = path::begin(path::parent_path(filePath)),
fileDirE = path::end(path::parent_path(filePath));
path::const_iterator origDirI = path::begin(OriginalDir),
origDirE = path::end(OriginalDir);
// Skip the common path components from filePath and OriginalDir.
while (fileDirI != fileDirE && origDirI != origDirE &&
*fileDirI == *origDirI) {
++fileDirI;
++origDirI;
}
for (; origDirI != origDirE; ++origDirI)
path::append(currPCHPath, "..");
path::append(currPCHPath, fileDirI, fileDirE);
path::append(currPCHPath, path::filename(Filename));
return currPCHPath.str();
}
bool ASTReader::ReadSLocEntry(int ID) {
if (ID == 0)
return false;
if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
Error("source location entry ID out-of-range for AST file");
return true;
}
// Local helper to read the (possibly-compressed) buffer data following the
// entry record.
auto ReadBuffer = [this](
BitstreamCursor &SLocEntryCursor,
StringRef Name) -> std::unique_ptr<llvm::MemoryBuffer> {
RecordData Record;
StringRef Blob;
unsigned Code = SLocEntryCursor.ReadCode();
unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob);
if (RecCode == SM_SLOC_BUFFER_BLOB_COMPRESSED) {
if (!llvm::zlib::isAvailable()) {
Error("zlib is not available");
return nullptr;
}
SmallString<0> Uncompressed;
if (llvm::Error E =
llvm::zlib::uncompress(Blob, Uncompressed, Record[0])) {
Error("could not decompress embedded file contents: " +
llvm::toString(std::move(E)));
return nullptr;
}
return llvm::MemoryBuffer::getMemBufferCopy(Uncompressed, Name);
} else if (RecCode == SM_SLOC_BUFFER_BLOB) {
return llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), Name, true);
} else {
Error("AST record has invalid code");
return nullptr;
}
};
ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second;
F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]);
BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor;
unsigned BaseOffset = F->SLocEntryBaseOffset;
++NumSLocEntriesRead;
llvm::BitstreamEntry Entry = SLocEntryCursor.advance();
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Error("incorrectly-formatted source location entry in AST file");
return true;
}
RecordData Record;
StringRef Blob;
switch (SLocEntryCursor.readRecord(Entry.ID, Record, &Blob)) {
default:
Error("incorrectly-formatted source location entry in AST file");
return true;
case SM_SLOC_FILE_ENTRY: {
// We will detect whether a file changed and return 'Failure' for it, but
// we will also try to fail gracefully by setting up the SLocEntry.
unsigned InputID = Record[4];
InputFile IF = getInputFile(*F, InputID);
const FileEntry *File = IF.getFile();
bool OverriddenBuffer = IF.isOverridden();
// Note that we only check if a File was returned. If it was out-of-date
// we have complained but we will continue creating a FileID to recover
// gracefully.
if (!File)
return true;
SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) {
// This is the module's main file.
IncludeLoc = getImportLocation(F);
}
SrcMgr::CharacteristicKind
FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
FileID FID = SourceMgr.createFileID(File, IncludeLoc, FileCharacter,
ID, BaseOffset + Record[0]);
SrcMgr::FileInfo &FileInfo =
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(FID).getFile());
FileInfo.NumCreatedFIDs = Record[5];
if (Record[3])
FileInfo.setHasLineDirectives();
const DeclID *FirstDecl = F->FileSortedDecls + Record[6];
unsigned NumFileDecls = Record[7];
if (NumFileDecls && ContextObj) {
assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?");
FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl,
NumFileDecls));
}
const SrcMgr::ContentCache *ContentCache
= SourceMgr.getOrCreateContentCache(File, isSystem(FileCharacter));
if (OverriddenBuffer && !ContentCache->BufferOverridden &&
ContentCache->ContentsEntry == ContentCache->OrigEntry &&
!ContentCache->getRawBuffer()) {
auto Buffer = ReadBuffer(SLocEntryCursor, File->getName());
if (!Buffer)
return true;
SourceMgr.overrideFileContents(File, std::move(Buffer));
}
break;
}
case SM_SLOC_BUFFER_ENTRY: {
const char *Name = Blob.data();
unsigned Offset = Record[0];
SrcMgr::CharacteristicKind
FileCharacter = (SrcMgr::CharacteristicKind)Record[2];
SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
if (IncludeLoc.isInvalid() && F->isModule()) {
IncludeLoc = getImportLocation(F);
}
auto Buffer = ReadBuffer(SLocEntryCursor, Name);
if (!Buffer)
return true;
SourceMgr.createFileID(std::move(Buffer), FileCharacter, ID,
BaseOffset + Offset, IncludeLoc);
break;
}
case SM_SLOC_EXPANSION_ENTRY: {
SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]);
SourceMgr.createExpansionLoc(SpellingLoc,
ReadSourceLocation(*F, Record[2]),
ReadSourceLocation(*F, Record[3]),
Record[5],
Record[4],
ID,
BaseOffset + Record[0]);
break;
}
}
return false;
}
std::pair<SourceLocation, StringRef> ASTReader::getModuleImportLoc(int ID) {
if (ID == 0)
return std::make_pair(SourceLocation(), "");
if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
Error("source location entry ID out-of-range for AST file");
return std::make_pair(SourceLocation(), "");
}
// Find which module file this entry lands in.
ModuleFile *M = GlobalSLocEntryMap.find(-ID)->second;
if (!M->isModule())
return std::make_pair(SourceLocation(), "");
// FIXME: Can we map this down to a particular submodule? That would be
// ideal.
return std::make_pair(M->ImportLoc, StringRef(M->ModuleName));
}
/// Find the location where the module F is imported.
SourceLocation ASTReader::getImportLocation(ModuleFile *F) {
if (F->ImportLoc.isValid())
return F->ImportLoc;
// Otherwise we have a PCH. It's considered to be "imported" at the first
// location of its includer.
if (F->ImportedBy.empty() || !F->ImportedBy[0]) {
// Main file is the importer.
assert(SourceMgr.getMainFileID().isValid() && "missing main file");
return SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
}
return F->ImportedBy[0]->FirstLoc;
}
/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
/// specified cursor. Read the abbreviations that are at the top of the block
/// and then leave the cursor pointing into the block.
bool ASTReader::ReadBlockAbbrevs(BitstreamCursor &Cursor, unsigned BlockID) {
if (Cursor.EnterSubBlock(BlockID))
return true;
while (true) {
uint64_t Offset = Cursor.GetCurrentBitNo();
unsigned Code = Cursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV) {
Cursor.JumpToBit(Offset);
return false;
}
Cursor.ReadAbbrevRecord();
}
}
Token ASTReader::ReadToken(ModuleFile &F, const RecordDataImpl &Record,
unsigned &Idx) {
Token Tok;
Tok.startToken();
Tok.setLocation(ReadSourceLocation(F, Record, Idx));
Tok.setLength(Record[Idx++]);
if (IdentifierInfo *II = getLocalIdentifier(F, Record[Idx++]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[Idx++]);
Tok.setFlag((Token::TokenFlags)Record[Idx++]);
return Tok;
}
MacroInfo *ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) {
BitstreamCursor &Stream = F.MacroCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this macro.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
SmallVector<IdentifierInfo*, 16> MacroParams;
MacroInfo *Macro = nullptr;
while (true) {
// Advance to the next record, but if we get to the end of the block, don't
// pop it (removing all the abbreviations from the cursor) since we want to
// be able to reseek within the block and read entries.
unsigned Flags = BitstreamCursor::AF_DontPopBlockAtEnd;
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(Flags);
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Macro;
case llvm::BitstreamEntry::EndBlock:
return Macro;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
PreprocessorRecordTypes RecType =
(PreprocessorRecordTypes)Stream.readRecord(Entry.ID, Record);
switch (RecType) {
case PP_MODULE_MACRO:
case PP_MACRO_DIRECTIVE_HISTORY:
return Macro;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return Macro;
unsigned NextIndex = 1; // Skip identifier ID.
SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex);
MacroInfo *MI = PP.AllocateMacroInfo(Loc);
MI->setDefinitionEndLoc(ReadSourceLocation(F, Record, NextIndex));
MI->setIsUsed(Record[NextIndex++]);
MI->setUsedForHeaderGuard(Record[NextIndex++]);
if (RecType == PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[NextIndex++];
bool isGNUVarArgs = Record[NextIndex++];
bool hasCommaPasting = Record[NextIndex++];
MacroParams.clear();
unsigned NumArgs = Record[NextIndex++];
for (unsigned i = 0; i != NumArgs; ++i)
MacroParams.push_back(getLocalIdentifier(F, Record[NextIndex++]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
if (hasCommaPasting) MI->setHasCommaPasting();
MI->setParameterList(MacroParams, PP.getPreprocessorAllocator());
}
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
Macro = MI;
if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() &&
Record[NextIndex]) {
// We have a macro definition. Register the association
PreprocessedEntityID
GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]);
PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
PreprocessingRecord::PPEntityID PPID =
PPRec.getPPEntityID(GlobalID - 1, /*isLoaded=*/true);
MacroDefinitionRecord *PPDef = cast_or_null<MacroDefinitionRecord>(
PPRec.getPreprocessedEntity(PPID));
if (PPDef)
PPRec.RegisterMacroDefinition(Macro, PPDef);
}
++NumMacrosRead;
break;
}
case PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is
// erroneous, just pretend we didn't see this.
if (!Macro) break;
unsigned Idx = 0;
Token Tok = ReadToken(F, Record, Idx);
Macro->AddTokenToBody(Tok);
break;
}
}
}
}
PreprocessedEntityID
ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M,
unsigned LocalID) const {
if (!M.ModuleOffsetMap.empty())
ReadModuleOffsetMap(M);
ContinuousRangeMap<uint32_t, int, 2>::const_iterator
I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS);
assert(I != M.PreprocessedEntityRemap.end()
&& "Invalid index into preprocessed entity index remap");
return LocalID + I->second;
}
unsigned HeaderFileInfoTrait::ComputeHash(internal_key_ref ikey) {
return llvm::hash_combine(ikey.Size, ikey.ModTime);
}
HeaderFileInfoTrait::internal_key_type
HeaderFileInfoTrait::GetInternalKey(const FileEntry *FE) {
internal_key_type ikey = {FE->getSize(),
M.HasTimestamps ? FE->getModificationTime() : 0,
FE->getName(), /*Imported*/ false};
return ikey;
}
bool HeaderFileInfoTrait::EqualKey(internal_key_ref a, internal_key_ref b) {
if (a.Size != b.Size || (a.ModTime && b.ModTime && a.ModTime != b.ModTime))
return false;
if (llvm::sys::path::is_absolute(a.Filename) && a.Filename == b.Filename)
return true;
// Determine whether the actual files are equivalent.
FileManager &FileMgr = Reader.getFileManager();
auto GetFile = [&](const internal_key_type &Key) -> const FileEntry* {
if (!Key.Imported)
return FileMgr.getFile(Key.Filename);
std::string Resolved = Key.Filename;
Reader.ResolveImportedPath(M, Resolved);
return FileMgr.getFile(Resolved);
};
const FileEntry *FEA = GetFile(a);
const FileEntry *FEB = GetFile(b);
return FEA && FEA == FEB;
}
std::pair<unsigned, unsigned>
HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) {
using namespace llvm::support;
unsigned KeyLen = (unsigned) endian::readNext<uint16_t, little, unaligned>(d);
unsigned DataLen = (unsigned) *d++;
return std::make_pair(KeyLen, DataLen);
}
HeaderFileInfoTrait::internal_key_type
HeaderFileInfoTrait::ReadKey(const unsigned char *d, unsigned) {
using namespace llvm::support;
internal_key_type ikey;
ikey.Size = off_t(endian::readNext<uint64_t, little, unaligned>(d));
ikey.ModTime = time_t(endian::readNext<uint64_t, little, unaligned>(d));
ikey.Filename = (const char *)d;
ikey.Imported = true;
return ikey;
}
HeaderFileInfoTrait::data_type
HeaderFileInfoTrait::ReadData(internal_key_ref key, const unsigned char *d,
unsigned DataLen) {
using namespace llvm::support;
const unsigned char *End = d + DataLen;
HeaderFileInfo HFI;
unsigned Flags = *d++;
// FIXME: Refactor with mergeHeaderFileInfo in HeaderSearch.cpp.
HFI.isImport |= (Flags >> 5) & 0x01;
HFI.isPragmaOnce |= (Flags >> 4) & 0x01;
HFI.DirInfo = (Flags >> 1) & 0x07;
HFI.IndexHeaderMapHeader = Flags & 0x01;
// FIXME: Find a better way to handle this. Maybe just store a
// "has been included" flag?
HFI.NumIncludes = std::max(endian::readNext<uint16_t, little, unaligned>(d),
HFI.NumIncludes);
HFI.ControllingMacroID = Reader.getGlobalIdentifierID(
M, endian::readNext<uint32_t, little, unaligned>(d));
if (unsigned FrameworkOffset =
endian::readNext<uint32_t, little, unaligned>(d)) {
// The framework offset is 1 greater than the actual offset,
// since 0 is used as an indicator for "no framework name".
StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1);
HFI.Framework = HS->getUniqueFrameworkName(FrameworkName);
}
assert((End - d) % 4 == 0 &&
"Wrong data length in HeaderFileInfo deserialization");
while (d != End) {
uint32_t LocalSMID = endian::readNext<uint32_t, little, unaligned>(d);
auto HeaderRole = static_cast<ModuleMap::ModuleHeaderRole>(LocalSMID & 3);
LocalSMID >>= 2;
// This header is part of a module. Associate it with the module to enable
// implicit module import.
SubmoduleID GlobalSMID = Reader.getGlobalSubmoduleID(M, LocalSMID);
Module *Mod = Reader.getSubmodule(GlobalSMID);
FileManager &FileMgr = Reader.getFileManager();
ModuleMap &ModMap =
Reader.getPreprocessor().getHeaderSearchInfo().getModuleMap();
std::string Filename = key.Filename;
if (key.Imported)
Reader.ResolveImportedPath(M, Filename);
// FIXME: This is not always the right filename-as-written, but we're not
// going to use this information to rebuild the module, so it doesn't make
// a lot of difference.
Module::Header H = { key.Filename, FileMgr.getFile(Filename) };
ModMap.addHeader(Mod, H, HeaderRole, /*Imported*/true);
HFI.isModuleHeader |= !(HeaderRole & ModuleMap::TextualHeader);
}
// This HeaderFileInfo was externally loaded.
HFI.External = true;
HFI.IsValid = true;
return HFI;
}
void ASTReader::addPendingMacro(IdentifierInfo *II,
ModuleFile *M,
uint64_t MacroDirectivesOffset) {
assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard");
PendingMacroIDs[II].push_back(PendingMacroInfo(M, MacroDirectivesOffset));
}
void ASTReader::ReadDefinedMacros() {
// Note that we are loading defined macros.
Deserializing Macros(this);
for (ModuleFile &I : llvm::reverse(ModuleMgr)) {
BitstreamCursor &MacroCursor = I.MacroCursor;
// If there was no preprocessor block, skip this file.
if (MacroCursor.getBitcodeBytes().empty())
continue;
BitstreamCursor Cursor = MacroCursor;
Cursor.JumpToBit(I.MacroStartOffset);
RecordData Record;
while (true) {
llvm::BitstreamEntry E = Cursor.advanceSkippingSubblocks();
switch (E.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return;
case llvm::BitstreamEntry::EndBlock:
goto NextCursor;
case llvm::BitstreamEntry::Record:
Record.clear();
switch (Cursor.readRecord(E.ID, Record)) {
default: // Default behavior: ignore.
break;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE: {
IdentifierInfo *II = getLocalIdentifier(I, Record[0]);
if (II->isOutOfDate())
updateOutOfDateIdentifier(*II);
break;
}
case PP_TOKEN:
// Ignore tokens.
break;
}
break;
}
}
NextCursor: ;
}
}
namespace {
/// Visitor class used to look up identifirs in an AST file.
class IdentifierLookupVisitor {
StringRef Name;
unsigned NameHash;
unsigned PriorGeneration;
unsigned &NumIdentifierLookups;
unsigned &NumIdentifierLookupHits;
IdentifierInfo *Found = nullptr;
public:
IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration,
unsigned &NumIdentifierLookups,
unsigned &NumIdentifierLookupHits)
: Name(Name), NameHash(ASTIdentifierLookupTrait::ComputeHash(Name)),
PriorGeneration(PriorGeneration),
NumIdentifierLookups(NumIdentifierLookups),
NumIdentifierLookupHits(NumIdentifierLookupHits) {}
bool operator()(ModuleFile &M) {
// If we've already searched this module file, skip it now.
if (M.Generation <= PriorGeneration)
return true;
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)M.IdentifierLookupTable;
if (!IdTable)
return false;
ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(), M,
Found);
++NumIdentifierLookups;
ASTIdentifierLookupTable::iterator Pos =
IdTable->find_hashed(Name, NameHash, &Trait);
if (Pos == IdTable->end())
return false;
// Dereferencing the iterator has the effect of building the
// IdentifierInfo node and populating it with the various
// declarations it needs.
++NumIdentifierLookupHits;
Found = *Pos;
return true;
}
// Retrieve the identifier info found within the module
// files.
IdentifierInfo *getIdentifierInfo() const { return Found; }
};
} // namespace
void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) {
// Note that we are loading an identifier.
Deserializing AnIdentifier(this);
unsigned PriorGeneration = 0;
if (getContext().getLangOpts().Modules)
PriorGeneration = IdentifierGeneration[&II];
// If there is a global index, look there first to determine which modules
// provably do not have any results for this identifier.
GlobalModuleIndex::HitSet Hits;
GlobalModuleIndex::HitSet *HitsPtr = nullptr;
if (!loadGlobalIndex()) {
if (GlobalIndex->lookupIdentifier(II.getName(), Hits)) {
HitsPtr = &Hits;
}
}
IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration,
NumIdentifierLookups,
NumIdentifierLookupHits);
ModuleMgr.visit(Visitor, HitsPtr);
markIdentifierUpToDate(&II);
}
void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) {
if (!II)
return;
II->setOutOfDate(false);
// Update the generation for this identifier.
if (getContext().getLangOpts().Modules)
IdentifierGeneration[II] = getGeneration();
}
void ASTReader::resolvePendingMacro(IdentifierInfo *II,
const PendingMacroInfo &PMInfo) {
ModuleFile &M = *PMInfo.M;
BitstreamCursor &Cursor = M.MacroCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(PMInfo.MacroDirectivesOffset);
struct ModuleMacroRecord {
SubmoduleID SubModID;
MacroInfo *MI;
SmallVector<SubmoduleID, 8> Overrides;
};
llvm::SmallVector<ModuleMacroRecord, 8> ModuleMacros;
// We expect to see a sequence of PP_MODULE_MACRO records listing exported
// macros, followed by a PP_MACRO_DIRECTIVE_HISTORY record with the complete
// macro histroy.
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry =
Cursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Error("malformed block record in AST file");
return;
}
Record.clear();
switch ((PreprocessorRecordTypes)Cursor.readRecord(Entry.ID, Record)) {
case PP_MACRO_DIRECTIVE_HISTORY:
break;
case PP_MODULE_MACRO: {
ModuleMacros.push_back(ModuleMacroRecord());
auto &Info = ModuleMacros.back();
Info.SubModID = getGlobalSubmoduleID(M, Record[0]);
Info.MI = getMacro(getGlobalMacroID(M, Record[1]));
for (int I = 2, N = Record.size(); I != N; ++I)
Info.Overrides.push_back(getGlobalSubmoduleID(M, Record[I]));
continue;
}
default:
Error("malformed block record in AST file");
return;
}
// We found the macro directive history; that's the last record
// for this macro.
break;
}
// Module macros are listed in reverse dependency order.
{
std::reverse(ModuleMacros.begin(), ModuleMacros.end());
llvm::SmallVector<ModuleMacro*, 8> Overrides;
for (auto &MMR : ModuleMacros) {
Overrides.clear();
for (unsigned ModID : MMR.Overrides) {
Module *Mod = getSubmodule(ModID);
auto *Macro = PP.getModuleMacro(Mod, II);
assert(Macro && "missing definition for overridden macro");
Overrides.push_back(Macro);
}
bool Inserted = false;
Module *Owner = getSubmodule(MMR.SubModID);
PP.addModuleMacro(Owner, II, MMR.MI, Overrides, Inserted);
}
}
// Don't read the directive history for a module; we don't have anywhere
// to put it.
if (M.isModule())
return;
// Deserialize the macro directives history in reverse source-order.
MacroDirective *Latest = nullptr, *Earliest = nullptr;
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
MacroDirective *MD = nullptr;
SourceLocation Loc = ReadSourceLocation(M, Record, Idx);
MacroDirective::Kind K = (MacroDirective::Kind)Record[Idx++];
switch (K) {
case MacroDirective::MD_Define: {
MacroInfo *MI = getMacro(getGlobalMacroID(M, Record[Idx++]));
MD = PP.AllocateDefMacroDirective(MI, Loc);
break;
}
case MacroDirective::MD_Undefine:
MD = PP.AllocateUndefMacroDirective(Loc);
break;
case MacroDirective::MD_Visibility:
bool isPublic = Record[Idx++];
MD = PP.AllocateVisibilityMacroDirective(Loc, isPublic);
break;
}
if (!Latest)
Latest = MD;
if (Earliest)
Earliest->setPrevious(MD);
Earliest = MD;
}
if (Latest)
PP.setLoadedMacroDirective(II, Earliest, Latest);
}
ASTReader::InputFileInfo
ASTReader::readInputFileInfo(ModuleFile &F, unsigned ID) {
// Go find this input file.
BitstreamCursor &Cursor = F.InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
unsigned Code = Cursor.ReadCode();
RecordData Record;
StringRef Blob;
unsigned Result = Cursor.readRecord(Code, Record, &Blob);
assert(static_cast<InputFileRecordTypes>(Result) == INPUT_FILE &&
"invalid record type for input file");
(void)Result;
assert(Record[0] == ID && "Bogus stored ID or offset");
InputFileInfo R;
R.StoredSize = static_cast<off_t>(Record[1]);
R.StoredTime = static_cast<time_t>(Record[2]);
R.Overridden = static_cast<bool>(Record[3]);
R.Transient = static_cast<bool>(Record[4]);
R.TopLevelModuleMap = static_cast<bool>(Record[5]);
R.Filename = Blob;
ResolveImportedPath(F, R.Filename);
return R;
}
static unsigned moduleKindForDiagnostic(ModuleKind Kind);
InputFile ASTReader::getInputFile(ModuleFile &F, unsigned ID, bool Complain) {
// If this ID is bogus, just return an empty input file.
if (ID == 0 || ID > F.InputFilesLoaded.size())
return InputFile();
// If we've already loaded this input file, return it.
if (F.InputFilesLoaded[ID-1].getFile())
return F.InputFilesLoaded[ID-1];
if (F.InputFilesLoaded[ID-1].isNotFound())
return InputFile();
// Go find this input file.
BitstreamCursor &Cursor = F.InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(F.InputFileOffsets[ID-1]);
InputFileInfo FI = readInputFileInfo(F, ID);
off_t StoredSize = FI.StoredSize;
time_t StoredTime = FI.StoredTime;
bool Overridden = FI.Overridden;
bool Transient = FI.Transient;
StringRef Filename = FI.Filename;
const FileEntry *File = FileMgr.getFile(Filename, /*OpenFile=*/false);
// If we didn't find the file, resolve it relative to the
// original directory from which this AST file was created.
if (File == nullptr && !F.OriginalDir.empty() && !F.BaseDirectory.empty() &&
F.OriginalDir != F.BaseDirectory) {
std::string Resolved = resolveFileRelativeToOriginalDir(
Filename, F.OriginalDir, F.BaseDirectory);
if (!Resolved.empty())
File = FileMgr.getFile(Resolved);
}
// For an overridden file, create a virtual file with the stored
// size/timestamp.
if ((Overridden || Transient) && File == nullptr)
File = FileMgr.getVirtualFile(Filename, StoredSize, StoredTime);
if (File == nullptr) {
if (Complain) {
std::string ErrorStr = "could not find file '";
ErrorStr += Filename;
ErrorStr += "' referenced by AST file '";
ErrorStr += F.FileName;
ErrorStr += "'";
Error(ErrorStr);
}
// Record that we didn't find the file.
F.InputFilesLoaded[ID-1] = InputFile::getNotFound();
return InputFile();
}
// Check if there was a request to override the contents of the file
// that was part of the precompiled header. Overriding such a file
// can lead to problems when lexing using the source locations from the
// PCH.
SourceManager &SM = getSourceManager();
// FIXME: Reject if the overrides are different.
if ((!Overridden && !Transient) && SM.isFileOverridden(File)) {
if (Complain)
Error(diag::err_fe_pch_file_overridden, Filename);
// After emitting the diagnostic, recover by disabling the override so
// that the original file will be used.
//
// FIXME: This recovery is just as broken as the original state; there may
// be another precompiled module that's using the overridden contents, or
// we might be half way through parsing it. Instead, we should treat the
// overridden contents as belonging to a separate FileEntry.
SM.disableFileContentsOverride(File);
// The FileEntry is a virtual file entry with the size of the contents
// that would override the original contents. Set it to the original's
// size/time.
FileMgr.modifyFileEntry(const_cast<FileEntry*>(File),
StoredSize, StoredTime);
}
bool IsOutOfDate = false;
// For an overridden file, there is nothing to validate.
if (!Overridden && //
(StoredSize != File->getSize() ||
(StoredTime && StoredTime != File->getModificationTime() &&
!DisableValidation)
)) {
if (Complain) {
// Build a list of the PCH imports that got us here (in reverse).
SmallVector<ModuleFile *, 4> ImportStack(1, &F);
while (!ImportStack.back()->ImportedBy.empty())
ImportStack.push_back(ImportStack.back()->ImportedBy[0]);
// The top-level PCH is stale.
StringRef TopLevelPCHName(ImportStack.back()->FileName);
unsigned DiagnosticKind = moduleKindForDiagnostic(ImportStack.back()->Kind);
if (DiagnosticKind == 0)
Error(diag::err_fe_pch_file_modified, Filename, TopLevelPCHName);
else if (DiagnosticKind == 1)
Error(diag::err_fe_module_file_modified, Filename, TopLevelPCHName);
else
Error(diag::err_fe_ast_file_modified, Filename, TopLevelPCHName);
// Print the import stack.
if (ImportStack.size() > 1 && !Diags.isDiagnosticInFlight()) {
Diag(diag::note_pch_required_by)
<< Filename << ImportStack[0]->FileName;
for (unsigned I = 1; I < ImportStack.size(); ++I)
Diag(diag::note_pch_required_by)
<< ImportStack[I-1]->FileName << ImportStack[I]->FileName;
}
if (!Diags.isDiagnosticInFlight())
Diag(diag::note_pch_rebuild_required) << TopLevelPCHName;
}
IsOutOfDate = true;
}
// FIXME: If the file is overridden and we've already opened it,
// issue an error (or split it into a separate FileEntry).
InputFile IF = InputFile(File, Overridden || Transient, IsOutOfDate);
// Note that we've loaded this input file.
F.InputFilesLoaded[ID-1] = IF;
return IF;
}
/// If we are loading a relocatable PCH or module file, and the filename
/// is not an absolute path, add the system or module root to the beginning of
/// the file name.
void ASTReader::ResolveImportedPath(ModuleFile &M, std::string &Filename) {
// Resolve relative to the base directory, if we have one.
if (!M.BaseDirectory.empty())
return ResolveImportedPath(Filename, M.BaseDirectory);
}
void ASTReader::ResolveImportedPath(std::string &Filename, StringRef Prefix) {
if (Filename.empty() || llvm::sys::path::is_absolute(Filename))
return;
SmallString<128> Buffer;
llvm::sys::path::append(Buffer, Prefix, Filename);
Filename.assign(Buffer.begin(), Buffer.end());
}
static bool isDiagnosedResult(ASTReader::ASTReadResult ARR, unsigned Caps) {
switch (ARR) {
case ASTReader::Failure: return true;
case ASTReader::Missing: return !(Caps & ASTReader::ARR_Missing);
case ASTReader::OutOfDate: return !(Caps & ASTReader::ARR_OutOfDate);
case ASTReader::VersionMismatch: return !(Caps & ASTReader::ARR_VersionMismatch);
case ASTReader::ConfigurationMismatch:
return !(Caps & ASTReader::ARR_ConfigurationMismatch);
case ASTReader::HadErrors: return true;
case ASTReader::Success: return false;
}
llvm_unreachable("unknown ASTReadResult");
}
ASTReader::ASTReadResult ASTReader::ReadOptionsBlock(
BitstreamCursor &Stream, unsigned ClientLoadCapabilities,
bool AllowCompatibleConfigurationMismatch, ASTReaderListener &Listener,
std::string &SuggestedPredefines) {
if (Stream.EnterSubBlock(OPTIONS_BLOCK_ID))
return Failure;
// Read all of the records in the options block.
RecordData Record;
ASTReadResult Result = Success;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::SubBlock:
return Failure;
case llvm::BitstreamEntry::EndBlock:
return Result;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
switch ((OptionsRecordTypes)Stream.readRecord(Entry.ID, Record)) {
case LANGUAGE_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
if (ParseLanguageOptions(Record, Complain, Listener,
AllowCompatibleConfigurationMismatch))
Result = ConfigurationMismatch;
break;
}
case TARGET_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
if (ParseTargetOptions(Record, Complain, Listener,
AllowCompatibleConfigurationMismatch))
Result = ConfigurationMismatch;
break;
}
case FILE_SYSTEM_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
if (!AllowCompatibleConfigurationMismatch &&
ParseFileSystemOptions(Record, Complain, Listener))
Result = ConfigurationMismatch;
break;
}
case HEADER_SEARCH_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
if (!AllowCompatibleConfigurationMismatch &&
ParseHeaderSearchOptions(Record, Complain, Listener))
Result = ConfigurationMismatch;
break;
}
case PREPROCESSOR_OPTIONS:
bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0;
if (!AllowCompatibleConfigurationMismatch &&
ParsePreprocessorOptions(Record, Complain, Listener,
SuggestedPredefines))
Result = ConfigurationMismatch;
break;
}
}
}
ASTReader::ASTReadResult
ASTReader::ReadControlBlock(ModuleFile &F,
SmallVectorImpl<ImportedModule> &Loaded,
const ModuleFile *ImportedBy,
unsigned ClientLoadCapabilities) {
BitstreamCursor &Stream = F.Stream;
ASTReadResult Result = Success;
if (Stream.EnterSubBlock(CONTROL_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Lambda to read the unhashed control block the first time it's called.
//
// For PCM files, the unhashed control block cannot be read until after the
// MODULE_NAME record. However, PCH files have no MODULE_NAME, and yet still
// need to look ahead before reading the IMPORTS record. For consistency,
// this block is always read somehow (see BitstreamEntry::EndBlock).
bool HasReadUnhashedControlBlock = false;
auto readUnhashedControlBlockOnce = [&]() {
if (!HasReadUnhashedControlBlock) {
HasReadUnhashedControlBlock = true;
if (ASTReadResult Result =
readUnhashedControlBlock(F, ImportedBy, ClientLoadCapabilities))
return Result;
}
return Success;
};
// Read all of the records and blocks in the control block.
RecordData Record;
unsigned NumInputs = 0;
unsigned NumUserInputs = 0;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock: {
// Validate the module before returning. This call catches an AST with
// no module name and no imports.
if (ASTReadResult Result = readUnhashedControlBlockOnce())
return Result;
// Validate input files.
const HeaderSearchOptions &HSOpts =
PP.getHeaderSearchInfo().getHeaderSearchOpts();
// All user input files reside at the index range [0, NumUserInputs), and
// system input files reside at [NumUserInputs, NumInputs). For explicitly
// loaded module files, ignore missing inputs.
if (!DisableValidation && F.Kind != MK_ExplicitModule &&
F.Kind != MK_PrebuiltModule) {
bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0;
// If we are reading a module, we will create a verification timestamp,
// so we verify all input files. Otherwise, verify only user input
// files.
unsigned N = NumUserInputs;
if (ValidateSystemInputs ||
(HSOpts.ModulesValidateOncePerBuildSession &&
F.InputFilesValidationTimestamp <= HSOpts.BuildSessionTimestamp &&
F.Kind == MK_ImplicitModule))
N = NumInputs;
for (unsigned I = 0; I < N; ++I) {
InputFile IF = getInputFile(F, I+1, Complain);
if (!IF.getFile() || IF.isOutOfDate())
return OutOfDate;
}
}
if (Listener)
Listener->visitModuleFile(F.FileName, F.Kind);
if (Listener && Listener->needsInputFileVisitation()) {
unsigned N = Listener->needsSystemInputFileVisitation() ? NumInputs
: NumUserInputs;
for (unsigned I = 0; I < N; ++I) {
bool IsSystem = I >= NumUserInputs;
InputFileInfo FI = readInputFileInfo(F, I+1);
Listener->visitInputFile(FI.Filename, IsSystem, FI.Overridden,
F.Kind == MK_ExplicitModule ||
F.Kind == MK_PrebuiltModule);
}
}
return Result;
}
case llvm::BitstreamEntry::SubBlock:
switch (Entry.ID) {
case INPUT_FILES_BLOCK_ID:
F.InputFilesCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor
// Read the abbreviations
ReadBlockAbbrevs(F.InputFilesCursor, INPUT_FILES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
continue;
case OPTIONS_BLOCK_ID:
// If we're reading the first module for this group, check its options
// are compatible with ours. For modules it imports, no further checking
// is required, because we checked them when we built it.
if (Listener && !ImportedBy) {
// Should we allow the configuration of the module file to differ from
// the configuration of the current translation unit in a compatible
// way?
//
// FIXME: Allow this for files explicitly specified with -include-pch.
bool AllowCompatibleConfigurationMismatch =
F.Kind == MK_ExplicitModule || F.Kind == MK_PrebuiltModule;
Result = ReadOptionsBlock(Stream, ClientLoadCapabilities,
AllowCompatibleConfigurationMismatch,
*Listener, SuggestedPredefines);
if (Result == Failure) {
Error("malformed block record in AST file");
return Result;
}
if (DisableValidation ||
(AllowConfigurationMismatch && Result == ConfigurationMismatch))
Result = Success;
// If we can't load the module, exit early since we likely
// will rebuild the module anyway. The stream may be in the
// middle of a block.
if (Result != Success)
return Result;
} else if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
continue;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
continue;
}
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
StringRef Blob;
switch ((ControlRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) {
case METADATA: {
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(Record[0] < VERSION_MAJOR? diag::err_pch_version_too_old
: diag::err_pch_version_too_new);
return VersionMismatch;
}
bool hasErrors = Record[6];
if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) {
Diag(diag::err_pch_with_compiler_errors);
return HadErrors;
}
if (hasErrors) {
Diags.ErrorOccurred = true;
Diags.UncompilableErrorOccurred = true;
Diags.UnrecoverableErrorOccurred = true;
}
F.RelocatablePCH = Record[4];
// Relative paths in a relocatable PCH are relative to our sysroot.
if (F.RelocatablePCH)
F.BaseDirectory = isysroot.empty() ? "/" : isysroot;
F.HasTimestamps = Record[5];
const std::string &CurBranch = getClangFullRepositoryVersion();
StringRef ASTBranch = Blob;
if (StringRef(CurBranch) != ASTBranch && !DisableValidation) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(diag::err_pch_different_branch) << ASTBranch << CurBranch;
return VersionMismatch;
}
break;
}
case IMPORTS: {
// Validate the AST before processing any imports (otherwise, untangling
// them can be error-prone and expensive). A module will have a name and
// will already have been validated, but this catches the PCH case.
if (ASTReadResult Result = readUnhashedControlBlockOnce())
return Result;
// Load each of the imported PCH files.
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
// Read information about the AST file.
ModuleKind ImportedKind = (ModuleKind)Record[Idx++];
// The import location will be the local one for now; we will adjust
// all import locations of module imports after the global source
// location info are setup, in ReadAST.
SourceLocation ImportLoc =
ReadUntranslatedSourceLocation(Record[Idx++]);
off_t StoredSize = (off_t)Record[Idx++];
time_t StoredModTime = (time_t)Record[Idx++];
ASTFileSignature StoredSignature = {
{{(uint32_t)Record[Idx++], (uint32_t)Record[Idx++],
(uint32_t)Record[Idx++], (uint32_t)Record[Idx++],
(uint32_t)Record[Idx++]}}};
std::string ImportedName = ReadString(Record, Idx);
std::string ImportedFile;
// For prebuilt and explicit modules first consult the file map for
// an override. Note that here we don't search prebuilt module
// directories, only the explicit name to file mappings. Also, we will
// still verify the size/signature making sure it is essentially the
// same file but perhaps in a different location.
if (ImportedKind == MK_PrebuiltModule || ImportedKind == MK_ExplicitModule)
ImportedFile = PP.getHeaderSearchInfo().getPrebuiltModuleFileName(
ImportedName, /*FileMapOnly*/ true);
if (ImportedFile.empty())
ImportedFile = ReadPath(F, Record, Idx);
else
SkipPath(Record, Idx);
// If our client can't cope with us being out of date, we can't cope with
// our dependency being missing.
unsigned Capabilities = ClientLoadCapabilities;
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Capabilities &= ~ARR_Missing;
// Load the AST file.
auto Result = ReadASTCore(ImportedFile, ImportedKind, ImportLoc, &F,
Loaded, StoredSize, StoredModTime,
StoredSignature, Capabilities);
// If we diagnosed a problem, produce a backtrace.
if (isDiagnosedResult(Result, Capabilities))
Diag(diag::note_module_file_imported_by)
<< F.FileName << !F.ModuleName.empty() << F.ModuleName;
switch (Result) {
case Failure: return Failure;
// If we have to ignore the dependency, we'll have to ignore this too.
case Missing:
case OutOfDate: return OutOfDate;
case VersionMismatch: return VersionMismatch;
case ConfigurationMismatch: return ConfigurationMismatch;
case HadErrors: return HadErrors;
case Success: break;
}
}
break;
}
case ORIGINAL_FILE:
F.OriginalSourceFileID = FileID::get(Record[0]);
F.ActualOriginalSourceFileName = Blob;
F.OriginalSourceFileName = F.ActualOriginalSourceFileName;
ResolveImportedPath(F, F.OriginalSourceFileName);
break;
case ORIGINAL_FILE_ID:
F.OriginalSourceFileID = FileID::get(Record[0]);
break;
case ORIGINAL_PCH_DIR:
F.OriginalDir = Blob;
break;
case MODULE_NAME:
F.ModuleName = Blob;
if (Listener)
Listener->ReadModuleName(F.ModuleName);
// Validate the AST as soon as we have a name so we can exit early on
// failure.
if (ASTReadResult Result = readUnhashedControlBlockOnce())
return Result;
break;
case MODULE_DIRECTORY: {
assert(!F.ModuleName.empty() &&
"MODULE_DIRECTORY found before MODULE_NAME");
// If we've already loaded a module map file covering this module, we may
// have a better path for it (relative to the current build).
Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName);
if (M && M->Directory) {
// If we're implicitly loading a module, the base directory can't
// change between the build and use.
if (F.Kind != MK_ExplicitModule && F.Kind != MK_PrebuiltModule) {
const DirectoryEntry *BuildDir =
PP.getFileManager().getDirectory(Blob);
if (!BuildDir || BuildDir != M->Directory) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_imported_module_relocated)
<< F.ModuleName << Blob << M->Directory->getName();
return OutOfDate;
}
}
F.BaseDirectory = M->Directory->getName();
} else {
F.BaseDirectory = Blob;
}
break;
}
case MODULE_MAP_FILE:
if (ASTReadResult Result =
ReadModuleMapFileBlock(Record, F, ImportedBy, ClientLoadCapabilities))
return Result;
break;
case INPUT_FILE_OFFSETS:
NumInputs = Record[0];
NumUserInputs = Record[1];
F.InputFileOffsets =
(const llvm::support::unaligned_uint64_t *)Blob.data();
F.InputFilesLoaded.resize(NumInputs);
F.NumUserInputFiles = NumUserInputs;
break;
}
}
}
ASTReader::ASTReadResult
ASTReader::ReadASTBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
BitstreamCursor &Stream = F.Stream;
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Read all of the records and blocks for the AST file.
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
Error("error at end of module block in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock:
// Outside of C++, we do not store a lookup map for the translation unit.
// Instead, mark it as needing a lookup map to be built if this module
// contains any declarations lexically within it (which it always does!).
// This usually has no cost, since we very rarely need the lookup map for
// the translation unit outside C++.
if (ASTContext *Ctx = ContextObj) {
DeclContext *DC = Ctx->getTranslationUnitDecl();
if (DC->hasExternalLexicalStorage() && !Ctx->getLangOpts().CPlusPlus)
DC->setMustBuildLookupTable();
}
return Success;
case llvm::BitstreamEntry::SubBlock:
switch (Entry.ID) {
case DECLTYPES_BLOCK_ID:
// We lazily load the decls block, but we want to set up the
// DeclsCursor cursor to point into it. Clone our current bitcode
// cursor to it, enter the block and read the abbrevs in that block.
// With the main cursor, we just skip over it.
F.DeclsCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor.
// Read the abbrevs.
ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
break;
case PREPROCESSOR_BLOCK_ID:
F.MacroCursor = Stream;
if (!PP.getExternalSource())
PP.setExternalSource(this);
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo();
break;
case PREPROCESSOR_DETAIL_BLOCK_ID:
F.PreprocessorDetailCursor = Stream;
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.PreprocessorDetailCursor,
PREPROCESSOR_DETAIL_BLOCK_ID)) {
Error("malformed preprocessor detail record in AST file");
return Failure;
}
F.PreprocessorDetailStartOffset
= F.PreprocessorDetailCursor.GetCurrentBitNo();
if (!PP.getPreprocessingRecord())
PP.createPreprocessingRecord();
if (!PP.getPreprocessingRecord()->getExternalSource())
PP.getPreprocessingRecord()->SetExternalSource(*this);
break;
case SOURCE_MANAGER_BLOCK_ID:
if (ReadSourceManagerBlock(F))
return Failure;
break;
case SUBMODULE_BLOCK_ID:
if (ASTReadResult Result =
ReadSubmoduleBlock(F, ClientLoadCapabilities))
return Result;
break;
case COMMENTS_BLOCK_ID: {
BitstreamCursor C = Stream;
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(C, COMMENTS_BLOCK_ID)) {
Error("malformed comments block in AST file");
return Failure;
}
CommentsCursors.push_back(std::make_pair(C, &F));
break;
}
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
continue;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
StringRef Blob;
auto RecordType =
(ASTRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob);
// If we're not loading an AST context, we don't care about most records.
if (!ContextObj) {
switch (RecordType) {
case IDENTIFIER_TABLE:
case IDENTIFIER_OFFSET:
case INTERESTING_IDENTIFIERS:
case STATISTICS:
case PP_CONDITIONAL_STACK:
case PP_COUNTER_VALUE:
case SOURCE_LOCATION_OFFSETS:
case MODULE_OFFSET_MAP:
case SOURCE_MANAGER_LINE_TABLE:
case SOURCE_LOCATION_PRELOADS:
case PPD_ENTITIES_OFFSETS:
case HEADER_SEARCH_TABLE:
case IMPORTED_MODULES:
case MACRO_OFFSET:
break;
default:
continue;
}
}
switch (RecordType) {
default: // Default behavior: ignore.
break;
case TYPE_OFFSET: {
if (F.LocalNumTypes != 0) {
Error("duplicate TYPE_OFFSET record in AST file");
return Failure;
}
F.TypeOffsets = (const uint32_t *)Blob.data();
F.LocalNumTypes = Record[0];
unsigned LocalBaseTypeIndex = Record[1];
F.BaseTypeIndex = getTotalNumTypes();
if (F.LocalNumTypes > 0) {
// Introduce the global -> local mapping for types within this module.
GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F));
// Introduce the local -> global mapping for types within this module.
F.TypeRemap.insertOrReplace(
std::make_pair(LocalBaseTypeIndex,
F.BaseTypeIndex - LocalBaseTypeIndex));
TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes);
}
break;
}
case DECL_OFFSET: {
if (F.LocalNumDecls != 0) {
Error("duplicate DECL_OFFSET record in AST file");
return Failure;
}
F.DeclOffsets = (const DeclOffset *)Blob.data();
F.LocalNumDecls = Record[0];
unsigned LocalBaseDeclID = Record[1];
F.BaseDeclID = getTotalNumDecls();
if (F.LocalNumDecls > 0) {
// Introduce the global -> local mapping for declarations within this
// module.
GlobalDeclMap.insert(
std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F));
// Introduce the local -> global mapping for declarations within this
// module.
F.DeclRemap.insertOrReplace(
std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID));
// Introduce the global -> local mapping for declarations within this
// module.
F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID;
DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls);
}
break;
}
case TU_UPDATE_LEXICAL: {
DeclContext *TU = ContextObj->getTranslationUnitDecl();
LexicalContents Contents(
reinterpret_cast<const llvm::support::unaligned_uint32_t *>(
Blob.data()),
static_cast<unsigned int>(Blob.size() / 4));
TULexicalDecls.push_back(std::make_pair(&F, Contents));
TU->setHasExternalLexicalStorage(true);
break;
}
case UPDATE_VISIBLE: {
unsigned Idx = 0;
serialization::DeclID ID = ReadDeclID(F, Record, Idx);
auto *Data = (const unsigned char*)Blob.data();
PendingVisibleUpdates[ID].push_back(PendingVisibleUpdate{&F, Data});
// If we've already loaded the decl, perform the updates when we finish
// loading this block.
if (Decl *D = GetExistingDecl(ID))
PendingUpdateRecords.push_back(
PendingUpdateRecord(ID, D, /*JustLoaded=*/false));
break;
}
case IDENTIFIER_TABLE:
F.IdentifierTableData = Blob.data();
if (Record[0]) {
F.IdentifierLookupTable = ASTIdentifierLookupTable::Create(
(const unsigned char *)F.IdentifierTableData + Record[0],
(const unsigned char *)F.IdentifierTableData + sizeof(uint32_t),
(const unsigned char *)F.IdentifierTableData,
ASTIdentifierLookupTrait(*this, F));
PP.getIdentifierTable().setExternalIdentifierLookup(this);
}
break;
case IDENTIFIER_OFFSET: {
if (F.LocalNumIdentifiers != 0) {
Error("duplicate IDENTIFIER_OFFSET record in AST file");
return Failure;
}
F.IdentifierOffsets = (const uint32_t *)Blob.data();
F.LocalNumIdentifiers = Record[0];
unsigned LocalBaseIdentifierID = Record[1];
F.BaseIdentifierID = getTotalNumIdentifiers();
if (F.LocalNumIdentifiers > 0) {
// Introduce the global -> local mapping for identifiers within this
// module.
GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1,
&F));
// Introduce the local -> global mapping for identifiers within this
// module.
F.IdentifierRemap.insertOrReplace(
std::make_pair(LocalBaseIdentifierID,
F.BaseIdentifierID - LocalBaseIdentifierID));
IdentifiersLoaded.resize(IdentifiersLoaded.size()
+ F.LocalNumIdentifiers);
}
break;
}
case INTERESTING_IDENTIFIERS:
F.PreloadIdentifierOffsets.assign(Record.begin(), Record.end());
break;
case EAGERLY_DESERIALIZED_DECLS:
// FIXME: Skip reading this record if our ASTConsumer doesn't care
// about "interesting" decls (for instance, if we're building a module).
for (unsigned I = 0, N = Record.size(); I != N; ++I)
EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case MODULAR_CODEGEN_DECLS:
// FIXME: Skip reading this record if our ASTConsumer doesn't care about
// them (ie: if we're not codegenerating this module).
if (F.Kind == MK_MainFile)
for (unsigned I = 0, N = Record.size(); I != N; ++I)
EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case SPECIAL_TYPES:
if (SpecialTypes.empty()) {
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SpecialTypes.push_back(getGlobalTypeID(F, Record[I]));
break;
}
if (SpecialTypes.size() != Record.size()) {
Error("invalid special-types record");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; ++I) {
serialization::TypeID ID = getGlobalTypeID(F, Record[I]);
if (!SpecialTypes[I])
SpecialTypes[I] = ID;
// FIXME: If ID && SpecialTypes[I] != ID, do we need a separate
// merge step?
}
break;
case STATISTICS:
TotalNumStatements += Record[0];
TotalNumMacros += Record[1];
TotalLexicalDeclContexts += Record[2];
TotalVisibleDeclContexts += Record[3];
break;
case UNUSED_FILESCOPED_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case DELEGATING_CTORS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case WEAK_UNDECLARED_IDENTIFIERS:
if (Record.size() % 4 != 0) {
Error("invalid weak identifiers record");
return Failure;
}
// FIXME: Ignore weak undeclared identifiers from non-original PCH
// files. This isn't the way to do it :)
WeakUndeclaredIdentifiers.clear();
// Translate the weak, undeclared identifiers into global IDs.
for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) {
WeakUndeclaredIdentifiers.push_back(
getGlobalIdentifierID(F, Record[I++]));
WeakUndeclaredIdentifiers.push_back(
getGlobalIdentifierID(F, Record[I++]));
WeakUndeclaredIdentifiers.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
WeakUndeclaredIdentifiers.push_back(Record[I++]);
}
break;
case SELECTOR_OFFSETS: {
F.SelectorOffsets = (const uint32_t *)Blob.data();
F.LocalNumSelectors = Record[0];
unsigned LocalBaseSelectorID = Record[1];
F.BaseSelectorID = getTotalNumSelectors();
if (F.LocalNumSelectors > 0) {
// Introduce the global -> local mapping for selectors within this
// module.
GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F));
// Introduce the local -> global mapping for selectors within this
// module.
F.SelectorRemap.insertOrReplace(
std::make_pair(LocalBaseSelectorID,
F.BaseSelectorID - LocalBaseSelectorID));
SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors);
}
break;
}
case METHOD_POOL:
F.SelectorLookupTableData = (const unsigned char *)Blob.data();
if (Record[0])
F.SelectorLookupTable
= ASTSelectorLookupTable::Create(
F.SelectorLookupTableData + Record[0],
F.SelectorLookupTableData,
ASTSelectorLookupTrait(*this, F));
TotalNumMethodPoolEntries += Record[1];
break;
case REFERENCED_SELECTOR_POOL:
if (!Record.empty()) {
for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) {
ReferencedSelectorsData.push_back(getGlobalSelectorID(F,
Record[Idx++]));
ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx).
getRawEncoding());
}
}
break;
case PP_CONDITIONAL_STACK:
if (!Record.empty()) {
unsigned Idx = 0, End = Record.size() - 1;
bool ReachedEOFWhileSkipping = Record[Idx++];
llvm::Optional<Preprocessor::PreambleSkipInfo> SkipInfo;
if (ReachedEOFWhileSkipping) {
SourceLocation HashToken = ReadSourceLocation(F, Record, Idx);
SourceLocation IfTokenLoc = ReadSourceLocation(F, Record, Idx);
bool FoundNonSkipPortion = Record[Idx++];
bool FoundElse = Record[Idx++];
SourceLocation ElseLoc = ReadSourceLocation(F, Record, Idx);
SkipInfo.emplace(HashToken, IfTokenLoc, FoundNonSkipPortion,
FoundElse, ElseLoc);
}
SmallVector<PPConditionalInfo, 4> ConditionalStack;
while (Idx < End) {
auto Loc = ReadSourceLocation(F, Record, Idx);
bool WasSkipping = Record[Idx++];
bool FoundNonSkip = Record[Idx++];
bool FoundElse = Record[Idx++];
ConditionalStack.push_back(
{Loc, WasSkipping, FoundNonSkip, FoundElse});
}
PP.setReplayablePreambleConditionalStack(ConditionalStack, SkipInfo);
}
break;
case PP_COUNTER_VALUE:
if (!Record.empty() && Listener)
Listener->ReadCounter(F, Record[0]);
break;
case FILE_SORTED_DECLS:
F.FileSortedDecls = (const DeclID *)Blob.data();
F.NumFileSortedDecls = Record[0];
break;
case SOURCE_LOCATION_OFFSETS: {
F.SLocEntryOffsets = (const uint32_t *)Blob.data();
F.LocalNumSLocEntries = Record[0];
unsigned SLocSpaceSize = Record[1];
std::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) =
SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries,
SLocSpaceSize);
if (!F.SLocEntryBaseID) {
Error("ran out of source locations");
break;
}
// Make our entry in the range map. BaseID is negative and growing, so
// we invert it. Because we invert it, though, we need the other end of
// the range.
unsigned RangeStart =
unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1;
GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F));
F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset);
// SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing.
assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0);
GlobalSLocOffsetMap.insert(
std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset
- SLocSpaceSize,&F));
// Initialize the remapping table.
// Invalid stays invalid.
F.SLocRemap.insertOrReplace(std::make_pair(0U, 0));
// This module. Base was 2 when being compiled.
F.SLocRemap.insertOrReplace(std::make_pair(2U,
static_cast<int>(F.SLocEntryBaseOffset - 2)));
TotalNumSLocEntries += F.LocalNumSLocEntries;
break;
}
case MODULE_OFFSET_MAP:
F.ModuleOffsetMap = Blob;
break;
case SOURCE_MANAGER_LINE_TABLE:
if (ParseLineTable(F, Record))
return Failure;
break;
case SOURCE_LOCATION_PRELOADS: {
// Need to transform from the local view (1-based IDs) to the global view,
// which is based off F.SLocEntryBaseID.
if (!F.PreloadSLocEntries.empty()) {
Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file");
return Failure;
}
F.PreloadSLocEntries.swap(Record);
break;
}
case EXT_VECTOR_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case VTABLE_USES:
if (Record.size() % 3 != 0) {
Error("Invalid VTABLE_USES record");
return Failure;
}
// Later tables overwrite earlier ones.
// FIXME: Modules will have some trouble with this. This is clearly not
// the right way to do this.
VTableUses.clear();
for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) {
VTableUses.push_back(getGlobalDeclID(F, Record[Idx++]));
VTableUses.push_back(
ReadSourceLocation(F, Record, Idx).getRawEncoding());
VTableUses.push_back(Record[Idx++]);
}
break;
case PENDING_IMPLICIT_INSTANTIATIONS:
if (PendingInstantiations.size() % 2 != 0) {
Error("Invalid existing PendingInstantiations");
return Failure;
}
if (Record.size() % 2 != 0) {
Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++]));
PendingInstantiations.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
}
break;
case SEMA_DECL_REFS:
if (Record.size() != 3) {
Error("Invalid SEMA_DECL_REFS block");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case PPD_ENTITIES_OFFSETS: {
F.PreprocessedEntityOffsets = (const PPEntityOffset *)Blob.data();
assert(Blob.size() % sizeof(PPEntityOffset) == 0);
F.NumPreprocessedEntities = Blob.size() / sizeof(PPEntityOffset);
unsigned LocalBasePreprocessedEntityID = Record[0];
unsigned StartingID;
if (!PP.getPreprocessingRecord())
PP.createPreprocessingRecord();
if (!PP.getPreprocessingRecord()->getExternalSource())
PP.getPreprocessingRecord()->SetExternalSource(*this);
StartingID
= PP.getPreprocessingRecord()
->allocateLoadedEntities(F.NumPreprocessedEntities);
F.BasePreprocessedEntityID = StartingID;
if (F.NumPreprocessedEntities > 0) {
// Introduce the global -> local mapping for preprocessed entities in
// this module.
GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F));
// Introduce the local -> global mapping for preprocessed entities in
// this module.
F.PreprocessedEntityRemap.insertOrReplace(
std::make_pair(LocalBasePreprocessedEntityID,
F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID));
}
break;
}
case PPD_SKIPPED_RANGES: {
F.PreprocessedSkippedRangeOffsets = (const PPSkippedRange*)Blob.data();
assert(Blob.size() % sizeof(PPSkippedRange) == 0);
F.NumPreprocessedSkippedRanges = Blob.size() / sizeof(PPSkippedRange);
if (!PP.getPreprocessingRecord())
PP.createPreprocessingRecord();
if (!PP.getPreprocessingRecord()->getExternalSource())
PP.getPreprocessingRecord()->SetExternalSource(*this);
F.BasePreprocessedSkippedRangeID = PP.getPreprocessingRecord()
->allocateSkippedRanges(F.NumPreprocessedSkippedRanges);
if (F.NumPreprocessedSkippedRanges > 0)
GlobalSkippedRangeMap.insert(
std::make_pair(F.BasePreprocessedSkippedRangeID, &F));
break;
}
case DECL_UPDATE_OFFSETS:
if (Record.size() % 2 != 0) {
Error("invalid DECL_UPDATE_OFFSETS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 2) {
GlobalDeclID ID = getGlobalDeclID(F, Record[I]);
DeclUpdateOffsets[ID].push_back(std::make_pair(&F, Record[I + 1]));
// If we've already loaded the decl, perform the updates when we finish
// loading this block.
if (Decl *D = GetExistingDecl(ID))
PendingUpdateRecords.push_back(
PendingUpdateRecord(ID, D, /*JustLoaded=*/false));
}
break;
case OBJC_CATEGORIES_MAP:
if (F.LocalNumObjCCategoriesInMap != 0) {
Error("duplicate OBJC_CATEGORIES_MAP record in AST file");
return Failure;
}
F.LocalNumObjCCategoriesInMap = Record[0];
F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)Blob.data();
break;
case OBJC_CATEGORIES:
F.ObjCCategories.swap(Record);
break;
case CUDA_SPECIAL_DECL_REFS:
// Later tables overwrite earlier ones.
// FIXME: Modules will have trouble with this.
CUDASpecialDeclRefs.clear();
for (unsigned I = 0, N = Record.size(); I != N; ++I)
CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case HEADER_SEARCH_TABLE:
F.HeaderFileInfoTableData = Blob.data();
F.LocalNumHeaderFileInfos = Record[1];
if (Record[0]) {
F.HeaderFileInfoTable
= HeaderFileInfoLookupTable::Create(
(const unsigned char *)F.HeaderFileInfoTableData + Record[0],
(const unsigned char *)F.HeaderFileInfoTableData,
HeaderFileInfoTrait(*this, F,
&PP.getHeaderSearchInfo(),
Blob.data() + Record[2]));
PP.getHeaderSearchInfo().SetExternalSource(this);
if (!PP.getHeaderSearchInfo().getExternalLookup())
PP.getHeaderSearchInfo().SetExternalLookup(this);
}
break;
case FP_PRAGMA_OPTIONS:
// Later tables overwrite earlier ones.
FPPragmaOptions.swap(Record);
break;
case OPENCL_EXTENSIONS:
for (unsigned I = 0, E = Record.size(); I != E; ) {
auto Name = ReadString(Record, I);
auto &Opt = OpenCLExtensions.OptMap[Name];
Opt.Supported = Record[I++] != 0;
Opt.Enabled = Record[I++] != 0;
Opt.Avail = Record[I++];
Opt.Core = Record[I++];
}
break;
case OPENCL_EXTENSION_TYPES:
for (unsigned I = 0, E = Record.size(); I != E;) {
auto TypeID = static_cast<::TypeID>(Record[I++]);
auto *Type = GetType(TypeID).getTypePtr();
auto NumExt = static_cast<unsigned>(Record[I++]);
for (unsigned II = 0; II != NumExt; ++II) {
auto Ext = ReadString(Record, I);
OpenCLTypeExtMap[Type].insert(Ext);
}
}
break;
case OPENCL_EXTENSION_DECLS:
for (unsigned I = 0, E = Record.size(); I != E;) {
auto DeclID = static_cast<::DeclID>(Record[I++]);
auto *Decl = GetDecl(DeclID);
auto NumExt = static_cast<unsigned>(Record[I++]);
for (unsigned II = 0; II != NumExt; ++II) {
auto Ext = ReadString(Record, I);
OpenCLDeclExtMap[Decl].insert(Ext);
}
}
break;
case TENTATIVE_DEFINITIONS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I]));
break;
case KNOWN_NAMESPACES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
KnownNamespaces.push_back(getGlobalDeclID(F, Record[I]));
break;
case UNDEFINED_BUT_USED:
if (UndefinedButUsed.size() % 2 != 0) {
Error("Invalid existing UndefinedButUsed");
return Failure;
}
if (Record.size() % 2 != 0) {
Error("invalid undefined-but-used record");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) {
UndefinedButUsed.push_back(getGlobalDeclID(F, Record[I++]));
UndefinedButUsed.push_back(
ReadSourceLocation(F, Record, I).getRawEncoding());
}
break;
case DELETE_EXPRS_TO_ANALYZE:
for (unsigned I = 0, N = Record.size(); I != N;) {
DelayedDeleteExprs.push_back(getGlobalDeclID(F, Record[I++]));
const uint64_t Count = Record[I++];
DelayedDeleteExprs.push_back(Count);
for (uint64_t C = 0; C < Count; ++C) {
DelayedDeleteExprs.push_back(ReadSourceLocation(F, Record, I).getRawEncoding());
bool IsArrayForm = Record[I++] == 1;
DelayedDeleteExprs.push_back(IsArrayForm);
}
}
break;
case IMPORTED_MODULES:
if (!F.isModule()) {
// If we aren't loading a module (which has its own exports), make
// all of the imported modules visible.
// FIXME: Deal with macros-only imports.
for (unsigned I = 0, N = Record.size(); I != N; /**/) {
unsigned GlobalID = getGlobalSubmoduleID(F, Record[I++]);
SourceLocation Loc = ReadSourceLocation(F, Record, I);
if (GlobalID) {
ImportedModules.push_back(ImportedSubmodule(GlobalID, Loc));
if (DeserializationListener)
DeserializationListener->ModuleImportRead(GlobalID, Loc);
}
}
}
break;
case MACRO_OFFSET: {
if (F.LocalNumMacros != 0) {
Error("duplicate MACRO_OFFSET record in AST file");
return Failure;
}
F.MacroOffsets = (const uint32_t *)Blob.data();
F.LocalNumMacros = Record[0];
unsigned LocalBaseMacroID = Record[1];
F.BaseMacroID = getTotalNumMacros();
if (F.LocalNumMacros > 0) {
// Introduce the global -> local mapping for macros within this module.
GlobalMacroMap.insert(std::make_pair(getTotalNumMacros() + 1, &F));
// Introduce the local -> global mapping for macros within this module.
F.MacroRemap.insertOrReplace(
std::make_pair(LocalBaseMacroID,
F.BaseMacroID - LocalBaseMacroID));
MacrosLoaded.resize(MacrosLoaded.size() + F.LocalNumMacros);
}
break;
}
case LATE_PARSED_TEMPLATE:
LateParsedTemplates.append(Record.begin(), Record.end());
break;
case OPTIMIZE_PRAGMA_OPTIONS:
if (Record.size() != 1) {
Error("invalid pragma optimize record");
return Failure;
}
OptimizeOffPragmaLocation = ReadSourceLocation(F, Record[0]);
break;
case MSSTRUCT_PRAGMA_OPTIONS:
if (Record.size() != 1) {
Error("invalid pragma ms_struct record");
return Failure;
}
PragmaMSStructState = Record[0];
break;
case POINTERS_TO_MEMBERS_PRAGMA_OPTIONS:
if (Record.size() != 2) {
Error("invalid pragma ms_struct record");
return Failure;
}
PragmaMSPointersToMembersState = Record[0];
PointersToMembersPragmaLocation = ReadSourceLocation(F, Record[1]);
break;
case UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
UnusedLocalTypedefNameCandidates.push_back(
getGlobalDeclID(F, Record[I]));
break;
case CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH:
if (Record.size() != 1) {
Error("invalid cuda pragma options record");
return Failure;
}
ForceCUDAHostDeviceDepth = Record[0];
break;
case PACK_PRAGMA_OPTIONS: {
if (Record.size() < 3) {
Error("invalid pragma pack record");
return Failure;
}
PragmaPackCurrentValue = Record[0];
PragmaPackCurrentLocation = ReadSourceLocation(F, Record[1]);
unsigned NumStackEntries = Record[2];
unsigned Idx = 3;
// Reset the stack when importing a new module.
PragmaPackStack.clear();
for (unsigned I = 0; I < NumStackEntries; ++I) {
PragmaPackStackEntry Entry;
Entry.Value = Record[Idx++];
Entry.Location = ReadSourceLocation(F, Record[Idx++]);
Entry.PushLocation = ReadSourceLocation(F, Record[Idx++]);
PragmaPackStrings.push_back(ReadString(Record, Idx));
Entry.SlotLabel = PragmaPackStrings.back();
PragmaPackStack.push_back(Entry);
}
break;
}
}
}
}
void ASTReader::ReadModuleOffsetMap(ModuleFile &F) const {
assert(!F.ModuleOffsetMap.empty() && "no module offset map to read");
// Additional remapping information.
const unsigned char *Data = (const unsigned char*)F.ModuleOffsetMap.data();
const unsigned char *DataEnd = Data + F.ModuleOffsetMap.size();
F.ModuleOffsetMap = StringRef();
// If we see this entry before SOURCE_LOCATION_OFFSETS, add placeholders.
if (F.SLocRemap.find(0) == F.SLocRemap.end()) {
F.SLocRemap.insert(std::make_pair(0U, 0));
F.SLocRemap.insert(std::make_pair(2U, 1));
}
// Continuous range maps we may be updating in our module.
using RemapBuilder = ContinuousRangeMap<uint32_t, int, 2>::Builder;
RemapBuilder SLocRemap(F.SLocRemap);
RemapBuilder IdentifierRemap(F.IdentifierRemap);
RemapBuilder MacroRemap(F.MacroRemap);
RemapBuilder PreprocessedEntityRemap(F.PreprocessedEntityRemap);
RemapBuilder SubmoduleRemap(F.SubmoduleRemap);
RemapBuilder SelectorRemap(F.SelectorRemap);
RemapBuilder DeclRemap(F.DeclRemap);
RemapBuilder TypeRemap(F.TypeRemap);
while (Data < DataEnd) {
// FIXME: Looking up dependency modules by filename is horrible. Let's
// start fixing this with prebuilt and explicit modules and see how it
// goes...
using namespace llvm::support;
ModuleKind Kind = static_cast<ModuleKind>(
endian::readNext<uint8_t, little, unaligned>(Data));
uint16_t Len = endian::readNext<uint16_t, little, unaligned>(Data);
StringRef Name = StringRef((const char*)Data, Len);
Data += Len;
ModuleFile *OM = (Kind == MK_PrebuiltModule || Kind == MK_ExplicitModule
? ModuleMgr.lookupByModuleName(Name)
: ModuleMgr.lookupByFileName(Name));
if (!OM) {
std::string Msg =
"SourceLocation remap refers to unknown module, cannot find ";
Msg.append(Name);
Error(Msg);
return;
}
uint32_t SLocOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t IdentifierIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t MacroIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t PreprocessedEntityIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t SubmoduleIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t SelectorIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t DeclIDOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t TypeIndexOffset =
endian::readNext<uint32_t, little, unaligned>(Data);
uint32_t None = std::numeric_limits<uint32_t>::max();
auto mapOffset = [&](uint32_t Offset, uint32_t BaseOffset,
RemapBuilder &Remap) {
if (Offset != None)
Remap.insert(std::make_pair(Offset,
static_cast<int>(BaseOffset - Offset)));
};
mapOffset(SLocOffset, OM->SLocEntryBaseOffset, SLocRemap);
mapOffset(IdentifierIDOffset, OM->BaseIdentifierID, IdentifierRemap);
mapOffset(MacroIDOffset, OM->BaseMacroID, MacroRemap);
mapOffset(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID,
PreprocessedEntityRemap);
mapOffset(SubmoduleIDOffset, OM->BaseSubmoduleID, SubmoduleRemap);
mapOffset(SelectorIDOffset, OM->BaseSelectorID, SelectorRemap);
mapOffset(DeclIDOffset, OM->BaseDeclID, DeclRemap);
mapOffset(TypeIndexOffset, OM->BaseTypeIndex, TypeRemap);
// Global -> local mappings.
F.GlobalToLocalDeclIDs[OM] = DeclIDOffset;
}
}
ASTReader::ASTReadResult
ASTReader::ReadModuleMapFileBlock(RecordData &Record, ModuleFile &F,
const ModuleFile *ImportedBy,
unsigned ClientLoadCapabilities) {
unsigned Idx = 0;
F.ModuleMapPath = ReadPath(F, Record, Idx);
// Try to resolve ModuleName in the current header search context and
// verify that it is found in the same module map file as we saved. If the
// top-level AST file is a main file, skip this check because there is no
// usable header search context.
assert(!F.ModuleName.empty() &&
"MODULE_NAME should come before MODULE_MAP_FILE");
if (F.Kind == MK_ImplicitModule && ModuleMgr.begin()->Kind != MK_MainFile) {
// An implicitly-loaded module file should have its module listed in some
// module map file that we've already loaded.
Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName);
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
const FileEntry *ModMap = M ? Map.getModuleMapFileForUniquing(M) : nullptr;
if (!ModMap) {
assert(ImportedBy && "top-level import should be verified");
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) {
if (auto *ASTFE = M ? M->getASTFile() : nullptr) {
// This module was defined by an imported (explicit) module.
Diag(diag::err_module_file_conflict) << F.ModuleName << F.FileName
<< ASTFE->getName();
} else {
// This module was built with a different module map.
Diag(diag::err_imported_module_not_found)
<< F.ModuleName << F.FileName << ImportedBy->FileName
<< F.ModuleMapPath;
// In case it was imported by a PCH, there's a chance the user is
// just missing to include the search path to the directory containing
// the modulemap.
if (ImportedBy->Kind == MK_PCH)
Diag(diag::note_imported_by_pch_module_not_found)
<< llvm::sys::path::parent_path(F.ModuleMapPath);
}
}
return OutOfDate;
}
assert(M->Name == F.ModuleName && "found module with different name");
// Check the primary module map file.
const FileEntry *StoredModMap = FileMgr.getFile(F.ModuleMapPath);
if (StoredModMap == nullptr || StoredModMap != ModMap) {
assert(ModMap && "found module is missing module map file");
assert(ImportedBy && "top-level import should be verified");
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_imported_module_modmap_changed)
<< F.ModuleName << ImportedBy->FileName
<< ModMap->getName() << F.ModuleMapPath;
return OutOfDate;
}
llvm::SmallPtrSet<const FileEntry *, 1> AdditionalStoredMaps;
for (unsigned I = 0, N = Record[Idx++]; I < N; ++I) {
// FIXME: we should use input files rather than storing names.
std::string Filename = ReadPath(F, Record, Idx);
const FileEntry *F =
FileMgr.getFile(Filename, false, false);
if (F == nullptr) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("could not find file '" + Filename +"' referenced by AST file");
return OutOfDate;
}
AdditionalStoredMaps.insert(F);
}
// Check any additional module map files (e.g. module.private.modulemap)
// that are not in the pcm.
if (auto *AdditionalModuleMaps = Map.getAdditionalModuleMapFiles(M)) {
for (const FileEntry *ModMap : *AdditionalModuleMaps) {
// Remove files that match
// Note: SmallPtrSet::erase is really remove
if (!AdditionalStoredMaps.erase(ModMap)) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_module_different_modmap)
<< F.ModuleName << /*new*/0 << ModMap->getName();
return OutOfDate;
}
}
}
// Check any additional module map files that are in the pcm, but not
// found in header search. Cases that match are already removed.
for (const FileEntry *ModMap : AdditionalStoredMaps) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_module_different_modmap)
<< F.ModuleName << /*not new*/1 << ModMap->getName();
return OutOfDate;
}
}
if (Listener)
Listener->ReadModuleMapFile(F.ModuleMapPath);
return Success;
}
/// Move the given method to the back of the global list of methods.
static void moveMethodToBackOfGlobalList(Sema &S, ObjCMethodDecl *Method) {
// Find the entry for this selector in the method pool.
Sema::GlobalMethodPool::iterator Known
= S.MethodPool.find(Method->getSelector());
if (Known == S.MethodPool.end())
return;
// Retrieve the appropriate method list.
ObjCMethodList &Start = Method->isInstanceMethod()? Known->second.first
: Known->second.second;
bool Found = false;
for (ObjCMethodList *List = &Start; List; List = List->getNext()) {
if (!Found) {
if (List->getMethod() == Method) {
Found = true;
} else {
// Keep searching.
continue;
}
}
if (List->getNext())
List->setMethod(List->getNext()->getMethod());
else
List->setMethod(Method);
}
}
void ASTReader::makeNamesVisible(const HiddenNames &Names, Module *Owner) {
assert(Owner->NameVisibility != Module::Hidden && "nothing to make visible?");
for (Decl *D : Names) {
bool wasHidden = D->isHidden();
D->setVisibleDespiteOwningModule();
if (wasHidden && SemaObj) {
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D)) {
moveMethodToBackOfGlobalList(*SemaObj, Method);
}
}
}
}
void ASTReader::makeModuleVisible(Module *Mod,
Module::NameVisibilityKind NameVisibility,
SourceLocation ImportLoc) {
llvm::SmallPtrSet<Module *, 4> Visited;
SmallVector<Module *, 4> Stack;
Stack.push_back(Mod);
while (!Stack.empty()) {
Mod = Stack.pop_back_val();
if (NameVisibility <= Mod->NameVisibility) {
// This module already has this level of visibility (or greater), so
// there is nothing more to do.
continue;
}
if (!Mod->isAvailable()) {
// Modules that aren't available cannot be made visible.
continue;
}
// Update the module's name visibility.
Mod->NameVisibility = NameVisibility;
// If we've already deserialized any names from this module,
// mark them as visible.
HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod);
if (Hidden != HiddenNamesMap.end()) {
auto HiddenNames = std::move(*Hidden);
HiddenNamesMap.erase(Hidden);
makeNamesVisible(HiddenNames.second, HiddenNames.first);
assert(HiddenNamesMap.find(Mod) == HiddenNamesMap.end() &&
"making names visible added hidden names");
}
// Push any exported modules onto the stack to be marked as visible.
SmallVector<Module *, 16> Exports;
Mod->getExportedModules(Exports);
for (SmallVectorImpl<Module *>::iterator
I = Exports.begin(), E = Exports.end(); I != E; ++I) {
Module *Exported = *I;
if (Visited.insert(Exported).second)
Stack.push_back(Exported);
}
}
}
/// We've merged the definition \p MergedDef into the existing definition
/// \p Def. Ensure that \p Def is made visible whenever \p MergedDef is made
/// visible.
void ASTReader::mergeDefinitionVisibility(NamedDecl *Def,
NamedDecl *MergedDef) {
// FIXME: This doesn't correctly handle the case where MergedDef is visible
// in modules other than its owning module. We should instead give the
// ASTContext a list of merged definitions for Def.
if (Def->isHidden()) {
// If MergedDef is visible or becomes visible, make the definition visible.
if (!MergedDef->isHidden())
Def->setVisibleDespiteOwningModule();
else if (getContext().getLangOpts().ModulesLocalVisibility) {
getContext().mergeDefinitionIntoModule(
Def, MergedDef->getImportedOwningModule(),
/*NotifyListeners*/ false);
PendingMergedDefinitionsToDeduplicate.insert(Def);
} else {
auto SubmoduleID = MergedDef->getOwningModuleID();
assert(SubmoduleID && "hidden definition in no module");
HiddenNamesMap[getSubmodule(SubmoduleID)].push_back(Def);
}
}
}
bool ASTReader::loadGlobalIndex() {
if (GlobalIndex)
return false;
if (TriedLoadingGlobalIndex || !UseGlobalIndex ||
!PP.getLangOpts().Modules)
return true;
// Try to load the global index.
TriedLoadingGlobalIndex = true;
StringRef ModuleCachePath
= getPreprocessor().getHeaderSearchInfo().getModuleCachePath();
std::pair<GlobalModuleIndex *, GlobalModuleIndex::ErrorCode> Result
= GlobalModuleIndex::readIndex(ModuleCachePath);
if (!Result.first)
return true;
GlobalIndex.reset(Result.first);
ModuleMgr.setGlobalIndex(GlobalIndex.get());
return false;
}
bool ASTReader::isGlobalIndexUnavailable() const {
return PP.getLangOpts().Modules && UseGlobalIndex &&
!hasGlobalIndex() && TriedLoadingGlobalIndex;
}
static void updateModuleTimestamp(ModuleFile &MF) {
// Overwrite the timestamp file contents so that file's mtime changes.
std::string TimestampFilename = MF.getTimestampFilename();
std::error_code EC;
llvm::raw_fd_ostream OS(TimestampFilename, EC, llvm::sys::fs::F_Text);
if (EC)
return;
OS << "Timestamp file\n";
OS.close();
OS.clear_error(); // Avoid triggering a fatal error.
}
/// Given a cursor at the start of an AST file, scan ahead and drop the
/// cursor into the start of the given block ID, returning false on success and
/// true on failure.
static bool SkipCursorToBlock(BitstreamCursor &Cursor, unsigned BlockID) {
while (true) {
llvm::BitstreamEntry Entry = Cursor.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::EndBlock:
return true;
case llvm::BitstreamEntry::Record:
// Ignore top-level records.
Cursor.skipRecord(Entry.ID);
break;
case llvm::BitstreamEntry::SubBlock:
if (Entry.ID == BlockID) {
if (Cursor.EnterSubBlock(BlockID))
return true;
// Found it!
return false;
}
if (Cursor.SkipBlock())
return true;
}
}
}
ASTReader::ASTReadResult ASTReader::ReadAST(StringRef FileName,
ModuleKind Type,
SourceLocation ImportLoc,
unsigned ClientLoadCapabilities,
SmallVectorImpl<ImportedSubmodule> *Imported) {
llvm::SaveAndRestore<SourceLocation>
SetCurImportLocRAII(CurrentImportLoc, ImportLoc);
// Defer any pending actions until we get to the end of reading the AST file.
Deserializing AnASTFile(this);
// Bump the generation number.
unsigned PreviousGeneration = 0;
if (ContextObj)
PreviousGeneration = incrementGeneration(*ContextObj);
unsigned NumModules = ModuleMgr.size();
SmallVector<ImportedModule, 4> Loaded;
switch (ASTReadResult ReadResult =
ReadASTCore(FileName, Type, ImportLoc,
/*ImportedBy=*/nullptr, Loaded, 0, 0,
ASTFileSignature(), ClientLoadCapabilities)) {
case Failure:
case Missing:
case OutOfDate:
case VersionMismatch:
case ConfigurationMismatch:
case HadErrors: {
llvm::SmallPtrSet<ModuleFile *, 4> LoadedSet;
for (const ImportedModule &IM : Loaded)
LoadedSet.insert(IM.Mod);
ModuleMgr.removeModules(ModuleMgr.begin() + NumModules, LoadedSet,
PP.getLangOpts().Modules
? &PP.getHeaderSearchInfo().getModuleMap()
: nullptr);
// If we find that any modules are unusable, the global index is going
// to be out-of-date. Just remove it.
GlobalIndex.reset();
ModuleMgr.setGlobalIndex(nullptr);
return ReadResult;
}
case Success:
break;
}
// Here comes stuff that we only do once the entire chain is loaded.
// Load the AST blocks of all of the modules that we loaded.
for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
MEnd = Loaded.end();
M != MEnd; ++M) {
ModuleFile &F = *M->Mod;
// Read the AST block.
if (ASTReadResult Result = ReadASTBlock(F, ClientLoadCapabilities))
return Result;
// Read the extension blocks.
while (!SkipCursorToBlock(F.Stream, EXTENSION_BLOCK_ID)) {
if (ASTReadResult Result = ReadExtensionBlock(F))
return Result;
}
// Once read, set the ModuleFile bit base offset and update the size in
// bits of all files we've seen.
F.GlobalBitOffset = TotalModulesSizeInBits;
TotalModulesSizeInBits += F.SizeInBits;
GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F));
// Preload SLocEntries.
for (unsigned I = 0, N = F.PreloadSLocEntries.size(); I != N; ++I) {
int Index = int(F.PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID;
// Load it through the SourceManager and don't call ReadSLocEntry()
// directly because the entry may have already been loaded in which case
// calling ReadSLocEntry() directly would trigger an assertion in
// SourceManager.
SourceMgr.getLoadedSLocEntryByID(Index);
}
// Map the original source file ID into the ID space of the current
// compilation.
if (F.OriginalSourceFileID.isValid()) {
F.OriginalSourceFileID = FileID::get(
F.SLocEntryBaseID + F.OriginalSourceFileID.getOpaqueValue() - 1);
}
// Preload all the pending interesting identifiers by marking them out of
// date.
for (auto Offset : F.PreloadIdentifierOffsets) {
const unsigned char *Data = reinterpret_cast<const unsigned char *>(
F.IdentifierTableData + Offset);
ASTIdentifierLookupTrait Trait(*this, F);
auto KeyDataLen = Trait.ReadKeyDataLength(Data);
auto Key = Trait.ReadKey(Data, KeyDataLen.first);
auto &II = PP.getIdentifierTable().getOwn(Key);
II.setOutOfDate(true);
// Mark this identifier as being from an AST file so that we can track
// whether we need to serialize it.
markIdentifierFromAST(*this, II);
// Associate the ID with the identifier so that the writer can reuse it.
auto ID = Trait.ReadIdentifierID(Data + KeyDataLen.first);
SetIdentifierInfo(ID, &II);
}
}
// Setup the import locations and notify the module manager that we've
// committed to these module files.
for (SmallVectorImpl<ImportedModule>::iterator M = Loaded.begin(),
MEnd = Loaded.end();
M != MEnd; ++M) {
ModuleFile &F = *M->Mod;
ModuleMgr.moduleFileAccepted(&F);
// Set the import location.
F.DirectImportLoc = ImportLoc;
// FIXME: We assume that locations from PCH / preamble do not need
// any translation.
if (!M->ImportedBy)
F.ImportLoc = M->ImportLoc;
else
F.ImportLoc = TranslateSourceLocation(*M->ImportedBy, M->ImportLoc);
}
if (!PP.getLangOpts().CPlusPlus ||
(Type != MK_ImplicitModule && Type != MK_ExplicitModule &&
Type != MK_PrebuiltModule)) {
// Mark all of the identifiers in the identifier table as being out of date,
// so that various accessors know to check the loaded modules when the
// identifier is used.
//
// For C++ modules, we don't need information on many identifiers (just
// those that provide macros or are poisoned), so we mark all of
// the interesting ones via PreloadIdentifierOffsets.
for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(),
IdEnd = PP.getIdentifierTable().end();
Id != IdEnd; ++Id)
Id->second->setOutOfDate(true);
}
// Mark selectors as out of date.
for (auto Sel : SelectorGeneration)
SelectorOutOfDate[Sel.first] = true;
// Resolve any unresolved module exports.
for (unsigned I = 0, N = UnresolvedModuleRefs.size(); I != N; ++I) {
UnresolvedModuleRef &Unresolved = UnresolvedModuleRefs[I];
SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID);
Module *ResolvedMod = getSubmodule(GlobalID);
switch (Unresolved.Kind) {
case UnresolvedModuleRef::Conflict:
if (ResolvedMod) {
Module::Conflict Conflict;
Conflict.Other = ResolvedMod;
Conflict.Message = Unresolved.String.str();
Unresolved.Mod->Conflicts.push_back(Conflict);
}
continue;
case UnresolvedModuleRef::Import:
if (ResolvedMod)
Unresolved.Mod->Imports.insert(ResolvedMod);
continue;
case UnresolvedModuleRef::Export:
if (ResolvedMod || Unresolved.IsWildcard)
Unresolved.Mod->Exports.push_back(
Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard));
continue;
}
}
UnresolvedModuleRefs.clear();
if (Imported)
Imported->append(ImportedModules.begin(),
ImportedModules.end());
// FIXME: How do we load the 'use'd modules? They may not be submodules.
// Might be unnecessary as use declarations are only used to build the
// module itself.
if (ContextObj)
InitializeContext();
if (SemaObj)
UpdateSema();
if (DeserializationListener)
DeserializationListener->ReaderInitialized(this);
ModuleFile &PrimaryModule = ModuleMgr.getPrimaryModule();
if (PrimaryModule.OriginalSourceFileID.isValid()) {
// If this AST file is a precompiled preamble, then set the
// preamble file ID of the source manager to the file source file
// from which the preamble was built.
if (Type == MK_Preamble) {
SourceMgr.setPreambleFileID(PrimaryModule.OriginalSourceFileID);
} else if (Type == MK_MainFile) {
SourceMgr.setMainFileID(PrimaryModule.OriginalSourceFileID);
}
}
// For any Objective-C class definitions we have already loaded, make sure
// that we load any additional categories.
if (ContextObj) {
for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) {
loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(),
ObjCClassesLoaded[I],
PreviousGeneration);
}
}
if (PP.getHeaderSearchInfo()
.getHeaderSearchOpts()
.ModulesValidateOncePerBuildSession) {
// Now we are certain that the module and all modules it depends on are
// up to date. Create or update timestamp files for modules that are
// located in the module cache (not for PCH files that could be anywhere
// in the filesystem).
for (unsigned I = 0, N = Loaded.size(); I != N; ++I) {
ImportedModule &M = Loaded[I];
if (M.Mod->Kind == MK_ImplicitModule) {
updateModuleTimestamp(*M.Mod);
}
}
}
return Success;
}
static ASTFileSignature readASTFileSignature(StringRef PCH);
/// Whether \p Stream starts with the AST/PCH file magic number 'CPCH'.
static bool startsWithASTFileMagic(BitstreamCursor &Stream) {
return Stream.canSkipToPos(4) &&
Stream.Read(8) == 'C' &&
Stream.Read(8) == 'P' &&
Stream.Read(8) == 'C' &&
Stream.Read(8) == 'H';
}
static unsigned moduleKindForDiagnostic(ModuleKind Kind) {
switch (Kind) {
case MK_PCH:
return 0; // PCH
case MK_ImplicitModule:
case MK_ExplicitModule:
case MK_PrebuiltModule:
return 1; // module
case MK_MainFile:
case MK_Preamble:
return 2; // main source file
}
llvm_unreachable("unknown module kind");
}
ASTReader::ASTReadResult
ASTReader::ReadASTCore(StringRef FileName,
ModuleKind Type,
SourceLocation ImportLoc,
ModuleFile *ImportedBy,
SmallVectorImpl<ImportedModule> &Loaded,
off_t ExpectedSize, time_t ExpectedModTime,
ASTFileSignature ExpectedSignature,
unsigned ClientLoadCapabilities) {
ModuleFile *M;
std::string ErrorStr;
ModuleManager::AddModuleResult AddResult
= ModuleMgr.addModule(FileName, Type, ImportLoc, ImportedBy,
getGeneration(), ExpectedSize, ExpectedModTime,
ExpectedSignature, readASTFileSignature,
M, ErrorStr);
switch (AddResult) {
case ModuleManager::AlreadyLoaded:
return Success;
case ModuleManager::NewlyLoaded:
// Load module file below.
break;
case ModuleManager::Missing:
// The module file was missing; if the client can handle that, return
// it.
if (ClientLoadCapabilities & ARR_Missing)
return Missing;
// Otherwise, return an error.
Diag(diag::err_module_file_not_found) << moduleKindForDiagnostic(Type)
<< FileName << !ErrorStr.empty()
<< ErrorStr;
return Failure;
case ModuleManager::OutOfDate:
// We couldn't load the module file because it is out-of-date. If the
// client can handle out-of-date, return it.
if (ClientLoadCapabilities & ARR_OutOfDate)
return OutOfDate;
// Otherwise, return an error.
Diag(diag::err_module_file_out_of_date) << moduleKindForDiagnostic(Type)
<< FileName << !ErrorStr.empty()
<< ErrorStr;
return Failure;
}
assert(M && "Missing module file");
ModuleFile &F = *M;
BitstreamCursor &Stream = F.Stream;
Stream = BitstreamCursor(PCHContainerRdr.ExtractPCH(*F.Buffer));
F.SizeInBits = F.Buffer->getBufferSize() * 8;
// Sniff for the signature.
if (!startsWithASTFileMagic(Stream)) {
Diag(diag::err_module_file_invalid) << moduleKindForDiagnostic(Type)
<< FileName;
return Failure;
}
// This is used for compatibility with older PCH formats.
bool HaveReadControlBlock = false;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::Record:
case llvm::BitstreamEntry::EndBlock:
Error("invalid record at top-level of AST file");
return Failure;
case llvm::BitstreamEntry::SubBlock:
break;
}
switch (Entry.ID) {
case CONTROL_BLOCK_ID:
HaveReadControlBlock = true;
switch (ReadControlBlock(F, Loaded, ImportedBy, ClientLoadCapabilities)) {
case Success:
// Check that we didn't try to load a non-module AST file as a module.
//
// FIXME: Should we also perform the converse check? Loading a module as
// a PCH file sort of works, but it's a bit wonky.
if ((Type == MK_ImplicitModule || Type == MK_ExplicitModule ||
Type == MK_PrebuiltModule) &&
F.ModuleName.empty()) {
auto Result = (Type == MK_ImplicitModule) ? OutOfDate : Failure;
if (Result != OutOfDate ||
(ClientLoadCapabilities & ARR_OutOfDate) == 0)
Diag(diag::err_module_file_not_module) << FileName;
return Result;
}
break;
case Failure: return Failure;
case Missing: return Missing;
case OutOfDate: return OutOfDate;
case VersionMismatch: return VersionMismatch;
case ConfigurationMismatch: return ConfigurationMismatch;
case HadErrors: return HadErrors;
}
break;
case AST_BLOCK_ID:
if (!HaveReadControlBlock) {
if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0)
Diag(diag::err_pch_version_too_old);
return VersionMismatch;
}
// Record that we've loaded this module.
Loaded.push_back(ImportedModule(M, ImportedBy, ImportLoc));
return Success;
case UNHASHED_CONTROL_BLOCK_ID:
// This block is handled using look-ahead during ReadControlBlock. We
// shouldn't get here!
Error("malformed block record in AST file");
return Failure;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
}
return Success;
}
ASTReader::ASTReadResult
ASTReader::readUnhashedControlBlock(ModuleFile &F, bool WasImportedBy,
unsigned ClientLoadCapabilities) {
const HeaderSearchOptions &HSOpts =
PP.getHeaderSearchInfo().getHeaderSearchOpts();
bool AllowCompatibleConfigurationMismatch =
F.Kind == MK_ExplicitModule || F.Kind == MK_PrebuiltModule;
ASTReadResult Result = readUnhashedControlBlockImpl(
&F, F.Data, ClientLoadCapabilities, AllowCompatibleConfigurationMismatch,
Listener.get(),
WasImportedBy ? false : HSOpts.ModulesValidateDiagnosticOptions);
// If F was directly imported by another module, it's implicitly validated by
// the importing module.
if (DisableValidation || WasImportedBy ||
(AllowConfigurationMismatch && Result == ConfigurationMismatch))
return Success;
if (Result == Failure) {
Error("malformed block record in AST file");
return Failure;
}
if (Result == OutOfDate && F.Kind == MK_ImplicitModule) {
// If this module has already been finalized in the PCMCache, we're stuck
// with it; we can only load a single version of each module.
//
// This can happen when a module is imported in two contexts: in one, as a
// user module; in another, as a system module (due to an import from
// another module marked with the [system] flag). It usually indicates a
// bug in the module map: this module should also be marked with [system].
//
// If -Wno-system-headers (the default), and the first import is as a
// system module, then validation will fail during the as-user import,
// since -Werror flags won't have been validated. However, it's reasonable
// to treat this consistently as a system module.
//
// If -Wsystem-headers, the PCM on disk was built with
// -Wno-system-headers, and the first import is as a user module, then
// validation will fail during the as-system import since the PCM on disk
// doesn't guarantee that -Werror was respected. However, the -Werror
// flags were checked during the initial as-user import.
if (PCMCache.isBufferFinal(F.FileName)) {
Diag(diag::warn_module_system_bit_conflict) << F.FileName;
return Success;
}
}
return Result;
}
ASTReader::ASTReadResult ASTReader::readUnhashedControlBlockImpl(
ModuleFile *F, llvm::StringRef StreamData, unsigned ClientLoadCapabilities,
bool AllowCompatibleConfigurationMismatch, ASTReaderListener *Listener,
bool ValidateDiagnosticOptions) {
// Initialize a stream.
BitstreamCursor Stream(StreamData);
// Sniff for the signature.
if (!startsWithASTFileMagic(Stream))
return Failure;
// Scan for the UNHASHED_CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, UNHASHED_CONTROL_BLOCK_ID))
return Failure;
// Read all of the records in the options block.
RecordData Record;
ASTReadResult Result = Success;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::Error:
case llvm::BitstreamEntry::SubBlock:
return Failure;
case llvm::BitstreamEntry::EndBlock:
return Result;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read and process a record.
Record.clear();
switch (
(UnhashedControlBlockRecordTypes)Stream.readRecord(Entry.ID, Record)) {
case SIGNATURE:
if (F)
std::copy(Record.begin(), Record.end(), F->Signature.data());
break;
case DIAGNOSTIC_OPTIONS: {
bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0;
if (Listener && ValidateDiagnosticOptions &&
!AllowCompatibleConfigurationMismatch &&
ParseDiagnosticOptions(Record, Complain, *Listener))
Result = OutOfDate; // Don't return early. Read the signature.
break;
}
case DIAG_PRAGMA_MAPPINGS:
if (!F)
break;
if (F->PragmaDiagMappings.empty())
F->PragmaDiagMappings.swap(Record);
else
F->PragmaDiagMappings.insert(F->PragmaDiagMappings.end(),
Record.begin(), Record.end());
break;
}
}
}
/// Parse a record and blob containing module file extension metadata.
static bool parseModuleFileExtensionMetadata(
const SmallVectorImpl<uint64_t> &Record,
StringRef Blob,
ModuleFileExtensionMetadata &Metadata) {
if (Record.size() < 4) return true;
Metadata.MajorVersion = Record[0];
Metadata.MinorVersion = Record[1];
unsigned BlockNameLen = Record[2];
unsigned UserInfoLen = Record[3];
if (BlockNameLen + UserInfoLen > Blob.size()) return true;
Metadata.BlockName = std::string(Blob.data(), Blob.data() + BlockNameLen);
Metadata.UserInfo = std::string(Blob.data() + BlockNameLen,
Blob.data() + BlockNameLen + UserInfoLen);
return false;
}
ASTReader::ASTReadResult ASTReader::ReadExtensionBlock(ModuleFile &F) {
BitstreamCursor &Stream = F.Stream;
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock:
if (Stream.SkipBlock())
return Failure;
continue;
case llvm::BitstreamEntry::EndBlock:
return Success;
case llvm::BitstreamEntry::Error:
return HadErrors;
case llvm::BitstreamEntry::Record:
break;
}
Record.clear();
StringRef Blob;
unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob);
switch (RecCode) {
case EXTENSION_METADATA: {
ModuleFileExtensionMetadata Metadata;
if (parseModuleFileExtensionMetadata(Record, Blob, Metadata))
return Failure;
// Find a module file extension with this block name.
auto Known = ModuleFileExtensions.find(Metadata.BlockName);
if (Known == ModuleFileExtensions.end()) break;
// Form a reader.
if (auto Reader = Known->second->createExtensionReader(Metadata, *this,
F, Stream)) {
F.ExtensionReaders.push_back(std::move(Reader));
}
break;
}
}
}
return Success;
}
void ASTReader::InitializeContext() {
assert(ContextObj && "no context to initialize");
ASTContext &Context = *ContextObj;
// If there's a listener, notify them that we "read" the translation unit.
if (DeserializationListener)
DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID,
Context.getTranslationUnitDecl());
// FIXME: Find a better way to deal with collisions between these
// built-in types. Right now, we just ignore the problem.
// Load the special types.
if (SpecialTypes.size() >= NumSpecialTypeIDs) {
if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) {
if (!Context.CFConstantStringTypeDecl)
Context.setCFConstantStringType(GetType(String));
}
if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) {
QualType FileType = GetType(File);
if (FileType.isNull()) {
Error("FILE type is NULL");
return;
}
if (!Context.FILEDecl) {
if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
Context.setFILEDecl(Typedef->getDecl());
else {
const TagType *Tag = FileType->getAs<TagType>();
if (!Tag) {
Error("Invalid FILE type in AST file");
return;
}
Context.setFILEDecl(Tag->getDecl());
}
}
}
if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) {
QualType Jmp_bufType = GetType(Jmp_buf);
if (Jmp_bufType.isNull()) {
Error("jmp_buf type is NULL");
return;
}
if (!Context.jmp_bufDecl) {
if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
Context.setjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Jmp_bufType->getAs<TagType>();
if (!Tag) {
Error("Invalid jmp_buf type in AST file");
return;
}
Context.setjmp_bufDecl(Tag->getDecl());
}
}
}
if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) {
QualType Sigjmp_bufType = GetType(Sigjmp_buf);
if (Sigjmp_bufType.isNull()) {
Error("sigjmp_buf type is NULL");
return;
}
if (!Context.sigjmp_bufDecl) {
if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
Context.setsigjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Sigjmp_bufType->getAs<TagType>();
assert(Tag && "Invalid sigjmp_buf type in AST file");
Context.setsigjmp_bufDecl(Tag->getDecl());
}
}
}
if (unsigned ObjCIdRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) {
if (Context.ObjCIdRedefinitionType.isNull())
Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef);
}
if (unsigned ObjCClassRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) {
if (Context.ObjCClassRedefinitionType.isNull())
Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef);
}
if (unsigned ObjCSelRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) {
if (Context.ObjCSelRedefinitionType.isNull())
Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef);
}
if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) {
QualType Ucontext_tType = GetType(Ucontext_t);
if (Ucontext_tType.isNull()) {
Error("ucontext_t type is NULL");
return;
}
if (!Context.ucontext_tDecl) {
if (const TypedefType *Typedef = Ucontext_tType->getAs<TypedefType>())
Context.setucontext_tDecl(Typedef->getDecl());
else {
const TagType *Tag = Ucontext_tType->getAs<TagType>();
assert(Tag && "Invalid ucontext_t type in AST file");
Context.setucontext_tDecl(Tag->getDecl());
}
}
}
}
ReadPragmaDiagnosticMappings(Context.getDiagnostics());
// If there were any CUDA special declarations, deserialize them.
if (!CUDASpecialDeclRefs.empty()) {
assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!");
Context.setcudaConfigureCallDecl(
cast<FunctionDecl>(GetDecl(CUDASpecialDeclRefs[0])));
}
// Re-export any modules that were imported by a non-module AST file.
// FIXME: This does not make macro-only imports visible again.
for (auto &Import : ImportedModules) {
if (Module *Imported = getSubmodule(Import.ID)) {
makeModuleVisible(Imported, Module::AllVisible,
/*ImportLoc=*/Import.ImportLoc);
if (Import.ImportLoc.isValid())
PP.makeModuleVisible(Imported, Import.ImportLoc);
// FIXME: should we tell Sema to make the module visible too?
}
}
ImportedModules.clear();
}
void ASTReader::finalizeForWriting() {
// Nothing to do for now.
}
/// Reads and return the signature record from \p PCH's control block, or
/// else returns 0.
static ASTFileSignature readASTFileSignature(StringRef PCH) {
BitstreamCursor Stream(PCH);
if (!startsWithASTFileMagic(Stream))
return ASTFileSignature();
// Scan for the UNHASHED_CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, UNHASHED_CONTROL_BLOCK_ID))
return ASTFileSignature();
// Scan for SIGNATURE inside the diagnostic options block.
ASTReader::RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
if (Entry.Kind != llvm::BitstreamEntry::Record)
return ASTFileSignature();
Record.clear();
StringRef Blob;
if (SIGNATURE == Stream.readRecord(Entry.ID, Record, &Blob))
return {{{(uint32_t)Record[0], (uint32_t)Record[1], (uint32_t)Record[2],
(uint32_t)Record[3], (uint32_t)Record[4]}}};
}
}
/// Retrieve the name of the original source file name
/// directly from the AST file, without actually loading the AST
/// file.
std::string ASTReader::getOriginalSourceFile(
const std::string &ASTFileName, FileManager &FileMgr,
const PCHContainerReader &PCHContainerRdr, DiagnosticsEngine &Diags) {
// Open the AST file.
auto Buffer = FileMgr.getBufferForFile(ASTFileName);
if (!Buffer) {
Diags.Report(diag::err_fe_unable_to_read_pch_file)
<< ASTFileName << Buffer.getError().message();
return std::string();
}
// Initialize the stream
BitstreamCursor Stream(PCHContainerRdr.ExtractPCH(**Buffer));
// Sniff for the signature.
if (!startsWithASTFileMagic(Stream)) {
Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName;
return std::string();
}
// Scan for the CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
// Scan for ORIGINAL_FILE inside the control block.
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
if (Entry.Kind == llvm::BitstreamEntry::EndBlock)
return std::string();
if (Entry.Kind != llvm::BitstreamEntry::Record) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
Record.clear();
StringRef Blob;
if (Stream.readRecord(Entry.ID, Record, &Blob) == ORIGINAL_FILE)
return Blob.str();
}
}
namespace {
class SimplePCHValidator : public ASTReaderListener {
const LangOptions &ExistingLangOpts;
const TargetOptions &ExistingTargetOpts;
const PreprocessorOptions &ExistingPPOpts;
std::string ExistingModuleCachePath;
FileManager &FileMgr;
public:
SimplePCHValidator(const LangOptions &ExistingLangOpts,
const TargetOptions &ExistingTargetOpts,
const PreprocessorOptions &ExistingPPOpts,
StringRef ExistingModuleCachePath,
FileManager &FileMgr)
: ExistingLangOpts(ExistingLangOpts),
ExistingTargetOpts(ExistingTargetOpts),
ExistingPPOpts(ExistingPPOpts),
ExistingModuleCachePath(ExistingModuleCachePath),
FileMgr(FileMgr) {}
bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
bool AllowCompatibleDifferences) override {
return checkLanguageOptions(ExistingLangOpts, LangOpts, nullptr,
AllowCompatibleDifferences);
}
bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
bool AllowCompatibleDifferences) override {
return checkTargetOptions(ExistingTargetOpts, TargetOpts, nullptr,
AllowCompatibleDifferences);
}
bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
StringRef SpecificModuleCachePath,
bool Complain) override {
return checkHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
ExistingModuleCachePath,
nullptr, ExistingLangOpts);
}
bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) override {
return checkPreprocessorOptions(ExistingPPOpts, PPOpts, nullptr, FileMgr,
SuggestedPredefines, ExistingLangOpts);
}
};
} // namespace
bool ASTReader::readASTFileControlBlock(
StringRef Filename, FileManager &FileMgr,
const PCHContainerReader &PCHContainerRdr,
bool FindModuleFileExtensions,
ASTReaderListener &Listener, bool ValidateDiagnosticOptions) {
// Open the AST file.
// FIXME: This allows use of the VFS; we do not allow use of the
// VFS when actually loading a module.
auto Buffer = FileMgr.getBufferForFile(Filename);
if (!Buffer) {
return true;
}
// Initialize the stream
StringRef Bytes = PCHContainerRdr.ExtractPCH(**Buffer);
BitstreamCursor Stream(Bytes);
// Sniff for the signature.
if (!startsWithASTFileMagic(Stream))
return true;
// Scan for the CONTROL_BLOCK_ID block.
if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID))
return true;
bool NeedsInputFiles = Listener.needsInputFileVisitation();
bool NeedsSystemInputFiles = Listener.needsSystemInputFileVisitation();
bool NeedsImports = Listener.needsImportVisitation();
BitstreamCursor InputFilesCursor;
RecordData Record;
std::string ModuleDir;
bool DoneWithControlBlock = false;
while (!DoneWithControlBlock) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: {
switch (Entry.ID) {
case OPTIONS_BLOCK_ID: {
std::string IgnoredSuggestedPredefines;
if (ReadOptionsBlock(Stream, ARR_ConfigurationMismatch | ARR_OutOfDate,
/*AllowCompatibleConfigurationMismatch*/ false,
Listener, IgnoredSuggestedPredefines) != Success)
return true;
break;
}
case INPUT_FILES_BLOCK_ID:
InputFilesCursor = Stream;
if (Stream.SkipBlock() ||
(NeedsInputFiles &&
ReadBlockAbbrevs(InputFilesCursor, INPUT_FILES_BLOCK_ID)))
return true;
break;
default:
if (Stream.SkipBlock())
return true;
break;
}
continue;
}
case llvm::BitstreamEntry::EndBlock:
DoneWithControlBlock = true;
break;
case llvm::BitstreamEntry::Error:
return true;
case llvm::BitstreamEntry::Record:
break;
}
if (DoneWithControlBlock) break;
Record.clear();
StringRef Blob;
unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob);
switch ((ControlRecordTypes)RecCode) {
case METADATA:
if (Record[0] != VERSION_MAJOR)
return true;
if (Listener.ReadFullVersionInformation(Blob))
return true;
break;
case MODULE_NAME:
Listener.ReadModuleName(Blob);
break;
case MODULE_DIRECTORY:
ModuleDir = Blob;
break;
case MODULE_MAP_FILE: {
unsigned Idx = 0;
auto Path = ReadString(Record, Idx);
ResolveImportedPath(Path, ModuleDir);
Listener.ReadModuleMapFile(Path);
break;
}
case INPUT_FILE_OFFSETS: {
if (!NeedsInputFiles)
break;
unsigned NumInputFiles = Record[0];
unsigned NumUserFiles = Record[1];
const llvm::support::unaligned_uint64_t *InputFileOffs =
(const llvm::support::unaligned_uint64_t *)Blob.data();
for (unsigned I = 0; I != NumInputFiles; ++I) {
// Go find this input file.
bool isSystemFile = I >= NumUserFiles;
if (isSystemFile && !NeedsSystemInputFiles)
break; // the rest are system input files
BitstreamCursor &Cursor = InputFilesCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(InputFileOffs[I]);
unsigned Code = Cursor.ReadCode();
RecordData Record;
StringRef Blob;
bool shouldContinue = false;
switch ((InputFileRecordTypes)Cursor.readRecord(Code, Record, &Blob)) {
case INPUT_FILE:
bool Overridden = static_cast<bool>(Record[3]);
std::string Filename = Blob;
ResolveImportedPath(Filename, ModuleDir);
shouldContinue = Listener.visitInputFile(
Filename, isSystemFile, Overridden, /*IsExplicitModule*/false);
break;
}
if (!shouldContinue)
break;
}
break;
}
case IMPORTS: {
if (!NeedsImports)
break;
unsigned Idx = 0, N = Record.size();
while (Idx < N) {
// Read information about the AST file.
Idx += 5; // ImportLoc, Size, ModTime, Signature
SkipString(Record, Idx); // Module name; FIXME: pass to listener?
std::string Filename = ReadString(Record, Idx);
ResolveImportedPath(Filename, ModuleDir);
Listener.visitImport(Filename);
}
break;
}
default:
// No other validation to perform.
break;
}
}
// Look for module file extension blocks, if requested.
if (FindModuleFileExtensions) {
BitstreamCursor SavedStream = Stream;
while (!SkipCursorToBlock(Stream, EXTENSION_BLOCK_ID)) {
bool DoneWithExtensionBlock = false;
while (!DoneWithExtensionBlock) {
llvm::BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock:
if (Stream.SkipBlock())
return true;
continue;
case llvm::BitstreamEntry::EndBlock:
DoneWithExtensionBlock = true;
continue;
case llvm::BitstreamEntry::Error:
return true;
case llvm::BitstreamEntry::Record:
break;
}
Record.clear();
StringRef Blob;
unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob);
switch (RecCode) {
case EXTENSION_METADATA: {
ModuleFileExtensionMetadata Metadata;
if (parseModuleFileExtensionMetadata(Record, Blob, Metadata))
return true;
Listener.readModuleFileExtension(Metadata);
break;
}
}
}
}
Stream = SavedStream;
}
// Scan for the UNHASHED_CONTROL_BLOCK_ID block.
if (readUnhashedControlBlockImpl(
nullptr, Bytes, ARR_ConfigurationMismatch | ARR_OutOfDate,
/*AllowCompatibleConfigurationMismatch*/ false, &Listener,
ValidateDiagnosticOptions) != Success)
return true;
return false;
}
bool ASTReader::isAcceptableASTFile(StringRef Filename, FileManager &FileMgr,
const PCHContainerReader &PCHContainerRdr,
const LangOptions &LangOpts,
const TargetOptions &TargetOpts,
const PreprocessorOptions &PPOpts,
StringRef ExistingModuleCachePath) {
SimplePCHValidator validator(LangOpts, TargetOpts, PPOpts,
ExistingModuleCachePath, FileMgr);
return !readASTFileControlBlock(Filename, FileMgr, PCHContainerRdr,
/*FindModuleFileExtensions=*/false,
validator,
/*ValidateDiagnosticOptions=*/true);
}
ASTReader::ASTReadResult
ASTReader::ReadSubmoduleBlock(ModuleFile &F, unsigned ClientLoadCapabilities) {
// Enter the submodule block.
if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) {
Error("malformed submodule block record in AST file");
return Failure;
}
ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
bool First = true;
Module *CurrentModule = nullptr;
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry = F.Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return Failure;
case llvm::BitstreamEntry::EndBlock:
return Success;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
StringRef Blob;
Record.clear();
auto Kind = F.Stream.readRecord(Entry.ID, Record, &Blob);
if ((Kind == SUBMODULE_METADATA) != First) {
Error("submodule metadata record should be at beginning of block");
return Failure;
}
First = false;
// Submodule information is only valid if we have a current module.
// FIXME: Should we error on these cases?
if (!CurrentModule && Kind != SUBMODULE_METADATA &&
Kind != SUBMODULE_DEFINITION)
continue;
switch (Kind) {
default: // Default behavior: ignore.
break;
case SUBMODULE_DEFINITION: {
if (Record.size() < 12) {
Error("malformed module definition");
return Failure;
}
StringRef Name = Blob;
unsigned Idx = 0;
SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[Idx++]);
SubmoduleID Parent = getGlobalSubmoduleID(F, Record[Idx++]);
Module::ModuleKind Kind = (Module::ModuleKind)Record[Idx++];
bool IsFramework = Record[Idx++];
bool IsExplicit = Record[Idx++];
bool IsSystem = Record[Idx++];
bool IsExternC = Record[Idx++];
bool InferSubmodules = Record[Idx++];
bool InferExplicitSubmodules = Record[Idx++];
bool InferExportWildcard = Record[Idx++];
bool ConfigMacrosExhaustive = Record[Idx++];
bool ModuleMapIsPrivate = Record[Idx++];
Module *ParentModule = nullptr;
if (Parent)
ParentModule = getSubmodule(Parent);
// Retrieve this (sub)module from the module map, creating it if
// necessary.
CurrentModule =
ModMap.findOrCreateModule(Name, ParentModule, IsFramework, IsExplicit)
.first;
// FIXME: set the definition loc for CurrentModule, or call
// ModMap.setInferredModuleAllowedBy()
SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS;
if (GlobalIndex >= SubmodulesLoaded.size() ||
SubmodulesLoaded[GlobalIndex]) {
Error("too many submodules");
return Failure;
}
if (!ParentModule) {
if (const FileEntry *CurFile = CurrentModule->getASTFile()) {
if (CurFile != F.File) {
if (!Diags.isDiagnosticInFlight()) {
Diag(diag::err_module_file_conflict)
<< CurrentModule->getTopLevelModuleName()
<< CurFile->getName()
<< F.File->getName();
}
return Failure;
}
}
CurrentModule->setASTFile(F.File);
CurrentModule->PresumedModuleMapFile = F.ModuleMapPath;
}
CurrentModule->Kind = Kind;
CurrentModule->Signature = F.Signature;
CurrentModule->IsFromModuleFile = true;
CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem;
CurrentModule->IsExternC = IsExternC;
CurrentModule->InferSubmodules = InferSubmodules;
CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules;
CurrentModule->InferExportWildcard = InferExportWildcard;
CurrentModule->ConfigMacrosExhaustive = ConfigMacrosExhaustive;
CurrentModule->ModuleMapIsPrivate = ModuleMapIsPrivate;
if (DeserializationListener)
DeserializationListener->ModuleRead(GlobalID, CurrentModule);
SubmodulesLoaded[GlobalIndex] = CurrentModule;
// Clear out data that will be replaced by what is in the module file.
CurrentModule->LinkLibraries.clear();
CurrentModule->ConfigMacros.clear();
CurrentModule->UnresolvedConflicts.clear();
CurrentModule->Conflicts.clear();
// The module is available unless it's missing a requirement; relevant
// requirements will be (re-)added by SUBMODULE_REQUIRES records.
// Missing headers that were present when the module was built do not
// make it unavailable -- if we got this far, this must be an explicitly
// imported module file.
CurrentModule->Requirements.clear();
CurrentModule->MissingHeaders.clear();
CurrentModule->IsMissingRequirement =
ParentModule && ParentModule->IsMissingRequirement;
CurrentModule->IsAvailable = !CurrentModule->IsMissingRequirement;
break;
}
case SUBMODULE_UMBRELLA_HEADER: {
std::string Filename = Blob;
ResolveImportedPath(F, Filename);
if (auto *Umbrella = PP.getFileManager().getFile(Filename)) {
if (!CurrentModule->getUmbrellaHeader())
ModMap.setUmbrellaHeader(CurrentModule, Umbrella, Blob);
else if (CurrentModule->getUmbrellaHeader().Entry != Umbrella) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("mismatched umbrella headers in submodule");
return OutOfDate;
}
}
break;
}
case SUBMODULE_HEADER:
case SUBMODULE_EXCLUDED_HEADER:
case SUBMODULE_PRIVATE_HEADER:
// We lazily associate headers with their modules via the HeaderInfo table.
// FIXME: Re-evaluate this section; maybe only store InputFile IDs instead
// of complete filenames or remove it entirely.
break;
case SUBMODULE_TEXTUAL_HEADER:
case SUBMODULE_PRIVATE_TEXTUAL_HEADER:
// FIXME: Textual headers are not marked in the HeaderInfo table. Load
// them here.
break;
case SUBMODULE_TOPHEADER:
CurrentModule->addTopHeaderFilename(Blob);
break;
case SUBMODULE_UMBRELLA_DIR: {
std::string Dirname = Blob;
ResolveImportedPath(F, Dirname);
if (auto *Umbrella = PP.getFileManager().getDirectory(Dirname)) {
if (!CurrentModule->getUmbrellaDir())
ModMap.setUmbrellaDir(CurrentModule, Umbrella, Blob);
else if (CurrentModule->getUmbrellaDir().Entry != Umbrella) {
if ((ClientLoadCapabilities & ARR_OutOfDate) == 0)
Error("mismatched umbrella directories in submodule");
return OutOfDate;
}
}
break;
}
case SUBMODULE_METADATA: {
F.BaseSubmoduleID = getTotalNumSubmodules();
F.LocalNumSubmodules = Record[0];
unsigned LocalBaseSubmoduleID = Record[1];
if (F.LocalNumSubmodules > 0) {
// Introduce the global -> local mapping for submodules within this
// module.
GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F));
// Introduce the local -> global mapping for submodules within this
// module.
F.SubmoduleRemap.insertOrReplace(
std::make_pair(LocalBaseSubmoduleID,
F.BaseSubmoduleID - LocalBaseSubmoduleID));
SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules);
}
break;
}
case SUBMODULE_IMPORTS:
for (unsigned Idx = 0; Idx != Record.size(); ++Idx) {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[Idx];
Unresolved.Kind = UnresolvedModuleRef::Import;
Unresolved.IsWildcard = false;
UnresolvedModuleRefs.push_back(Unresolved);
}
break;
case SUBMODULE_EXPORTS:
for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[Idx];
Unresolved.Kind = UnresolvedModuleRef::Export;
Unresolved.IsWildcard = Record[Idx + 1];
UnresolvedModuleRefs.push_back(Unresolved);
}
// Once we've loaded the set of exports, there's no reason to keep
// the parsed, unresolved exports around.
CurrentModule->UnresolvedExports.clear();
break;
case SUBMODULE_REQUIRES:
CurrentModule->addRequirement(Blob, Record[0], PP.getLangOpts(),
PP.getTargetInfo());
break;
case SUBMODULE_LINK_LIBRARY:
ModMap.resolveLinkAsDependencies(CurrentModule);
CurrentModule->LinkLibraries.push_back(
Module::LinkLibrary(Blob, Record[0]));
break;
case SUBMODULE_CONFIG_MACRO:
CurrentModule->ConfigMacros.push_back(Blob.str());
break;
case SUBMODULE_CONFLICT: {
UnresolvedModuleRef Unresolved;
Unresolved.File = &F;
Unresolved.Mod = CurrentModule;
Unresolved.ID = Record[0];
Unresolved.Kind = UnresolvedModuleRef::Conflict;
Unresolved.IsWildcard = false;
Unresolved.String = Blob;
UnresolvedModuleRefs.push_back(Unresolved);
break;
}
case SUBMODULE_INITIALIZERS: {
if (!ContextObj)
break;
SmallVector<uint32_t, 16> Inits;
for (auto &ID : Record)
Inits.push_back(getGlobalDeclID(F, ID));
ContextObj->addLazyModuleInitializers(CurrentModule, Inits);
break;
}
case SUBMODULE_EXPORT_AS:
CurrentModule->ExportAsModule = Blob.str();
ModMap.addLinkAsDependency(CurrentModule);
break;
}
}
}
/// Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine parses the language options from the AST file and then gives
/// them to the AST listener if one is set.
///
/// \returns true if the listener deems the file unacceptable, false otherwise.
bool ASTReader::ParseLanguageOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener,
bool AllowCompatibleDifferences) {
LangOptions LangOpts;
unsigned Idx = 0;
#define LANGOPT(Name, Bits, Default, Description) \
LangOpts.Name = Record[Idx++];
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
LangOpts.set##Name(static_cast<LangOptions::Type>(Record[Idx++]));
#include "clang/Basic/LangOptions.def"
#define SANITIZER(NAME, ID) \
LangOpts.Sanitize.set(SanitizerKind::ID, Record[Idx++]);
#include "clang/Basic/Sanitizers.def"
for (unsigned N = Record[Idx++]; N; --N)
LangOpts.ModuleFeatures.push_back(ReadString(Record, Idx));
ObjCRuntime::Kind runtimeKind = (ObjCRuntime::Kind) Record[Idx++];
VersionTuple runtimeVersion = ReadVersionTuple(Record, Idx);
LangOpts.ObjCRuntime = ObjCRuntime(runtimeKind, runtimeVersion);
LangOpts.CurrentModule = ReadString(Record, Idx);
// Comment options.
for (unsigned N = Record[Idx++]; N; --N) {
LangOpts.CommentOpts.BlockCommandNames.push_back(
ReadString(Record, Idx));
}
LangOpts.CommentOpts.ParseAllComments = Record[Idx++];
// OpenMP offloading options.
for (unsigned N = Record[Idx++]; N; --N) {
LangOpts.OMPTargetTriples.push_back(llvm::Triple(ReadString(Record, Idx)));
}
LangOpts.OMPHostIRFile = ReadString(Record, Idx);
return Listener.ReadLanguageOptions(LangOpts, Complain,
AllowCompatibleDifferences);
}
bool ASTReader::ParseTargetOptions(const RecordData &Record, bool Complain,
ASTReaderListener &Listener,
bool AllowCompatibleDifferences) {
unsigned Idx = 0;
TargetOptions TargetOpts;
TargetOpts.Triple = ReadString(Record, Idx);
TargetOpts.CPU = ReadString(Record, Idx);
TargetOpts.ABI = ReadString(Record, Idx);
for (unsigned N = Record[Idx++]; N; --N) {
TargetOpts.FeaturesAsWritten.push_back(ReadString(Record, Idx));
}
for (unsigned N = Record[Idx++]; N; --N) {
TargetOpts.Features.push_back(ReadString(Record, Idx));
}
return Listener.ReadTargetOptions(TargetOpts, Complain,
AllowCompatibleDifferences);
}
bool ASTReader::ParseDiagnosticOptions(const RecordData &Record, bool Complain,
ASTReaderListener &Listener) {
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts(new DiagnosticOptions);
unsigned Idx = 0;
#define DIAGOPT(Name, Bits, Default) DiagOpts->Name = Record[Idx++];
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
DiagOpts->set##Name(static_cast<Type>(Record[Idx++]));
#include "clang/Basic/DiagnosticOptions.def"
for (unsigned N = Record[Idx++]; N; --N)
DiagOpts->Warnings.push_back(ReadString(Record, Idx));
for (unsigned N = Record[Idx++]; N; --N)
DiagOpts->Remarks.push_back(ReadString(Record, Idx));
return Listener.ReadDiagnosticOptions(DiagOpts, Complain);
}
bool ASTReader::ParseFileSystemOptions(const RecordData &Record, bool Complain,
ASTReaderListener &Listener) {
FileSystemOptions FSOpts;
unsigned Idx = 0;
FSOpts.WorkingDir = ReadString(Record, Idx);
return Listener.ReadFileSystemOptions(FSOpts, Complain);
}
bool ASTReader::ParseHeaderSearchOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener) {
HeaderSearchOptions HSOpts;
unsigned Idx = 0;
HSOpts.Sysroot = ReadString(Record, Idx);
// Include entries.
for (unsigned N = Record[Idx++]; N; --N) {
std::string Path = ReadString(Record, Idx);
frontend::IncludeDirGroup Group
= static_cast<frontend::IncludeDirGroup>(Record[Idx++]);
bool IsFramework = Record[Idx++];
bool IgnoreSysRoot = Record[Idx++];
HSOpts.UserEntries.emplace_back(std::move(Path), Group, IsFramework,
IgnoreSysRoot);
}
// System header prefixes.
for (unsigned N = Record[Idx++]; N; --N) {
std::string Prefix = ReadString(Record, Idx);
bool IsSystemHeader = Record[Idx++];
HSOpts.SystemHeaderPrefixes.emplace_back(std::move(Prefix), IsSystemHeader);
}
HSOpts.ResourceDir = ReadString(Record, Idx);
HSOpts.ModuleCachePath = ReadString(Record, Idx);
HSOpts.ModuleUserBuildPath = ReadString(Record, Idx);
HSOpts.DisableModuleHash = Record[Idx++];
HSOpts.ImplicitModuleMaps = Record[Idx++];
HSOpts.ModuleMapFileHomeIsCwd = Record[Idx++];
HSOpts.UseBuiltinIncludes = Record[Idx++];
HSOpts.UseStandardSystemIncludes = Record[Idx++];
HSOpts.UseStandardCXXIncludes = Record[Idx++];
HSOpts.UseLibcxx = Record[Idx++];
std::string SpecificModuleCachePath = ReadString(Record, Idx);
return Listener.ReadHeaderSearchOptions(HSOpts, SpecificModuleCachePath,
Complain);
}
bool ASTReader::ParsePreprocessorOptions(const RecordData &Record,
bool Complain,
ASTReaderListener &Listener,
std::string &SuggestedPredefines) {
PreprocessorOptions PPOpts;
unsigned Idx = 0;
// Macro definitions/undefs
for (unsigned N = Record[Idx++]; N; --N) {
std::string Macro = ReadString(Record, Idx);
bool IsUndef = Record[Idx++];
PPOpts.Macros.push_back(std::make_pair(Macro, IsUndef));
}
// Includes
for (unsigned N = Record[Idx++]; N; --N) {
PPOpts.Includes.push_back(ReadString(Record, Idx));
}
// Macro Includes
for (unsigned N = Record[Idx++]; N; --N) {
PPOpts.MacroIncludes.push_back(ReadString(Record, Idx));
}
PPOpts.UsePredefines = Record[Idx++];
PPOpts.DetailedRecord = Record[Idx++];
PPOpts.ImplicitPCHInclude = ReadString(Record, Idx);
PPOpts.ImplicitPTHInclude = ReadString(Record, Idx);
PPOpts.ObjCXXARCStandardLibrary =
static_cast<ObjCXXARCStandardLibraryKind>(Record[Idx++]);
SuggestedPredefines.clear();
return Listener.ReadPreprocessorOptions(PPOpts, Complain,
SuggestedPredefines);
}
std::pair<ModuleFile *, unsigned>
ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) {
GlobalPreprocessedEntityMapType::iterator
I = GlobalPreprocessedEntityMap.find(GlobalIndex);
assert(I != GlobalPreprocessedEntityMap.end() &&
"Corrupted global preprocessed entity map");
ModuleFile *M = I->second;
unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID;
return std::make_pair(M, LocalIndex);
}
llvm::iterator_range<PreprocessingRecord::iterator>
ASTReader::getModulePreprocessedEntities(ModuleFile &Mod) const {
if (PreprocessingRecord *PPRec = PP.getPreprocessingRecord())
return PPRec->getIteratorsForLoadedRange(Mod.BasePreprocessedEntityID,
Mod.NumPreprocessedEntities);
return llvm::make_range(PreprocessingRecord::iterator(),
PreprocessingRecord::iterator());
}
llvm::iterator_range<ASTReader::ModuleDeclIterator>
ASTReader::getModuleFileLevelDecls(ModuleFile &Mod) {
return llvm::make_range(
ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls),
ModuleDeclIterator(this, &Mod,
Mod.FileSortedDecls + Mod.NumFileSortedDecls));
}
SourceRange ASTReader::ReadSkippedRange(unsigned GlobalIndex) {
auto I = GlobalSkippedRangeMap.find(GlobalIndex);
assert(I != GlobalSkippedRangeMap.end() &&
"Corrupted global skipped range map");
ModuleFile *M = I->second;
unsigned LocalIndex = GlobalIndex - M->BasePreprocessedSkippedRangeID;
assert(LocalIndex < M->NumPreprocessedSkippedRanges);
PPSkippedRange RawRange = M->PreprocessedSkippedRangeOffsets[LocalIndex];
SourceRange Range(TranslateSourceLocation(*M, RawRange.getBegin()),
TranslateSourceLocation(*M, RawRange.getEnd()));
assert(Range.isValid());
return Range;
}
PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) {
PreprocessedEntityID PPID = Index+1;
std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
ModuleFile &M = *PPInfo.first;
unsigned LocalIndex = PPInfo.second;
const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
if (!PP.getPreprocessingRecord()) {
Error("no preprocessing record");
return nullptr;
}
SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor);
M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset);
llvm::BitstreamEntry Entry =
M.PreprocessorDetailCursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd);
if (Entry.Kind != llvm::BitstreamEntry::Record)
return nullptr;
// Read the record.
SourceRange Range(TranslateSourceLocation(M, PPOffs.getBegin()),
TranslateSourceLocation(M, PPOffs.getEnd()));
PreprocessingRecord &PPRec = *PP.getPreprocessingRecord();
StringRef Blob;
RecordData Record;
PreprocessorDetailRecordTypes RecType =
(PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.readRecord(
Entry.ID, Record, &Blob);
switch (RecType) {
case PPD_MACRO_EXPANSION: {
bool isBuiltin = Record[0];
IdentifierInfo *Name = nullptr;
MacroDefinitionRecord *Def = nullptr;
if (isBuiltin)
Name = getLocalIdentifier(M, Record[1]);
else {
PreprocessedEntityID GlobalID =
getGlobalPreprocessedEntityID(M, Record[1]);
Def = cast<MacroDefinitionRecord>(
PPRec.getLoadedPreprocessedEntity(GlobalID - 1));
}
MacroExpansion *ME;
if (isBuiltin)
ME = new (PPRec) MacroExpansion(Name, Range);
else
ME = new (PPRec) MacroExpansion(Def, Range);
return ME;
}
case PPD_MACRO_DEFINITION: {
// Decode the identifier info and then check again; if the macro is
// still defined and associated with the identifier,
IdentifierInfo *II = getLocalIdentifier(M, Record[0]);
MacroDefinitionRecord *MD = new (PPRec) MacroDefinitionRecord(II, Range);
if (DeserializationListener)
DeserializationListener->MacroDefinitionRead(PPID, MD);
return MD;
}
case PPD_INCLUSION_DIRECTIVE: {
const char *FullFileNameStart = Blob.data() + Record[0];
StringRef FullFileName(FullFileNameStart, Blob.size() - Record[0]);
const FileEntry *File = nullptr;
if (!FullFileName.empty())
File = PP.getFileManager().getFile(FullFileName);
// FIXME: Stable encoding
InclusionDirective::InclusionKind Kind
= static_cast<InclusionDirective::InclusionKind>(Record[2]);
InclusionDirective *ID
= new (PPRec) InclusionDirective(PPRec, Kind,
StringRef(Blob.data(), Record[0]),
Record[1], Record[3],
File,
Range);
return ID;
}
}
llvm_unreachable("Invalid PreprocessorDetailRecordTypes");
}
/// Find the next module that contains entities and return the ID
/// of the first entry.
///
/// \param SLocMapI points at a chunk of a module that contains no
/// preprocessed entities or the entities it contains are not the ones we are
/// looking for.
PreprocessedEntityID ASTReader::findNextPreprocessedEntity(
GlobalSLocOffsetMapType::const_iterator SLocMapI) const {
++SLocMapI;
for (GlobalSLocOffsetMapType::const_iterator
EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) {
ModuleFile &M = *SLocMapI->second;
if (M.NumPreprocessedEntities)
return M.BasePreprocessedEntityID;
}
return getTotalNumPreprocessedEntities();
}
namespace {
struct PPEntityComp {
const ASTReader &Reader;
ModuleFile &M;
PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) {}
bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const {
SourceLocation LHS = getLoc(L);
SourceLocation RHS = getLoc(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(const PPEntityOffset &L, SourceLocation RHS) const {
SourceLocation LHS = getLoc(L);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(SourceLocation LHS, const PPEntityOffset &R) const {
SourceLocation RHS = getLoc(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
SourceLocation getLoc(const PPEntityOffset &PPE) const {
return Reader.TranslateSourceLocation(M, PPE.getBegin());
}
};
} // namespace
PreprocessedEntityID ASTReader::findPreprocessedEntity(SourceLocation Loc,
bool EndsAfter) const {
if (SourceMgr.isLocalSourceLocation(Loc))
return getTotalNumPreprocessedEntities();
GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find(
SourceManager::MaxLoadedOffset - Loc.getOffset() - 1);
assert(SLocMapI != GlobalSLocOffsetMap.end() &&
"Corrupted global sloc offset map");
if (SLocMapI->second->NumPreprocessedEntities == 0)
return findNextPreprocessedEntity(SLocMapI);
ModuleFile &M = *SLocMapI->second;
using pp_iterator = const PPEntityOffset *;
pp_iterator pp_begin = M.PreprocessedEntityOffsets;
pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities;
size_t Count = M.NumPreprocessedEntities;
size_t Half;
pp_iterator First = pp_begin;
pp_iterator PPI;
if (EndsAfter) {
PPI = std::upper_bound(pp_begin, pp_end, Loc,
PPEntityComp(*this, M));
} else {
// Do a binary search manually instead of using std::lower_bound because
// The end locations of entities may be unordered (when a macro expansion
// is inside another macro argument), but for this case it is not important
// whether we get the first macro expansion or its containing macro.
while (Count > 0) {
Half = Count / 2;
PPI = First;
std::advance(PPI, Half);
if (SourceMgr.isBeforeInTranslationUnit(
TranslateSourceLocation(M, PPI->getEnd()), Loc)) {
First = PPI;
++First;
Count = Count - Half - 1;
} else
Count = Half;
}
}
if (PPI == pp_end)
return findNextPreprocessedEntity(SLocMapI);
return M.BasePreprocessedEntityID + (PPI - pp_begin);
}
/// Returns a pair of [Begin, End) indices of preallocated
/// preprocessed entities that \arg Range encompasses.
std::pair<unsigned, unsigned>
ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) {
if (Range.isInvalid())
return std::make_pair(0,0);
assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin()));
PreprocessedEntityID BeginID =
findPreprocessedEntity(Range.getBegin(), false);
PreprocessedEntityID EndID = findPreprocessedEntity(Range.getEnd(), true);
return std::make_pair(BeginID, EndID);
}
/// Optionally returns true or false if the preallocated preprocessed
/// entity with index \arg Index came from file \arg FID.
Optional<bool> ASTReader::isPreprocessedEntityInFileID(unsigned Index,
FileID FID) {
if (FID.isInvalid())
return false;
std::pair<ModuleFile *, unsigned> PPInfo = getModulePreprocessedEntity(Index);
ModuleFile &M = *PPInfo.first;
unsigned LocalIndex = PPInfo.second;
const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex];
SourceLocation Loc = TranslateSourceLocation(M, PPOffs.getBegin());
if (Loc.isInvalid())
return false;
if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID))
return true;
else
return false;
}
namespace {
/// Visitor used to search for information about a header file.
class HeaderFileInfoVisitor {
const FileEntry *FE;
Optional<HeaderFileInfo> HFI;
public:
explicit HeaderFileInfoVisitor(const FileEntry *FE) : FE(FE) {}
bool operator()(ModuleFile &M) {
HeaderFileInfoLookupTable *Table
= static_cast<HeaderFileInfoLookupTable *>(M.HeaderFileInfoTable);
if (!Table)
return false;
// Look in the on-disk hash table for an entry for this file name.
HeaderFileInfoLookupTable::iterator Pos = Table->find(FE);
if (Pos == Table->end())
return false;
HFI = *Pos;
return true;
}
Optional<HeaderFileInfo> getHeaderFileInfo() const { return HFI; }
};
} // namespace
HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) {
HeaderFileInfoVisitor Visitor(FE);
ModuleMgr.visit(Visitor);
if (Optional<HeaderFileInfo> HFI = Visitor.getHeaderFileInfo())
return *HFI;
return HeaderFileInfo();
}
void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) {
using DiagState = DiagnosticsEngine::DiagState;
SmallVector<DiagState *, 32> DiagStates;
for (ModuleFile &F : ModuleMgr) {
unsigned Idx = 0;
auto &Record = F.PragmaDiagMappings;
if (Record.empty())
continue;
DiagStates.clear();
auto ReadDiagState =
[&](const DiagState &BasedOn, SourceLocation Loc,
bool IncludeNonPragmaStates) -> DiagnosticsEngine::DiagState * {
unsigned BackrefID = Record[Idx++];
if (BackrefID != 0)
return DiagStates[BackrefID - 1];
// A new DiagState was created here.
Diag.DiagStates.push_back(BasedOn);
DiagState *NewState = &Diag.DiagStates.back();
DiagStates.push_back(NewState);
unsigned Size = Record[Idx++];
assert(Idx + Size * 2 <= Record.size() &&
"Invalid data, not enough diag/map pairs");
while (Size--) {
unsigned DiagID = Record[Idx++];
DiagnosticMapping NewMapping =
DiagnosticMapping::deserialize(Record[Idx++]);
if (!NewMapping.isPragma() && !IncludeNonPragmaStates)
continue;
DiagnosticMapping &Mapping = NewState->getOrAddMapping(DiagID);
// If this mapping was specified as a warning but the severity was
// upgraded due to diagnostic settings, simulate the current diagnostic
// settings (and use a warning).
if (NewMapping.wasUpgradedFromWarning() && !Mapping.isErrorOrFatal()) {
NewMapping.setSeverity(diag::Severity::Warning);
NewMapping.setUpgradedFromWarning(false);
}
Mapping = NewMapping;
}
return NewState;
};
// Read the first state.
DiagState *FirstState;
if (F.Kind == MK_ImplicitModule) {
// Implicitly-built modules are reused with different diagnostic
// settings. Use the initial diagnostic state from Diag to simulate this
// compilation's diagnostic settings.
FirstState = Diag.DiagStatesByLoc.FirstDiagState;
DiagStates.push_back(FirstState);
// Skip the initial diagnostic state from the serialized module.
assert(Record[1] == 0 &&
"Invalid data, unexpected backref in initial state");
Idx = 3 + Record[2] * 2;
assert(Idx < Record.size() &&
"Invalid data, not enough state change pairs in initial state");
} else if (F.isModule()) {
// For an explicit module, preserve the flags from the module build
// command line (-w, -Weverything, -Werror, ...) along with any explicit
// -Wblah flags.
unsigned Flags = Record[Idx++];
DiagState Initial;
Initial.SuppressSystemWarnings = Flags & 1; Flags >>= 1;
Initial.ErrorsAsFatal = Flags & 1; Flags >>= 1;
Initial.WarningsAsErrors = Flags & 1; Flags >>= 1;
Initial.EnableAllWarnings = Flags & 1; Flags >>= 1;
Initial.IgnoreAllWarnings = Flags & 1; Flags >>= 1;
Initial.ExtBehavior = (diag::Severity)Flags;
FirstState = ReadDiagState(Initial, SourceLocation(), true);
assert(F.OriginalSourceFileID.isValid());
// Set up the root buffer of the module to start with the initial
// diagnostic state of the module itself, to cover files that contain no
// explicit transitions (for which we did not serialize anything).
Diag.DiagStatesByLoc.Files[F.OriginalSourceFileID]
.StateTransitions.push_back({FirstState, 0});
} else {
// For prefix ASTs, start with whatever the user configured on the
// command line.
Idx++; // Skip flags.
FirstState = ReadDiagState(*Diag.DiagStatesByLoc.CurDiagState,
SourceLocation(), false);
}
// Read the state transitions.
unsigned NumLocations = Record[Idx++];
while (NumLocations--) {
assert(Idx < Record.size() &&
"Invalid data, missing pragma diagnostic states");
SourceLocation Loc = ReadSourceLocation(F, Record[Idx++]);
auto IDAndOffset = SourceMgr.getDecomposedLoc(Loc);
assert(IDAndOffset.first.isValid() && "invalid FileID for transition");
assert(IDAndOffset.second == 0 && "not a start location for a FileID");
unsigned Transitions = Record[Idx++];
// Note that we don't need to set up Parent/ParentOffset here, because
// we won't be changing the diagnostic state within imported FileIDs
// (other than perhaps appending to the main source file, which has no
// parent).
auto &F = Diag.DiagStatesByLoc.Files[IDAndOffset.first];
F.StateTransitions.reserve(F.StateTransitions.size() + Transitions);
for (unsigned I = 0; I != Transitions; ++I) {
unsigned Offset = Record[Idx++];
auto *State =
ReadDiagState(*FirstState, Loc.getLocWithOffset(Offset), false);
F.StateTransitions.push_back({State, Offset});
}
}
// Read the final state.
assert(Idx < Record.size() &&
"Invalid data, missing final pragma diagnostic state");
SourceLocation CurStateLoc =
ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]);
auto *CurState = ReadDiagState(*FirstState, CurStateLoc, false);
if (!F.isModule()) {
Diag.DiagStatesByLoc.CurDiagState = CurState;
Diag.DiagStatesByLoc.CurDiagStateLoc = CurStateLoc;
// Preserve the property that the imaginary root file describes the
// current state.
FileID NullFile;
auto &T = Diag.DiagStatesByLoc.Files[NullFile].StateTransitions;
if (T.empty())
T.push_back({CurState, 0});
else
T[0].State = CurState;
}
// Don't try to read these mappings again.
Record.clear();
}
}
/// Get the correct cursor and offset for loading a type.
ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) {
GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index);
assert(I != GlobalTypeMap.end() && "Corrupted global type map");
ModuleFile *M = I->second;
return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]);
}
/// Read and return the type with the given index..
///
/// The index is the type ID, shifted and minus the number of predefs. This
/// routine actually reads the record corresponding to the type at the given
/// location. It is a helper routine for GetType, which deals with reading type
/// IDs.
QualType ASTReader::readTypeRecord(unsigned Index) {
assert(ContextObj && "reading type with no AST context");
ASTContext &Context = *ContextObj;
RecordLocation Loc = TypeCursorForIndex(Index);
BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Type, *this);
// Note that we are loading a type record.
Deserializing AType(this);
unsigned Idx = 0;
DeclsCursor.JumpToBit(Loc.Offset);
RecordData Record;
unsigned Code = DeclsCursor.ReadCode();
switch ((TypeCode)DeclsCursor.readRecord(Code, Record)) {
case TYPE_EXT_QUAL: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended qualifier type");
return QualType();
}
QualType Base = readType(*Loc.F, Record, Idx);
Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]);
return Context.getQualifiedType(Base, Quals);
}
case TYPE_COMPLEX: {
if (Record.size() != 1) {
Error("Incorrect encoding of complex type");
return QualType();
}
QualType ElemType = readType(*Loc.F, Record, Idx);
return Context.getComplexType(ElemType);
}
case TYPE_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getPointerType(PointeeType);
}
case TYPE_DECAYED: {
if (Record.size() != 1) {
Error("Incorrect encoding of decayed type");
return QualType();
}
QualType OriginalType = readType(*Loc.F, Record, Idx);
QualType DT = Context.getAdjustedParameterType(OriginalType);
if (!isa<DecayedType>(DT))
Error("Decayed type does not decay");
return DT;
}
case TYPE_ADJUSTED: {
if (Record.size() != 2) {
Error("Incorrect encoding of adjusted type");
return QualType();
}
QualType OriginalTy = readType(*Loc.F, Record, Idx);
QualType AdjustedTy = readType(*Loc.F, Record, Idx);
return Context.getAdjustedType(OriginalTy, AdjustedTy);
}
case TYPE_BLOCK_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of block pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getBlockPointerType(PointeeType);
}
case TYPE_LVALUE_REFERENCE: {
if (Record.size() != 2) {
Error("Incorrect encoding of lvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getLValueReferenceType(PointeeType, Record[1]);
}
case TYPE_RVALUE_REFERENCE: {
if (Record.size() != 1) {
Error("Incorrect encoding of rvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context.getRValueReferenceType(PointeeType);
}
case TYPE_MEMBER_POINTER: {
if (Record.size() != 2) {
Error("Incorrect encoding of member pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
QualType ClassType = readType(*Loc.F, Record, Idx);
if (PointeeType.isNull() || ClassType.isNull())
return QualType();
return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case TYPE_CONSTANT_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context.getConstantArrayType(ElementType, Size,
ASM, IndexTypeQuals);
}
case TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case TYPE_VARIABLE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]);
SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]);
return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F),
ASM, IndexTypeQuals,
SourceRange(LBLoc, RBLoc));
}
case TYPE_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
unsigned VecKind = Record[2];
return Context.getVectorType(ElementType, NumElements,
(VectorType::VectorKind)VecKind);
}
case TYPE_EXT_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of extended vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
return Context.getExtVectorType(ElementType, NumElements);
}
case TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 8) {
Error("incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionType::ExtInfo Info(Record[1], Record[2], Record[3],
(CallingConv)Record[4], Record[5], Record[6],
Record[7]);
return Context.getFunctionNoProtoType(ResultType, Info);
}
case TYPE_FUNCTION_PROTO: {
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1],
/*hasregparm*/ Record[2],
/*regparm*/ Record[3],
static_cast<CallingConv>(Record[4]),
/*produces*/ Record[5],
/*nocallersavedregs*/ Record[6],
/*nocfcheck*/ Record[7]);
unsigned Idx = 8;
EPI.Variadic = Record[Idx++];
EPI.HasTrailingReturn = Record[Idx++];
EPI.TypeQuals = Record[Idx++];
EPI.RefQualifier = static_cast<RefQualifierKind>(Record[Idx++]);
SmallVector<QualType, 8> ExceptionStorage;
readExceptionSpec(*Loc.F, ExceptionStorage, EPI.ExceptionSpec, Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(readType(*Loc.F, Record, Idx));
SmallVector<FunctionProtoType::ExtParameterInfo, 4> ExtParameterInfos;
if (Idx != Record.size()) {
for (unsigned I = 0; I != NumParams; ++I)
ExtParameterInfos.push_back(
FunctionProtoType::ExtParameterInfo
::getFromOpaqueValue(Record[Idx++]));
EPI.ExtParameterInfos = ExtParameterInfos.data();
}
assert(Idx == Record.size());
return Context.getFunctionType(ResultType, ParamTypes, EPI);
}
case TYPE_UNRESOLVED_USING: {
unsigned Idx = 0;
return Context.getTypeDeclType(
ReadDeclAs<UnresolvedUsingTypenameDecl>(*Loc.F, Record, Idx));
}
case TYPE_TYPEDEF: {
if (Record.size() != 2) {
Error("incorrect encoding of typedef type");
return QualType();
}
unsigned Idx = 0;
TypedefNameDecl *Decl = ReadDeclAs<TypedefNameDecl>(*Loc.F, Record, Idx);
QualType Canonical = readType(*Loc.F, Record, Idx);
if (!Canonical.isNull())
Canonical = Context.getCanonicalType(Canonical);
return Context.getTypedefType(Decl, Canonical);
}
case TYPE_TYPEOF_EXPR:
return Context.getTypeOfExprType(ReadExpr(*Loc.F));
case TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("incorrect encoding of typeof(type) in AST file");
return QualType();
}
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
return Context.getTypeOfType(UnderlyingType);
}
case TYPE_DECLTYPE: {
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType);
}
case TYPE_UNARY_TRANSFORM: {
QualType BaseType = readType(*Loc.F, Record, Idx);
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2];
return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind);
}
case TYPE_AUTO: {
QualType Deduced = readType(*Loc.F, Record, Idx);
AutoTypeKeyword Keyword = (AutoTypeKeyword)Record[Idx++];
bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
return Context.getAutoType(Deduced, Keyword, IsDependent);
}
case TYPE_DEDUCED_TEMPLATE_SPECIALIZATION: {
TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx);
QualType Deduced = readType(*Loc.F, Record, Idx);
bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
return Context.getDeducedTemplateSpecializationType(Name, Deduced,
IsDependent);
}
case TYPE_RECORD: {
if (Record.size() != 2) {
Error("incorrect encoding of record type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
RecordDecl *RD = ReadDeclAs<RecordDecl>(*Loc.F, Record, Idx);
RD = cast_or_null<RecordDecl>(RD->getCanonicalDecl());
QualType T = Context.getRecordType(RD);
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ENUM: {
if (Record.size() != 2) {
Error("incorrect encoding of enum type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
QualType T
= Context.getEnumType(ReadDeclAs<EnumDecl>(*Loc.F, Record, Idx));
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ATTRIBUTED: {
if (Record.size() != 3) {
Error("incorrect encoding of attributed type");
return QualType();
}
QualType modifiedType = readType(*Loc.F, Record, Idx);
QualType equivalentType = readType(*Loc.F, Record, Idx);
AttributedType::Kind kind = static_cast<AttributedType::Kind>(Record[2]);
return Context.getAttributedType(kind, modifiedType, equivalentType);
}
case TYPE_PAREN: {
if (Record.size() != 1) {
Error("incorrect encoding of paren type");
return QualType();
}
QualType InnerType = readType(*Loc.F, Record, Idx);
return Context.getParenType(InnerType);
}
case TYPE_PACK_EXPANSION: {
if (Record.size() != 2) {
Error("incorrect encoding of pack expansion type");
return QualType();
}
QualType Pattern = readType(*Loc.F, Record, Idx);
if (Pattern.isNull())
return QualType();
Optional<unsigned> NumExpansions;
if (Record[1])
NumExpansions = Record[1] - 1;
return Context.getPackExpansionType(Pattern, NumExpansions);
}
case TYPE_ELABORATED: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
QualType NamedType = readType(*Loc.F, Record, Idx);
TagDecl *OwnedTagDecl = ReadDeclAs<TagDecl>(*Loc.F, Record, Idx);
return Context.getElaboratedType(Keyword, NNS, NamedType, OwnedTagDecl);
}
case TYPE_OBJC_INTERFACE: {
unsigned Idx = 0;
ObjCInterfaceDecl *ItfD
= ReadDeclAs<ObjCInterfaceDecl>(*Loc.F, Record, Idx);
return Context.getObjCInterfaceType(ItfD->getCanonicalDecl());
}
case TYPE_OBJC_TYPE_PARAM: {
unsigned Idx = 0;
ObjCTypeParamDecl *Decl
= ReadDeclAs<ObjCTypeParamDecl>(*Loc.F, Record, Idx);
unsigned NumProtos = Record[Idx++];
SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(ReadDeclAs<ObjCProtocolDecl>(*Loc.F, Record, Idx));
return Context.getObjCTypeParamType(Decl, Protos);
}
case TYPE_OBJC_OBJECT: {
unsigned Idx = 0;
QualType Base = readType(*Loc.F, Record, Idx);
unsigned NumTypeArgs = Record[Idx++];
SmallVector<QualType, 4> TypeArgs;
for (unsigned I = 0; I != NumTypeArgs; ++I)
TypeArgs.push_back(readType(*Loc.F, Record, Idx));
unsigned NumProtos = Record[Idx++];
SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(ReadDeclAs<ObjCProtocolDecl>(*Loc.F, Record, Idx));
bool IsKindOf = Record[Idx++];
return Context.getObjCObjectType(Base, TypeArgs, Protos, IsKindOf);
}
case TYPE_OBJC_OBJECT_POINTER: {
unsigned Idx = 0;
QualType Pointee = readType(*Loc.F, Record, Idx);
return Context.getObjCObjectPointerType(Pointee);
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
QualType Replacement = readType(*Loc.F, Record, Idx);
return Context.getSubstTemplateTypeParmType(
cast<TemplateTypeParmType>(Parm),
Context.getCanonicalType(Replacement));
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx);
return Context.getSubstTemplateTypeParmPackType(
cast<TemplateTypeParmType>(Parm),
ArgPack);
}
case TYPE_INJECTED_CLASS_NAME: {
CXXRecordDecl *D = ReadDeclAs<CXXRecordDecl>(*Loc.F, Record, Idx);
QualType TST = readType(*Loc.F, Record, Idx); // probably derivable
// FIXME: ASTContext::getInjectedClassNameType is not currently suitable
// for AST reading, too much interdependencies.
const Type *T = nullptr;
for (auto *DI = D; DI; DI = DI->getPreviousDecl()) {
if (const Type *Existing = DI->getTypeForDecl()) {
T = Existing;
break;
}
}
if (!T) {
T = new (Context, TypeAlignment) InjectedClassNameType(D, TST);
for (auto *DI = D; DI; DI = DI->getPreviousDecl())
DI->setTypeForDecl(T);
}
return QualType(T, 0);
}
case TYPE_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
unsigned Depth = Record[Idx++];
unsigned Index = Record[Idx++];
bool Pack = Record[Idx++];
TemplateTypeParmDecl *D
= ReadDeclAs<TemplateTypeParmDecl>(*Loc.F, Record, Idx);
return Context.getTemplateTypeParmType(Depth, Index, Pack, D);
}
case TYPE_DEPENDENT_NAME: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = GetIdentifierInfo(*Loc.F, Record, Idx);
QualType Canon = readType(*Loc.F, Record, Idx);
if (!Canon.isNull())
Canon = Context.getCanonicalType(Canon);
return Context.getDependentNameType(Keyword, NNS, Name, Canon);
}
case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = GetIdentifierInfo(*Loc.F, Record, Idx);
unsigned NumArgs = Record[Idx++];
SmallVector<TemplateArgument, 8> Args;
Args.reserve(NumArgs);
while (NumArgs--)
Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx));
return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name,
Args);
}
case TYPE_DEPENDENT_SIZED_ARRAY: {
unsigned Idx = 0;
// ArrayType
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM
= (ArrayType::ArraySizeModifier)Record[Idx++];
unsigned IndexTypeQuals = Record[Idx++];
// DependentSizedArrayType
Expr *NumElts = ReadExpr(*Loc.F);
SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx);
return Context.getDependentSizedArrayType(ElementType, NumElts, ASM,
IndexTypeQuals, Brackets);
}
case TYPE_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx);
SmallVector<TemplateArgument, 8> Args;
ReadTemplateArgumentList(Args, *Loc.F, Record, Idx);
QualType Underlying = readType(*Loc.F, Record, Idx);
QualType T;
if (Underlying.isNull())
T = Context.getCanonicalTemplateSpecializationType(Name, Args);
else
T = Context.getTemplateSpecializationType(Name, Args, Underlying);
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ATOMIC: {
if (Record.size() != 1) {
Error("Incorrect encoding of atomic type");
return QualType();
}
QualType ValueType = readType(*Loc.F, Record, Idx);
return Context.getAtomicType(ValueType);
}
case TYPE_PIPE: {
if (Record.size() != 2) {
Error("Incorrect encoding of pipe type");
return QualType();
}
// Reading the pipe element type.
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned ReadOnly = Record[1];
return Context.getPipeType(ElementType, ReadOnly);
}
case TYPE_DEPENDENT_SIZED_EXT_VECTOR: {
unsigned Idx = 0;
// DependentSizedExtVectorType
QualType ElementType = readType(*Loc.F, Record, Idx);
Expr *SizeExpr = ReadExpr(*Loc.F);
SourceLocation AttrLoc = ReadSourceLocation(*Loc.F, Record, Idx);
return Context.getDependentSizedExtVectorType(ElementType, SizeExpr,
AttrLoc);
}
case TYPE_DEPENDENT_ADDRESS_SPACE: {
unsigned Idx = 0;
// DependentAddressSpaceType
QualType PointeeType = readType(*Loc.F, Record, Idx);
Expr *AddrSpaceExpr = ReadExpr(*Loc.F);
SourceLocation AttrLoc = ReadSourceLocation(*Loc.F, Record, Idx);
return Context.getDependentAddressSpaceType(PointeeType, AddrSpaceExpr,
AttrLoc);
}
}
llvm_unreachable("Invalid TypeCode!");
}
void ASTReader::readExceptionSpec(ModuleFile &ModuleFile,
SmallVectorImpl<QualType> &Exceptions,
FunctionProtoType::ExceptionSpecInfo &ESI,
const RecordData &Record, unsigned &Idx) {
ExceptionSpecificationType EST =
static_cast<ExceptionSpecificationType>(Record[Idx++]);
ESI.Type = EST;
if (EST == EST_Dynamic) {
for (unsigned I = 0, N = Record[Idx++]; I != N; ++I)
Exceptions.push_back(readType(ModuleFile, Record, Idx));
ESI.Exceptions = Exceptions;
} else if (isComputedNoexcept(EST)) {
ESI.NoexceptExpr = ReadExpr(ModuleFile);
} else if (EST == EST_Uninstantiated) {
ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
ESI.SourceTemplate = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
} else if (EST == EST_Unevaluated) {
ESI.SourceDecl = ReadDeclAs<FunctionDecl>(ModuleFile, Record, Idx);
}
}
namespace clang {
class TypeLocReader : public TypeLocVisitor<TypeLocReader> {
ModuleFile *F;
ASTReader *Reader;
const ASTReader::RecordData &Record;
unsigned &Idx;
SourceLocation ReadSourceLocation() {
return Reader->ReadSourceLocation(*F, Record, Idx);
}
TypeSourceInfo *GetTypeSourceInfo() {
return Reader->GetTypeSourceInfo(*F, Record, Idx);
}
NestedNameSpecifierLoc ReadNestedNameSpecifierLoc() {
return Reader->ReadNestedNameSpecifierLoc(*F, Record, Idx);
}
public:
TypeLocReader(ModuleFile &F, ASTReader &Reader,
const ASTReader::RecordData &Record, unsigned &Idx)
: F(&F), Reader(&Reader), Record(Record), Idx(Idx) {}
// We want compile-time assurance that we've enumerated all of
// these, so unfortunately we have to declare them first, then
// define them out-of-line.
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitFunctionTypeLoc(FunctionTypeLoc);
void VisitArrayTypeLoc(ArrayTypeLoc);
};
} // namespace clang
void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
TL.setBuiltinLoc(ReadSourceLocation());
if (TL.needsExtraLocalData()) {
TL.setWrittenTypeSpec(static_cast<DeclSpec::TST>(Record[Idx++]));
TL.setWrittenSignSpec(static_cast<DeclSpec::TSS>(Record[Idx++]));
TL.setWrittenWidthSpec(static_cast<DeclSpec::TSW>(Record[Idx++]));
TL.setModeAttr(Record[Idx++]);
}
}
void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation());
}
void TypeLocReader::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
TL.setCaretLoc(ReadSourceLocation());
}
void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
TL.setAmpLoc(ReadSourceLocation());
}
void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
TL.setAmpAmpLoc(ReadSourceLocation());
}
void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation());
TL.setClassTInfo(GetTypeSourceInfo());
}
void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) {
TL.setLBracketLoc(ReadSourceLocation());
TL.setRBracketLoc(ReadSourceLocation());
if (Record[Idx++])
TL.setSizeExpr(Reader->ReadExpr(*F));
else
TL.setSizeExpr(nullptr);
}
void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentAddressSpaceTypeLoc(
DependentAddressSpaceTypeLoc TL) {
TL.setAttrNameLoc(ReadSourceLocation());
SourceRange range;
range.setBegin(ReadSourceLocation());
range.setEnd(ReadSourceLocation());
TL.setAttrOperandParensRange(range);
TL.setAttrExprOperand(Reader->ReadExpr(*F));
}
void TypeLocReader::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
TL.setLocalRangeBegin(ReadSourceLocation());
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
TL.setExceptionSpecRange(SourceRange(Reader->ReadSourceLocation(*F, Record, Idx),
Reader->ReadSourceLocation(*F, Record, Idx)));
TL.setLocalRangeEnd(ReadSourceLocation());
for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) {
TL.setParam(i, Reader->ReadDeclAs<ParmVarDecl>(*F, Record, Idx));
}
}
void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation());
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
}
void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation());
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
TL.setUnderlyingTInfo(GetTypeSourceInfo());
}
void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation());
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
TL.setUnderlyingTInfo(GetTypeSourceInfo());
}
void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitDeducedTemplateSpecializationTypeLoc(
DeducedTemplateSpecializationTypeLoc TL) {
TL.setTemplateNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
TL.setAttrNameLoc(ReadSourceLocation());
if (TL.hasAttrOperand()) {
SourceRange range;
range.setBegin(ReadSourceLocation());
range.setEnd(ReadSourceLocation());
TL.setAttrOperandParensRange(range);
}
if (TL.hasAttrExprOperand()) {
if (Record[Idx++])
TL.setAttrExprOperand(Reader->ReadExpr(*F));
else
TL.setAttrExprOperand(nullptr);
} else if (TL.hasAttrEnumOperand())
TL.setAttrEnumOperandLoc(ReadSourceLocation());
}
void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
TL.setTemplateKeywordLoc(ReadSourceLocation());
TL.setTemplateNameLoc(ReadSourceLocation());
TL.setLAngleLoc(ReadSourceLocation());
TL.setRAngleLoc(ReadSourceLocation());
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(
i,
Reader->GetTemplateArgumentLocInfo(
*F, TL.getTypePtr()->getArg(i).getKind(), Record, Idx));
}
void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) {
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
}
void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation());
TL.setQualifierLoc(ReadNestedNameSpecifierLoc());
}
void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation());
TL.setQualifierLoc(ReadNestedNameSpecifierLoc());
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
TL.setElaboratedKeywordLoc(ReadSourceLocation());
TL.setQualifierLoc(ReadNestedNameSpecifierLoc());
TL.setTemplateKeywordLoc(ReadSourceLocation());
TL.setTemplateNameLoc(ReadSourceLocation());
TL.setLAngleLoc(ReadSourceLocation());
TL.setRAngleLoc(ReadSourceLocation());
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
TL.setArgLocInfo(
I,
Reader->GetTemplateArgumentLocInfo(
*F, TL.getTypePtr()->getArg(I).getKind(), Record, Idx));
}
void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
TL.setEllipsisLoc(ReadSourceLocation());
}
void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation());
}
void TypeLocReader::VisitObjCTypeParamTypeLoc(ObjCTypeParamTypeLoc TL) {
if (TL.getNumProtocols()) {
TL.setProtocolLAngleLoc(ReadSourceLocation());
TL.setProtocolRAngleLoc(ReadSourceLocation());
}
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
TL.setProtocolLoc(i, ReadSourceLocation());
}
void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TL.setHasBaseTypeAsWritten(Record[Idx++]);
TL.setTypeArgsLAngleLoc(ReadSourceLocation());
TL.setTypeArgsRAngleLoc(ReadSourceLocation());
for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i)
TL.setTypeArgTInfo(i, GetTypeSourceInfo());
TL.setProtocolLAngleLoc(ReadSourceLocation());
TL.setProtocolRAngleLoc(ReadSourceLocation());
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
TL.setProtocolLoc(i, ReadSourceLocation());
}
void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation());
}
void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation());
TL.setLParenLoc(ReadSourceLocation());
TL.setRParenLoc(ReadSourceLocation());
}
void TypeLocReader::VisitPipeTypeLoc(PipeTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation());
}
TypeSourceInfo *
ASTReader::GetTypeSourceInfo(ModuleFile &F, const ASTReader::RecordData &Record,
unsigned &Idx) {
QualType InfoTy = readType(F, Record, Idx);
if (InfoTy.isNull())
return nullptr;
TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy);
TypeLocReader TLR(F, *this, Record, Idx);
for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
TLR.Visit(TL);
return TInfo;
}
QualType ASTReader::GetType(TypeID ID) {
assert(ContextObj && "reading type with no AST context");
ASTContext &Context = *ContextObj;
unsigned FastQuals = ID & Qualifiers::FastMask;
unsigned Index = ID >> Qualifiers::FastWidth;
if (Index < NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((PredefinedTypeIDs)Index) {
case PREDEF_TYPE_NULL_ID:
return QualType();
case PREDEF_TYPE_VOID_ID:
T = Context.VoidTy;
break;
case PREDEF_TYPE_BOOL_ID:
T = Context.BoolTy;
break;
case PREDEF_TYPE_CHAR_U_ID:
case PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context.CharTy;
break;
case PREDEF_TYPE_UCHAR_ID:
T = Context.UnsignedCharTy;
break;
case PREDEF_TYPE_USHORT_ID:
T = Context.UnsignedShortTy;
break;
case PREDEF_TYPE_UINT_ID:
T = Context.UnsignedIntTy;
break;
case PREDEF_TYPE_ULONG_ID:
T = Context.UnsignedLongTy;
break;
case PREDEF_TYPE_ULONGLONG_ID:
T = Context.UnsignedLongLongTy;
break;
case PREDEF_TYPE_UINT128_ID:
T = Context.UnsignedInt128Ty;
break;
case PREDEF_TYPE_SCHAR_ID:
T = Context.SignedCharTy;
break;
case PREDEF_TYPE_WCHAR_ID:
T = Context.WCharTy;
break;
case PREDEF_TYPE_SHORT_ID:
T = Context.ShortTy;
break;
case PREDEF_TYPE_INT_ID:
T = Context.IntTy;
break;
case PREDEF_TYPE_LONG_ID:
T = Context.LongTy;
break;
case PREDEF_TYPE_LONGLONG_ID:
T = Context.LongLongTy;
break;
case PREDEF_TYPE_INT128_ID:
T = Context.Int128Ty;
break;
case PREDEF_TYPE_HALF_ID:
T = Context.HalfTy;
break;
case PREDEF_TYPE_FLOAT_ID:
T = Context.FloatTy;
break;
case PREDEF_TYPE_DOUBLE_ID:
T = Context.DoubleTy;
break;
case PREDEF_TYPE_LONGDOUBLE_ID:
T = Context.LongDoubleTy;
break;
case PREDEF_TYPE_SHORT_ACCUM_ID:
T = Context.ShortAccumTy;
break;
case PREDEF_TYPE_ACCUM_ID:
T = Context.AccumTy;
break;
case PREDEF_TYPE_LONG_ACCUM_ID:
T = Context.LongAccumTy;
break;
case PREDEF_TYPE_USHORT_ACCUM_ID:
T = Context.UnsignedShortAccumTy;
break;
case PREDEF_TYPE_UACCUM_ID:
T = Context.UnsignedAccumTy;
break;
case PREDEF_TYPE_ULONG_ACCUM_ID:
T = Context.UnsignedLongAccumTy;
break;
case PREDEF_TYPE_SHORT_FRACT_ID:
T = Context.ShortFractTy;
break;
case PREDEF_TYPE_FRACT_ID:
T = Context.FractTy;
break;
case PREDEF_TYPE_LONG_FRACT_ID:
T = Context.LongFractTy;
break;
case PREDEF_TYPE_USHORT_FRACT_ID:
T = Context.UnsignedShortFractTy;
break;
case PREDEF_TYPE_UFRACT_ID:
T = Context.UnsignedFractTy;
break;
case PREDEF_TYPE_ULONG_FRACT_ID:
T = Context.UnsignedLongFractTy;
break;
case PREDEF_TYPE_SAT_SHORT_ACCUM_ID:
T = Context.SatShortAccumTy;
break;
case PREDEF_TYPE_SAT_ACCUM_ID:
T = Context.SatAccumTy;
break;
case PREDEF_TYPE_SAT_LONG_ACCUM_ID:
T = Context.SatLongAccumTy;
break;
case PREDEF_TYPE_SAT_USHORT_ACCUM_ID:
T = Context.SatUnsignedShortAccumTy;
break;
case PREDEF_TYPE_SAT_UACCUM_ID:
T = Context.SatUnsignedAccumTy;
break;
case PREDEF_TYPE_SAT_ULONG_ACCUM_ID:
T = Context.SatUnsignedLongAccumTy;
break;
case PREDEF_TYPE_SAT_SHORT_FRACT_ID:
T = Context.SatShortFractTy;
break;
case PREDEF_TYPE_SAT_FRACT_ID:
T = Context.SatFractTy;
break;
case PREDEF_TYPE_SAT_LONG_FRACT_ID:
T = Context.SatLongFractTy;
break;
case PREDEF_TYPE_SAT_USHORT_FRACT_ID:
T = Context.SatUnsignedShortFractTy;
break;
case PREDEF_TYPE_SAT_UFRACT_ID:
T = Context.SatUnsignedFractTy;
break;
case PREDEF_TYPE_SAT_ULONG_FRACT_ID:
T = Context.SatUnsignedLongFractTy;
break;
case PREDEF_TYPE_FLOAT16_ID:
T = Context.Float16Ty;
break;
case PREDEF_TYPE_FLOAT128_ID:
T = Context.Float128Ty;
break;
case PREDEF_TYPE_OVERLOAD_ID:
T = Context.OverloadTy;
break;
case PREDEF_TYPE_BOUND_MEMBER:
T = Context.BoundMemberTy;
break;
case PREDEF_TYPE_PSEUDO_OBJECT:
T = Context.PseudoObjectTy;
break;
case PREDEF_TYPE_DEPENDENT_ID:
T = Context.DependentTy;
break;
case PREDEF_TYPE_UNKNOWN_ANY:
T = Context.UnknownAnyTy;
break;
case PREDEF_TYPE_NULLPTR_ID:
T = Context.NullPtrTy;
break;
case PREDEF_TYPE_CHAR8_ID:
T = Context.Char8Ty;
break;
case PREDEF_TYPE_CHAR16_ID:
T = Context.Char16Ty;
break;
case PREDEF_TYPE_CHAR32_ID:
T = Context.Char32Ty;
break;
case PREDEF_TYPE_OBJC_ID:
T = Context.ObjCBuiltinIdTy;
break;
case PREDEF_TYPE_OBJC_CLASS:
T = Context.ObjCBuiltinClassTy;
break;
case PREDEF_TYPE_OBJC_SEL:
T = Context.ObjCBuiltinSelTy;
break;
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case PREDEF_TYPE_##Id##_ID: \
T = Context.SingletonId; \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case PREDEF_TYPE_SAMPLER_ID:
T = Context.OCLSamplerTy;
break;
case PREDEF_TYPE_EVENT_ID:
T = Context.OCLEventTy;
break;
case PREDEF_TYPE_CLK_EVENT_ID:
T = Context.OCLClkEventTy;
break;
case PREDEF_TYPE_QUEUE_ID:
T = Context.OCLQueueTy;
break;
case PREDEF_TYPE_RESERVE_ID_ID:
T = Context.OCLReserveIDTy;
break;
case PREDEF_TYPE_AUTO_DEDUCT:
T = Context.getAutoDeductType();
break;
case PREDEF_TYPE_AUTO_RREF_DEDUCT:
T = Context.getAutoRRefDeductType();
break;
case PREDEF_TYPE_ARC_UNBRIDGED_CAST:
T = Context.ARCUnbridgedCastTy;
break;
case PREDEF_TYPE_BUILTIN_FN:
T = Context.BuiltinFnTy;
break;
case PREDEF_TYPE_OMP_ARRAY_SECTION:
T = Context.OMPArraySectionTy;
break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.withFastQualifiers(FastQuals);
}
Index -= NUM_PREDEF_TYPE_IDS;
assert(Index < TypesLoaded.size() && "Type index out-of-range");
if (TypesLoaded[Index].isNull()) {
TypesLoaded[Index] = readTypeRecord(Index);
if (TypesLoaded[Index].isNull())
return QualType();
TypesLoaded[Index]->setFromAST();
if (DeserializationListener)
DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID),
TypesLoaded[Index]);
}
return TypesLoaded[Index].withFastQualifiers(FastQuals);
}
QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) {
return GetType(getGlobalTypeID(F, LocalID));
}
serialization::TypeID
ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const {
unsigned FastQuals = LocalID & Qualifiers::FastMask;
unsigned LocalIndex = LocalID >> Qualifiers::FastWidth;
if (LocalIndex < NUM_PREDEF_TYPE_IDS)
return LocalID;
if (!F.ModuleOffsetMap.empty())
ReadModuleOffsetMap(F);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS);
assert(I != F.TypeRemap.end() && "Invalid index into type index remap");
unsigned GlobalIndex = LocalIndex + I->second;
return (GlobalIndex << Qualifiers::FastWidth) | FastQuals;
}
TemplateArgumentLocInfo
ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F,
TemplateArgument::ArgKind Kind,
const RecordData &Record,
unsigned &Index) {
switch (Kind) {
case TemplateArgument::Expression:
return ReadExpr(F);
case TemplateArgument::Type:
return GetTypeSourceInfo(F, Record, Index);
case TemplateArgument::Template: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
SourceLocation());
}
case TemplateArgument::TemplateExpansion: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
EllipsisLoc);
}
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::Pack:
// FIXME: Is this right?
return TemplateArgumentLocInfo();
}
llvm_unreachable("unexpected template argument loc");
}
TemplateArgumentLoc
ASTReader::ReadTemplateArgumentLoc(ModuleFile &F,
const RecordData &Record, unsigned &Index) {
TemplateArgument Arg = ReadTemplateArgument(F, Record, Index);
if (Arg.getKind() == TemplateArgument::Expression) {
if (Record[Index++]) // bool InfoHasSameExpr.
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr()));
}
return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(),
Record, Index));
}
const ASTTemplateArgumentListInfo*
ASTReader::ReadASTTemplateArgumentListInfo(ModuleFile &F,
const RecordData &Record,
unsigned &Index) {
SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Index);
SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Index);
unsigned NumArgsAsWritten = Record[Index++];
TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
for (unsigned i = 0; i != NumArgsAsWritten; ++i)
TemplArgsInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Index));
return ASTTemplateArgumentListInfo::Create(getContext(), TemplArgsInfo);
}
Decl *ASTReader::GetExternalDecl(uint32_t ID) {
return GetDecl(ID);
}
void ASTReader::CompleteRedeclChain(const Decl *D) {
if (NumCurrentElementsDeserializing) {
// We arrange to not care about the complete redeclaration chain while we're
// deserializing. Just remember that the AST has marked this one as complete
// but that it's not actually complete yet, so we know we still need to
// complete it later.
PendingIncompleteDeclChains.push_back(const_cast<Decl*>(D));
return;
}
const DeclContext *DC = D->getDeclContext()->getRedeclContext();
// If this is a named declaration, complete it by looking it up
// within its context.
//
// FIXME: Merging a function definition should merge
// all mergeable entities within it.
if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC) ||
isa<CXXRecordDecl>(DC) || isa<EnumDecl>(DC)) {
if (DeclarationName Name = cast<NamedDecl>(D)->getDeclName()) {
if (!getContext().getLangOpts().CPlusPlus &&
isa<TranslationUnitDecl>(DC)) {
// Outside of C++, we don't have a lookup table for the TU, so update
// the identifier instead. (For C++ modules, we don't store decls
// in the serialized identifier table, so we do the lookup in the TU.)
auto *II = Name.getAsIdentifierInfo();
assert(II && "non-identifier name in C?");
if (II->isOutOfDate())
updateOutOfDateIdentifier(*II);
} else
DC->lookup(Name);
} else if (needsAnonymousDeclarationNumber(cast<NamedDecl>(D))) {
// Find all declarations of this kind from the relevant context.
for (auto *DCDecl : cast<Decl>(D->getLexicalDeclContext())->redecls()) {
auto *DC = cast<DeclContext>(DCDecl);
SmallVector<Decl*, 8> Decls;
FindExternalLexicalDecls(
DC, [&](Decl::Kind K) { return K == D->getKind(); }, Decls);
}
}
}
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D))
CTSD->getSpecializedTemplate()->LoadLazySpecializations();
if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D))
VTSD->getSpecializedTemplate()->LoadLazySpecializations();
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
if (auto *Template = FD->getPrimaryTemplate())
Template->LoadLazySpecializations();
}
}
CXXCtorInitializer **
ASTReader::GetExternalCXXCtorInitializers(uint64_t Offset) {
RecordLocation Loc = getLocalBitOffset(Offset);
BitstreamCursor &Cursor = Loc.F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Loc.Offset);
ReadingKindTracker ReadingKind(Read_Decl, *this);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record);
if (RecCode != DECL_CXX_CTOR_INITIALIZERS) {
Error("malformed AST file: missing C++ ctor initializers");
return nullptr;
}
unsigned Idx = 0;
return ReadCXXCtorInitializers(*Loc.F, Record, Idx);
}
CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
assert(ContextObj && "reading base specifiers with no AST context");
ASTContext &Context = *ContextObj;
RecordLocation Loc = getLocalBitOffset(Offset);
BitstreamCursor &Cursor = Loc.F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Loc.Offset);
ReadingKindTracker ReadingKind(Read_Decl, *this);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.readRecord(Code, Record);
if (RecCode != DECL_CXX_BASE_SPECIFIERS) {
Error("malformed AST file: missing C++ base specifiers");
return nullptr;
}
unsigned Idx = 0;
unsigned NumBases = Record[Idx++];
void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases);
CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases];
for (unsigned I = 0; I != NumBases; ++I)
Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx);
return Bases;
}
serialization::DeclID
ASTReader::getGlobalDeclID(ModuleFile &F, LocalDeclID LocalID) const {
if (LocalID < NUM_PREDEF_DECL_IDS)
return LocalID;
if (!F.ModuleOffsetMap.empty())
ReadModuleOffsetMap(F);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS);
assert(I != F.DeclRemap.end() && "Invalid index into decl index remap");
return LocalID + I->second;
}
bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID,
ModuleFile &M) const {
// Predefined decls aren't from any module.
if (ID < NUM_PREDEF_DECL_IDS)
return false;
return ID - NUM_PREDEF_DECL_IDS >= M.BaseDeclID &&
ID - NUM_PREDEF_DECL_IDS < M.BaseDeclID + M.LocalNumDecls;
}
ModuleFile *ASTReader::getOwningModuleFile(const Decl *D) {
if (!D->isFromASTFile())
return nullptr;
GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID());
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
return I->second;
}
SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) {
if (ID < NUM_PREDEF_DECL_IDS)
return SourceLocation();
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index > DeclsLoaded.size()) {
Error("declaration ID out-of-range for AST file");
return SourceLocation();
}
if (Decl *D = DeclsLoaded[Index])
return D->getLocation();
SourceLocation Loc;
DeclCursorForID(ID, Loc);
return Loc;
}
static Decl *getPredefinedDecl(ASTContext &Context, PredefinedDeclIDs ID) {
switch (ID) {
case PREDEF_DECL_NULL_ID:
return nullptr;
case PREDEF_DECL_TRANSLATION_UNIT_ID:
return Context.getTranslationUnitDecl();
case PREDEF_DECL_OBJC_ID_ID:
return Context.getObjCIdDecl();
case PREDEF_DECL_OBJC_SEL_ID:
return Context.getObjCSelDecl();
case PREDEF_DECL_OBJC_CLASS_ID:
return Context.getObjCClassDecl();
case PREDEF_DECL_OBJC_PROTOCOL_ID:
return Context.getObjCProtocolDecl();
case PREDEF_DECL_INT_128_ID:
return Context.getInt128Decl();
case PREDEF_DECL_UNSIGNED_INT_128_ID:
return Context.getUInt128Decl();
case PREDEF_DECL_OBJC_INSTANCETYPE_ID:
return Context.getObjCInstanceTypeDecl();
case PREDEF_DECL_BUILTIN_VA_LIST_ID:
return Context.getBuiltinVaListDecl();
case PREDEF_DECL_VA_LIST_TAG:
return Context.getVaListTagDecl();
case PREDEF_DECL_BUILTIN_MS_VA_LIST_ID:
return Context.getBuiltinMSVaListDecl();
case PREDEF_DECL_EXTERN_C_CONTEXT_ID:
return Context.getExternCContextDecl();
case PREDEF_DECL_MAKE_INTEGER_SEQ_ID:
return Context.getMakeIntegerSeqDecl();
case PREDEF_DECL_CF_CONSTANT_STRING_ID:
return Context.getCFConstantStringDecl();
case PREDEF_DECL_CF_CONSTANT_STRING_TAG_ID:
return Context.getCFConstantStringTagDecl();
case PREDEF_DECL_TYPE_PACK_ELEMENT_ID:
return Context.getTypePackElementDecl();
}
llvm_unreachable("PredefinedDeclIDs unknown enum value");
}
Decl *ASTReader::GetExistingDecl(DeclID ID) {
assert(ContextObj && "reading decl with no AST context");
if (ID < NUM_PREDEF_DECL_IDS) {
Decl *D = getPredefinedDecl(*ContextObj, (PredefinedDeclIDs)ID);
if (D) {
// Track that we have merged the declaration with ID \p ID into the
// pre-existing predefined declaration \p D.
auto &Merged = KeyDecls[D->getCanonicalDecl()];
if (Merged.empty())
Merged.push_back(ID);
}
return D;
}
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index >= DeclsLoaded.size()) {
assert(0 && "declaration ID out-of-range for AST file");
Error("declaration ID out-of-range for AST file");
return nullptr;
}
return DeclsLoaded[Index];
}
Decl *ASTReader::GetDecl(DeclID ID) {
if (ID < NUM_PREDEF_DECL_IDS)
return GetExistingDecl(ID);
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
if (Index >= DeclsLoaded.size()) {
assert(0 && "declaration ID out-of-range for AST file");
Error("declaration ID out-of-range for AST file");
return nullptr;
}
if (!DeclsLoaded[Index]) {
ReadDeclRecord(ID);
if (DeserializationListener)
DeserializationListener->DeclRead(ID, DeclsLoaded[Index]);
}
return DeclsLoaded[Index];
}
DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M,
DeclID GlobalID) {
if (GlobalID < NUM_PREDEF_DECL_IDS)
return GlobalID;
GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
ModuleFile *Owner = I->second;
llvm::DenseMap<ModuleFile *, serialization::DeclID>::iterator Pos
= M.GlobalToLocalDeclIDs.find(Owner);
if (Pos == M.GlobalToLocalDeclIDs.end())
return 0;
return GlobalID - Owner->BaseDeclID + Pos->second;
}
serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F,
const RecordData &Record,
unsigned &Idx) {
if (Idx >= Record.size()) {
Error("Corrupted AST file");
return 0;
}
return getGlobalDeclID(F, Record[Idx++]);
}
/// Resolve the offset of a statement into a statement.
///
/// This operation will read a new statement from the external
/// source each time it is called, and is meant to be used via a
/// LazyOffsetPtr (which is used by Decls for the body of functions, etc).
Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) {
// Switch case IDs are per Decl.
ClearSwitchCaseIDs();
// Offset here is a global offset across the entire chain.
RecordLocation Loc = getLocalBitOffset(Offset);
Loc.F->DeclsCursor.JumpToBit(Loc.Offset);
assert(NumCurrentElementsDeserializing == 0 &&
"should not be called while already deserializing");
Deserializing D(this);
return ReadStmtFromStream(*Loc.F);
}
void ASTReader::FindExternalLexicalDecls(
const DeclContext *DC, llvm::function_ref<bool(Decl::Kind)> IsKindWeWant,
SmallVectorImpl<Decl *> &Decls) {
bool PredefsVisited[NUM_PREDEF_DECL_IDS] = {};
auto Visit = [&] (ModuleFile *M, LexicalContents LexicalDecls) {
assert(LexicalDecls.size() % 2 == 0 && "expected an even number of entries");
for (int I = 0, N = LexicalDecls.size(); I != N; I += 2) {
auto K = (Decl::Kind)+LexicalDecls[I];
if (!IsKindWeWant(K))
continue;
auto ID = (serialization::DeclID)+LexicalDecls[I + 1];
// Don't add predefined declarations to the lexical context more
// than once.
if (ID < NUM_PREDEF_DECL_IDS) {
if (PredefsVisited[ID])
continue;
PredefsVisited[ID] = true;
}
if (Decl *D = GetLocalDecl(*M, ID)) {
assert(D->getKind() == K && "wrong kind for lexical decl");
if (!DC->isDeclInLexicalTraversal(D))
Decls.push_back(D);
}
}
};
if (isa<TranslationUnitDecl>(DC)) {
for (auto Lexical : TULexicalDecls)
Visit(Lexical.first, Lexical.second);
} else {
auto I = LexicalDecls.find(DC);
if (I != LexicalDecls.end())
Visit(I->second.first, I->second.second);
}
++NumLexicalDeclContextsRead;
}
namespace {
class DeclIDComp {
ASTReader &Reader;
ModuleFile &Mod;
public:
DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {}
bool operator()(LocalDeclID L, LocalDeclID R) const {
SourceLocation LHS = getLocation(L);
SourceLocation RHS = getLocation(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(SourceLocation LHS, LocalDeclID R) const {
SourceLocation RHS = getLocation(R);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
bool operator()(LocalDeclID L, SourceLocation RHS) const {
SourceLocation LHS = getLocation(L);
return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS);
}
SourceLocation getLocation(LocalDeclID ID) const {
return Reader.getSourceManager().getFileLoc(
Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID)));
}
};
} // namespace
void ASTReader::FindFileRegionDecls(FileID File,
unsigned Offset, unsigned Length,
SmallVectorImpl<Decl *> &Decls) {
SourceManager &SM = getSourceManager();
llvm::DenseMap<FileID, FileDeclsInfo>::iterator I = FileDeclIDs.find(File);
if (I == FileDeclIDs.end())
return;
FileDeclsInfo &DInfo = I->second;
if (DInfo.Decls.empty())
return;
SourceLocation
BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset);
SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length);
DeclIDComp DIDComp(*this, *DInfo.Mod);
ArrayRef<serialization::LocalDeclID>::iterator
BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
BeginLoc, DIDComp);
if (BeginIt != DInfo.Decls.begin())
--BeginIt;
// If we are pointing at a top-level decl inside an objc container, we need
// to backtrack until we find it otherwise we will fail to report that the
// region overlaps with an objc container.
while (BeginIt != DInfo.Decls.begin() &&
GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt))
->isTopLevelDeclInObjCContainer())
--BeginIt;
ArrayRef<serialization::LocalDeclID>::iterator
EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(),
EndLoc, DIDComp);
if (EndIt != DInfo.Decls.end())
++EndIt;
for (ArrayRef<serialization::LocalDeclID>::iterator
DIt = BeginIt; DIt != EndIt; ++DIt)
Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt)));
}
bool
ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC,
DeclarationName Name) {
assert(DC->hasExternalVisibleStorage() && DC == DC->getPrimaryContext() &&
"DeclContext has no visible decls in storage");
if (!Name)
return false;
auto It = Lookups.find(DC);
if (It == Lookups.end())
return false;
Deserializing LookupResults(this);
// Load the list of declarations.
SmallVector<NamedDecl *, 64> Decls;
for (DeclID ID : It->second.Table.find(Name)) {
NamedDecl *ND = cast<NamedDecl>(GetDecl(ID));
if (ND->getDeclName() == Name)
Decls.push_back(ND);
}
++NumVisibleDeclContextsRead;
SetExternalVisibleDeclsForName(DC, Name, Decls);
return !Decls.empty();
}
void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) {
if (!DC->hasExternalVisibleStorage())
return;
auto It = Lookups.find(DC);
assert(It != Lookups.end() &&
"have external visible storage but no lookup tables");
DeclsMap Decls;
for (DeclID ID : It->second.Table.findAll()) {
NamedDecl *ND = cast<NamedDecl>(GetDecl(ID));
Decls[ND->getDeclName()].push_back(ND);
}
++NumVisibleDeclContextsRead;
for (DeclsMap::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) {
SetExternalVisibleDeclsForName(DC, I->first, I->second);
}
const_cast<DeclContext *>(DC)->setHasExternalVisibleStorage(false);
}
const serialization::reader::DeclContextLookupTable *
ASTReader::getLoadedLookupTables(DeclContext *Primary) const {
auto I = Lookups.find(Primary);
return I == Lookups.end() ? nullptr : &I->second;
}
/// Under non-PCH compilation the consumer receives the objc methods
/// before receiving the implementation, and codegen depends on this.
/// We simulate this by deserializing and passing to consumer the methods of the
/// implementation before passing the deserialized implementation decl.
static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD,
ASTConsumer *Consumer) {
assert(ImplD && Consumer);
for (auto *I : ImplD->methods())
Consumer->HandleInterestingDecl(DeclGroupRef(I));
Consumer->HandleInterestingDecl(DeclGroupRef(ImplD));
}
void ASTReader::PassInterestingDeclToConsumer(Decl *D) {
if (ObjCImplDecl *ImplD = dyn_cast<ObjCImplDecl>(D))
PassObjCImplDeclToConsumer(ImplD, Consumer);
else
Consumer->HandleInterestingDecl(DeclGroupRef(D));
}
void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) {
this->Consumer = Consumer;
if (Consumer)
PassInterestingDeclsToConsumer();
if (DeserializationListener)
DeserializationListener->ReaderInitialized(this);
}
void ASTReader::PrintStats() {
std::fprintf(stderr, "*** AST File Statistics:\n");
unsigned NumTypesLoaded
= TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
QualType());
unsigned NumDeclsLoaded
= DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
(Decl *)nullptr);
unsigned NumIdentifiersLoaded
= IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
IdentifiersLoaded.end(),
(IdentifierInfo *)nullptr);
unsigned NumMacrosLoaded
= MacrosLoaded.size() - std::count(MacrosLoaded.begin(),
MacrosLoaded.end(),
(MacroInfo *)nullptr);
unsigned NumSelectorsLoaded
= SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
SelectorsLoaded.end(),
Selector());
if (unsigned TotalNumSLocEntries = getTotalNumSLocs())
std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n",
NumSLocEntriesRead, TotalNumSLocEntries,
((float)NumSLocEntriesRead/TotalNumSLocEntries * 100));
if (!TypesLoaded.empty())
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypesLoaded.size(),
((float)NumTypesLoaded/TypesLoaded.size() * 100));
if (!DeclsLoaded.empty())
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
if (!IdentifiersLoaded.empty())
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
if (!MacrosLoaded.empty())
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosLoaded, (unsigned)MacrosLoaded.size(),
((float)NumMacrosLoaded/MacrosLoaded.size() * 100));
if (!SelectorsLoaded.empty())
std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(),
((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100));
if (TotalNumStatements)
std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
NumStatementsRead, TotalNumStatements,
((float)NumStatementsRead/TotalNumStatements * 100));
if (TotalNumMacros)
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosRead, TotalNumMacros,
((float)NumMacrosRead/TotalNumMacros * 100));
if (TotalLexicalDeclContexts)
std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
* 100));
if (TotalVisibleDeclContexts)
std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
* 100));
if (TotalNumMethodPoolEntries)
std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
NumMethodPoolEntriesRead, TotalNumMethodPoolEntries,
((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries
* 100));
if (NumMethodPoolLookups)
std::fprintf(stderr, " %u/%u method pool lookups succeeded (%f%%)\n",
NumMethodPoolHits, NumMethodPoolLookups,
((float)NumMethodPoolHits/NumMethodPoolLookups * 100.0));
if (NumMethodPoolTableLookups)
std::fprintf(stderr, " %u/%u method pool table lookups succeeded (%f%%)\n",
NumMethodPoolTableHits, NumMethodPoolTableLookups,
((float)NumMethodPoolTableHits/NumMethodPoolTableLookups
* 100.0));
if (NumIdentifierLookupHits)
std::fprintf(stderr,
" %u / %u identifier table lookups succeeded (%f%%)\n",
NumIdentifierLookupHits, NumIdentifierLookups,
(double)NumIdentifierLookupHits*100.0/NumIdentifierLookups);
if (GlobalIndex) {
std::fprintf(stderr, "\n");
GlobalIndex->printStats();
}
std::fprintf(stderr, "\n");
dump();
std::fprintf(stderr, "\n");
}
template<typename Key, typename ModuleFile, unsigned InitialCapacity>
LLVM_DUMP_METHOD static void
dumpModuleIDMap(StringRef Name,
const ContinuousRangeMap<Key, ModuleFile *,
InitialCapacity> &Map) {
if (Map.begin() == Map.end())
return;
using MapType = ContinuousRangeMap<Key, ModuleFile *, InitialCapacity>;
llvm::errs() << Name << ":\n";
for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
I != IEnd; ++I) {
llvm::errs() << " " << I->first << " -> " << I->second->FileName
<< "\n";
}
}
LLVM_DUMP_METHOD void ASTReader::dump() {
llvm::errs() << "*** PCH/ModuleFile Remappings:\n";
dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap);
dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap);
dumpModuleIDMap("Global type map", GlobalTypeMap);
dumpModuleIDMap("Global declaration map", GlobalDeclMap);
dumpModuleIDMap("Global identifier map", GlobalIdentifierMap);
dumpModuleIDMap("Global macro map", GlobalMacroMap);
dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap);
dumpModuleIDMap("Global selector map", GlobalSelectorMap);
dumpModuleIDMap("Global preprocessed entity map",
GlobalPreprocessedEntityMap);
llvm::errs() << "\n*** PCH/Modules Loaded:";
for (ModuleFile &M : ModuleMgr)
M.dump();
}
/// Return the amount of memory used by memory buffers, breaking down
/// by heap-backed versus mmap'ed memory.
void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const {
for (ModuleFile &I : ModuleMgr) {
if (llvm::MemoryBuffer *buf = I.Buffer) {
size_t bytes = buf->getBufferSize();
switch (buf->getBufferKind()) {
case llvm::MemoryBuffer::MemoryBuffer_Malloc:
sizes.malloc_bytes += bytes;
break;
case llvm::MemoryBuffer::MemoryBuffer_MMap:
sizes.mmap_bytes += bytes;
break;
}
}
}
}
void ASTReader::InitializeSema(Sema &S) {
SemaObj = &S;
S.addExternalSource(this);
// Makes sure any declarations that were deserialized "too early"
// still get added to the identifier's declaration chains.
for (uint64_t ID : PreloadedDeclIDs) {
NamedDecl *D = cast<NamedDecl>(GetDecl(ID));
pushExternalDeclIntoScope(D, D->getDeclName());
}
PreloadedDeclIDs.clear();
// FIXME: What happens if these are changed by a module import?
if (!FPPragmaOptions.empty()) {
assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS");
SemaObj->FPFeatures = FPOptions(FPPragmaOptions[0]);
}
SemaObj->OpenCLFeatures.copy(OpenCLExtensions);
SemaObj->OpenCLTypeExtMap = OpenCLTypeExtMap;
SemaObj->OpenCLDeclExtMap = OpenCLDeclExtMap;
UpdateSema();
}
void ASTReader::UpdateSema() {
assert(SemaObj && "no Sema to update");
// Load the offsets of the declarations that Sema references.
// They will be lazily deserialized when needed.
if (!SemaDeclRefs.empty()) {
assert(SemaDeclRefs.size() % 3 == 0);
for (unsigned I = 0; I != SemaDeclRefs.size(); I += 3) {
if (!SemaObj->StdNamespace)
SemaObj->StdNamespace = SemaDeclRefs[I];
if (!SemaObj->StdBadAlloc)
SemaObj->StdBadAlloc = SemaDeclRefs[I+1];
if (!SemaObj->StdAlignValT)
SemaObj->StdAlignValT = SemaDeclRefs[I+2];
}
SemaDeclRefs.clear();
}
// Update the state of pragmas. Use the same API as if we had encountered the
// pragma in the source.
if(OptimizeOffPragmaLocation.isValid())
SemaObj->ActOnPragmaOptimize(/* IsOn = */ false, OptimizeOffPragmaLocation);
if (PragmaMSStructState != -1)
SemaObj->ActOnPragmaMSStruct((PragmaMSStructKind)PragmaMSStructState);
if (PointersToMembersPragmaLocation.isValid()) {
SemaObj->ActOnPragmaMSPointersToMembers(
(LangOptions::PragmaMSPointersToMembersKind)
PragmaMSPointersToMembersState,
PointersToMembersPragmaLocation);
}
SemaObj->ForceCUDAHostDeviceDepth = ForceCUDAHostDeviceDepth;
if (PragmaPackCurrentValue) {
// The bottom of the stack might have a default value. It must be adjusted
// to the current value to ensure that the packing state is preserved after
// popping entries that were included/imported from a PCH/module.
bool DropFirst = false;
if (!PragmaPackStack.empty() &&
PragmaPackStack.front().Location.isInvalid()) {
assert(PragmaPackStack.front().Value == SemaObj->PackStack.DefaultValue &&
"Expected a default alignment value");
SemaObj->PackStack.Stack.emplace_back(
PragmaPackStack.front().SlotLabel, SemaObj->PackStack.CurrentValue,
SemaObj->PackStack.CurrentPragmaLocation,
PragmaPackStack.front().PushLocation);
DropFirst = true;
}
for (const auto &Entry :
llvm::makeArrayRef(PragmaPackStack).drop_front(DropFirst ? 1 : 0))
SemaObj->PackStack.Stack.emplace_back(Entry.SlotLabel, Entry.Value,
Entry.Location, Entry.PushLocation);
if (PragmaPackCurrentLocation.isInvalid()) {
assert(*PragmaPackCurrentValue == SemaObj->PackStack.DefaultValue &&
"Expected a default alignment value");
// Keep the current values.
} else {
SemaObj->PackStack.CurrentValue = *PragmaPackCurrentValue;
SemaObj->PackStack.CurrentPragmaLocation = PragmaPackCurrentLocation;
}
}
}
IdentifierInfo *ASTReader::get(StringRef Name) {
// Note that we are loading an identifier.
Deserializing AnIdentifier(this);
IdentifierLookupVisitor Visitor(Name, /*PriorGeneration=*/0,
NumIdentifierLookups,
NumIdentifierLookupHits);
// We don't need to do identifier table lookups in C++ modules (we preload
// all interesting declarations, and don't need to use the scope for name
// lookups). Perform the lookup in PCH files, though, since we don't build
// a complete initial identifier table if we're carrying on from a PCH.
if (PP.getLangOpts().CPlusPlus) {
for (auto F : ModuleMgr.pch_modules())
if (Visitor(*F))
break;
} else {
// If there is a global index, look there first to determine which modules
// provably do not have any results for this identifier.
GlobalModuleIndex::HitSet Hits;
GlobalModuleIndex::HitSet *HitsPtr = nullptr;
if (!loadGlobalIndex()) {
if (GlobalIndex->lookupIdentifier(Name, Hits)) {
HitsPtr = &Hits;
}
}
ModuleMgr.visit(Visitor, HitsPtr);
}
IdentifierInfo *II = Visitor.getIdentifierInfo();
markIdentifierUpToDate(II);
return II;
}
namespace clang {
/// An identifier-lookup iterator that enumerates all of the
/// identifiers stored within a set of AST files.
class ASTIdentifierIterator : public IdentifierIterator {
/// The AST reader whose identifiers are being enumerated.
const ASTReader &Reader;
/// The current index into the chain of AST files stored in
/// the AST reader.
unsigned Index;
/// The current position within the identifier lookup table
/// of the current AST file.
ASTIdentifierLookupTable::key_iterator Current;
/// The end position within the identifier lookup table of
/// the current AST file.
ASTIdentifierLookupTable::key_iterator End;
/// Whether to skip any modules in the ASTReader.
bool SkipModules;
public:
explicit ASTIdentifierIterator(const ASTReader &Reader,
bool SkipModules = false);
StringRef Next() override;
};
} // namespace clang
ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader,
bool SkipModules)
: Reader(Reader), Index(Reader.ModuleMgr.size()), SkipModules(SkipModules) {
}
StringRef ASTIdentifierIterator::Next() {
while (Current == End) {
// If we have exhausted all of our AST files, we're done.
if (Index == 0)
return StringRef();
--Index;
ModuleFile &F = Reader.ModuleMgr[Index];
if (SkipModules && F.isModule())
continue;
ASTIdentifierLookupTable *IdTable =
(ASTIdentifierLookupTable *)F.IdentifierLookupTable;
Current = IdTable->key_begin();
End = IdTable->key_end();
}
// We have any identifiers remaining in the current AST file; return
// the next one.
StringRef Result = *Current;
++Current;
return Result;
}
namespace {
/// A utility for appending two IdentifierIterators.
class ChainedIdentifierIterator : public IdentifierIterator {
std::unique_ptr<IdentifierIterator> Current;
std::unique_ptr<IdentifierIterator> Queued;
public:
ChainedIdentifierIterator(std::unique_ptr<IdentifierIterator> First,
std::unique_ptr<IdentifierIterator> Second)
: Current(std::move(First)), Queued(std::move(Second)) {}
StringRef Next() override {
if (!Current)
return StringRef();
StringRef result = Current->Next();
if (!result.empty())
return result;
// Try the queued iterator, which may itself be empty.
Current.reset();
std::swap(Current, Queued);
return Next();
}
};
} // namespace
IdentifierIterator *ASTReader::getIdentifiers() {
if (!loadGlobalIndex()) {
std::unique_ptr<IdentifierIterator> ReaderIter(
new ASTIdentifierIterator(*this, /*SkipModules=*/true));
std::unique_ptr<IdentifierIterator> ModulesIter(
GlobalIndex->createIdentifierIterator());
return new ChainedIdentifierIterator(std::move(ReaderIter),
std::move(ModulesIter));
}
return new ASTIdentifierIterator(*this);
}
namespace clang {
namespace serialization {
class ReadMethodPoolVisitor {
ASTReader &Reader;
Selector Sel;
unsigned PriorGeneration;
unsigned InstanceBits = 0;
unsigned FactoryBits = 0;
bool InstanceHasMoreThanOneDecl = false;
bool FactoryHasMoreThanOneDecl = false;
SmallVector<ObjCMethodDecl *, 4> InstanceMethods;
SmallVector<ObjCMethodDecl *, 4> FactoryMethods;
public:
ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel,
unsigned PriorGeneration)
: Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration) {}
bool operator()(ModuleFile &M) {
if (!M.SelectorLookupTable)
return false;
// If we've already searched this module file, skip it now.
if (M.Generation <= PriorGeneration)
return true;
++Reader.NumMethodPoolTableLookups;
ASTSelectorLookupTable *PoolTable
= (ASTSelectorLookupTable*)M.SelectorLookupTable;
ASTSelectorLookupTable::iterator Pos = PoolTable->find(Sel);
if (Pos == PoolTable->end())
return false;
++Reader.NumMethodPoolTableHits;
++Reader.NumSelectorsRead;
// FIXME: Not quite happy with the statistics here. We probably should
// disable this tracking when called via LoadSelector.
// Also, should entries without methods count as misses?
++Reader.NumMethodPoolEntriesRead;
ASTSelectorLookupTrait::data_type Data = *Pos;
if (Reader.DeserializationListener)
Reader.DeserializationListener->SelectorRead(Data.ID, Sel);
InstanceMethods.append(Data.Instance.begin(), Data.Instance.end());
FactoryMethods.append(Data.Factory.begin(), Data.Factory.end());
InstanceBits = Data.InstanceBits;
FactoryBits = Data.FactoryBits;
InstanceHasMoreThanOneDecl = Data.InstanceHasMoreThanOneDecl;
FactoryHasMoreThanOneDecl = Data.FactoryHasMoreThanOneDecl;
return true;
}
/// Retrieve the instance methods found by this visitor.
ArrayRef<ObjCMethodDecl *> getInstanceMethods() const {
return InstanceMethods;
}
/// Retrieve the instance methods found by this visitor.
ArrayRef<ObjCMethodDecl *> getFactoryMethods() const {
return FactoryMethods;
}
unsigned getInstanceBits() const { return InstanceBits; }
unsigned getFactoryBits() const { return FactoryBits; }
bool instanceHasMoreThanOneDecl() const {
return InstanceHasMoreThanOneDecl;
}
bool factoryHasMoreThanOneDecl() const { return FactoryHasMoreThanOneDecl; }
};
} // namespace serialization
} // namespace clang
/// Add the given set of methods to the method list.
static void addMethodsToPool(Sema &S, ArrayRef<ObjCMethodDecl *> Methods,
ObjCMethodList &List) {
for (unsigned I = 0, N = Methods.size(); I != N; ++I) {
S.addMethodToGlobalList(&List, Methods[I]);
}
}
void ASTReader::ReadMethodPool(Selector Sel) {
// Get the selector generation and update it to the current generation.
unsigned &Generation = SelectorGeneration[Sel];
unsigned PriorGeneration = Generation;
Generation = getGeneration();
SelectorOutOfDate[Sel] = false;
// Search for methods defined with this selector.
++NumMethodPoolLookups;
ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration);
ModuleMgr.visit(Visitor);
if (Visitor.getInstanceMethods().empty() &&
Visitor.getFactoryMethods().empty())
return;
++NumMethodPoolHits;
if (!getSema())
return;
Sema &S = *getSema();
Sema::GlobalMethodPool::iterator Pos
= S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first;
Pos->second.first.setBits(Visitor.getInstanceBits());
Pos->second.first.setHasMoreThanOneDecl(Visitor.instanceHasMoreThanOneDecl());
Pos->second.second.setBits(Visitor.getFactoryBits());
Pos->second.second.setHasMoreThanOneDecl(Visitor.factoryHasMoreThanOneDecl());
// Add methods to the global pool *after* setting hasMoreThanOneDecl, since
// when building a module we keep every method individually and may need to
// update hasMoreThanOneDecl as we add the methods.
addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first);
addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second);
}
void ASTReader::updateOutOfDateSelector(Selector Sel) {
if (SelectorOutOfDate[Sel])
ReadMethodPool(Sel);
}
void ASTReader::ReadKnownNamespaces(
SmallVectorImpl<NamespaceDecl *> &Namespaces) {
Namespaces.clear();
for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) {
if (NamespaceDecl *Namespace
= dyn_cast_or_null<NamespaceDecl>(GetDecl(KnownNamespaces[I])))
Namespaces.push_back(Namespace);
}
}
void ASTReader::ReadUndefinedButUsed(
llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {
for (unsigned Idx = 0, N = UndefinedButUsed.size(); Idx != N;) {
NamedDecl *D = cast<NamedDecl>(GetDecl(UndefinedButUsed[Idx++]));
SourceLocation Loc =
SourceLocation::getFromRawEncoding(UndefinedButUsed[Idx++]);
Undefined.insert(std::make_pair(D, Loc));
}
}
void ASTReader::ReadMismatchingDeleteExpressions(llvm::MapVector<
FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &
Exprs) {
for (unsigned Idx = 0, N = DelayedDeleteExprs.size(); Idx != N;) {
FieldDecl *FD = cast<FieldDecl>(GetDecl(DelayedDeleteExprs[Idx++]));
uint64_t Count = DelayedDeleteExprs[Idx++];
for (uint64_t C = 0; C < Count; ++C) {
SourceLocation DeleteLoc =
SourceLocation::getFromRawEncoding(DelayedDeleteExprs[Idx++]);
const bool IsArrayForm = DelayedDeleteExprs[Idx++];
Exprs[FD].push_back(std::make_pair(DeleteLoc, IsArrayForm));
}
}
}
void ASTReader::ReadTentativeDefinitions(
SmallVectorImpl<VarDecl *> &TentativeDefs) {
for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
VarDecl *Var = dyn_cast_or_null<VarDecl>(GetDecl(TentativeDefinitions[I]));
if (Var)
TentativeDefs.push_back(Var);
}
TentativeDefinitions.clear();
}
void ASTReader::ReadUnusedFileScopedDecls(
SmallVectorImpl<const DeclaratorDecl *> &Decls) {
for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) {
DeclaratorDecl *D
= dyn_cast_or_null<DeclaratorDecl>(GetDecl(UnusedFileScopedDecls[I]));
if (D)
Decls.push_back(D);
}
UnusedFileScopedDecls.clear();
}
void ASTReader::ReadDelegatingConstructors(
SmallVectorImpl<CXXConstructorDecl *> &Decls) {
for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) {
CXXConstructorDecl *D
= dyn_cast_or_null<CXXConstructorDecl>(GetDecl(DelegatingCtorDecls[I]));
if (D)
Decls.push_back(D);
}
DelegatingCtorDecls.clear();
}
void ASTReader::ReadExtVectorDecls(SmallVectorImpl<TypedefNameDecl *> &Decls) {
for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) {
TypedefNameDecl *D
= dyn_cast_or_null<TypedefNameDecl>(GetDecl(ExtVectorDecls[I]));
if (D)
Decls.push_back(D);
}
ExtVectorDecls.clear();
}
void ASTReader::ReadUnusedLocalTypedefNameCandidates(
llvm::SmallSetVector<const TypedefNameDecl *, 4> &Decls) {
for (unsigned I = 0, N = UnusedLocalTypedefNameCandidates.size(); I != N;
++I) {
TypedefNameDecl *D = dyn_cast_or_null<TypedefNameDecl>(
GetDecl(UnusedLocalTypedefNameCandidates[I]));
if (D)
Decls.insert(D);
}
UnusedLocalTypedefNameCandidates.clear();
}
void ASTReader::ReadReferencedSelectors(
SmallVectorImpl<std::pair<Selector, SourceLocation>> &Sels) {
if (ReferencedSelectorsData.empty())
return;
// If there are @selector references added them to its pool. This is for
// implementation of -Wselector.
unsigned int DataSize = ReferencedSelectorsData.size()-1;
unsigned I = 0;
while (I < DataSize) {
Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]);
SourceLocation SelLoc
= SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]);
Sels.push_back(std::make_pair(Sel, SelLoc));
}
ReferencedSelectorsData.clear();
}
void ASTReader::ReadWeakUndeclaredIdentifiers(
SmallVectorImpl<std::pair<IdentifierInfo *, WeakInfo>> &WeakIDs) {
if (WeakUndeclaredIdentifiers.empty())
return;
for (unsigned I = 0, N = WeakUndeclaredIdentifiers.size(); I < N; /*none*/) {
IdentifierInfo *WeakId
= DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
IdentifierInfo *AliasId
= DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]);
SourceLocation Loc
= SourceLocation::getFromRawEncoding(WeakUndeclaredIdentifiers[I++]);
bool Used = WeakUndeclaredIdentifiers[I++];
WeakInfo WI(AliasId, Loc);
WI.setUsed(Used);
WeakIDs.push_back(std::make_pair(WeakId, WI));
}
WeakUndeclaredIdentifiers.clear();
}
void ASTReader::ReadUsedVTables(SmallVectorImpl<ExternalVTableUse> &VTables) {
for (unsigned Idx = 0, N = VTableUses.size(); Idx < N; /* In loop */) {
ExternalVTableUse VT;
VT.Record = dyn_cast_or_null<CXXRecordDecl>(GetDecl(VTableUses[Idx++]));
VT.Location = SourceLocation::getFromRawEncoding(VTableUses[Idx++]);
VT.DefinitionRequired = VTableUses[Idx++];
VTables.push_back(VT);
}
VTableUses.clear();
}
void ASTReader::ReadPendingInstantiations(
SmallVectorImpl<std::pair<ValueDecl *, SourceLocation>> &Pending) {
for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) {
ValueDecl *D = cast<ValueDecl>(GetDecl(PendingInstantiations[Idx++]));
SourceLocation Loc
= SourceLocation::getFromRawEncoding(PendingInstantiations[Idx++]);
Pending.push_back(std::make_pair(D, Loc));
}
PendingInstantiations.clear();
}
void ASTReader::ReadLateParsedTemplates(
llvm::MapVector<const FunctionDecl *, std::unique_ptr<LateParsedTemplate>>
&LPTMap) {
for (unsigned Idx = 0, N = LateParsedTemplates.size(); Idx < N;
/* In loop */) {
FunctionDecl *FD = cast<FunctionDecl>(GetDecl(LateParsedTemplates[Idx++]));
auto LT = llvm::make_unique<LateParsedTemplate>();
LT->D = GetDecl(LateParsedTemplates[Idx++]);
ModuleFile *F = getOwningModuleFile(LT->D);
assert(F && "No module");
unsigned TokN = LateParsedTemplates[Idx++];
LT->Toks.reserve(TokN);
for (unsigned T = 0; T < TokN; ++T)
LT->Toks.push_back(ReadToken(*F, LateParsedTemplates, Idx));
LPTMap.insert(std::make_pair(FD, std::move(LT)));
}
LateParsedTemplates.clear();
}
void ASTReader::LoadSelector(Selector Sel) {
// It would be complicated to avoid reading the methods anyway. So don't.
ReadMethodPool(Sel);
}
void ASTReader::SetIdentifierInfo(IdentifierID ID, IdentifierInfo *II) {
assert(ID && "Non-zero identifier ID required");
assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range");
IdentifiersLoaded[ID - 1] = II;
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID, II);
}
/// Set the globally-visible declarations associated with the given
/// identifier.
///
/// If the AST reader is currently in a state where the given declaration IDs
/// cannot safely be resolved, they are queued until it is safe to resolve
/// them.
///
/// \param II an IdentifierInfo that refers to one or more globally-visible
/// declarations.
///
/// \param DeclIDs the set of declaration IDs with the name @p II that are
/// visible at global scope.
///
/// \param Decls if non-null, this vector will be populated with the set of
/// deserialized declarations. These declarations will not be pushed into
/// scope.
void
ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II,
const SmallVectorImpl<uint32_t> &DeclIDs,
SmallVectorImpl<Decl *> *Decls) {
if (NumCurrentElementsDeserializing && !Decls) {
PendingIdentifierInfos[II].append(DeclIDs.begin(), DeclIDs.end());
return;
}
for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) {
if (!SemaObj) {
// Queue this declaration so that it will be added to the
// translation unit scope and identifier's declaration chain
// once a Sema object is known.
PreloadedDeclIDs.push_back(DeclIDs[I]);
continue;
}
NamedDecl *D = cast<NamedDecl>(GetDecl(DeclIDs[I]));
// If we're simply supposed to record the declarations, do so now.
if (Decls) {
Decls->push_back(D);
continue;
}
// Introduce this declaration into the translation-unit scope
// and add it to the declaration chain for this identifier, so
// that (unqualified) name lookup will find it.
pushExternalDeclIntoScope(D, II);
}
}
IdentifierInfo *ASTReader::DecodeIdentifierInfo(IdentifierID ID) {
if (ID == 0)
return nullptr;
if (IdentifiersLoaded.empty()) {
Error("no identifier table in AST file");
return nullptr;
}
ID -= 1;
if (!IdentifiersLoaded[ID]) {
GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1);
assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map");
ModuleFile *M = I->second;
unsigned Index = ID - M->BaseIdentifierID;
const char *Str = M->IdentifierTableData + M->IdentifierOffsets[Index];
// All of the strings in the AST file are preceded by a 16-bit length.
// Extract that 16-bit length to avoid having to execute strlen().
// NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as
// unsigned integers. This is important to avoid integer overflow when
// we cast them to 'unsigned'.
const unsigned char *StrLenPtr = (const unsigned char*) Str - 2;
unsigned StrLen = (((unsigned) StrLenPtr[0])
| (((unsigned) StrLenPtr[1]) << 8)) - 1;
auto &II = PP.getIdentifierTable().get(StringRef(Str, StrLen));
IdentifiersLoaded[ID] = &II;
markIdentifierFromAST(*this, II);
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID + 1, &II);
}
return IdentifiersLoaded[ID];
}
IdentifierInfo *ASTReader::getLocalIdentifier(ModuleFile &M, unsigned LocalID) {
return DecodeIdentifierInfo(getGlobalIdentifierID(M, LocalID));
}
IdentifierID ASTReader::getGlobalIdentifierID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_IDENT_IDS)
return LocalID;
if (!M.ModuleOffsetMap.empty())
ReadModuleOffsetMap(M);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.IdentifierRemap.find(LocalID - NUM_PREDEF_IDENT_IDS);
assert(I != M.IdentifierRemap.end()
&& "Invalid index into identifier index remap");
return LocalID + I->second;
}
MacroInfo *ASTReader::getMacro(MacroID ID) {
if (ID == 0)
return nullptr;
if (MacrosLoaded.empty()) {
Error("no macro table in AST file");
return nullptr;
}
ID -= NUM_PREDEF_MACRO_IDS;
if (!MacrosLoaded[ID]) {
GlobalMacroMapType::iterator I
= GlobalMacroMap.find(ID + NUM_PREDEF_MACRO_IDS);
assert(I != GlobalMacroMap.end() && "Corrupted global macro map");
ModuleFile *M = I->second;
unsigned Index = ID - M->BaseMacroID;
MacrosLoaded[ID] = ReadMacroRecord(*M, M->MacroOffsets[Index]);
if (DeserializationListener)
DeserializationListener->MacroRead(ID + NUM_PREDEF_MACRO_IDS,
MacrosLoaded[ID]);
}
return MacrosLoaded[ID];
}
MacroID ASTReader::getGlobalMacroID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_MACRO_IDS)
return LocalID;
if (!M.ModuleOffsetMap.empty())
ReadModuleOffsetMap(M);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.MacroRemap.find(LocalID - NUM_PREDEF_MACRO_IDS);
assert(I != M.MacroRemap.end() && "Invalid index into macro index remap");
return LocalID + I->second;
}
serialization::SubmoduleID
ASTReader::getGlobalSubmoduleID(ModuleFile &M, unsigned LocalID) {
if (LocalID < NUM_PREDEF_SUBMODULE_IDS)
return LocalID;
if (!M.ModuleOffsetMap.empty())
ReadModuleOffsetMap(M);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.SubmoduleRemap.find(LocalID - NUM_PREDEF_SUBMODULE_IDS);
assert(I != M.SubmoduleRemap.end()
&& "Invalid index into submodule index remap");
return LocalID + I->second;
}
Module *ASTReader::getSubmodule(SubmoduleID GlobalID) {
if (GlobalID < NUM_PREDEF_SUBMODULE_IDS) {
assert(GlobalID == 0 && "Unhandled global submodule ID");
return nullptr;
}
if (GlobalID > SubmodulesLoaded.size()) {
Error("submodule ID out of range in AST file");
return nullptr;
}
return SubmodulesLoaded[GlobalID - NUM_PREDEF_SUBMODULE_IDS];
}
Module *ASTReader::getModule(unsigned ID) {
return getSubmodule(ID);
}
ModuleFile *ASTReader::getLocalModuleFile(ModuleFile &F, unsigned ID) {
if (ID & 1) {
// It's a module, look it up by submodule ID.
auto I = GlobalSubmoduleMap.find(getGlobalSubmoduleID(F, ID >> 1));
return I == GlobalSubmoduleMap.end() ? nullptr : I->second;
} else {
// It's a prefix (preamble, PCH, ...). Look it up by index.
unsigned IndexFromEnd = ID >> 1;
assert(IndexFromEnd && "got reference to unknown module file");
return getModuleManager().pch_modules().end()[-IndexFromEnd];
}
}
unsigned ASTReader::getModuleFileID(ModuleFile *F) {
if (!F)
return 1;
// For a file representing a module, use the submodule ID of the top-level
// module as the file ID. For any other kind of file, the number of such
// files loaded beforehand will be the same on reload.
// FIXME: Is this true even if we have an explicit module file and a PCH?
if (F->isModule())
return ((F->BaseSubmoduleID + NUM_PREDEF_SUBMODULE_IDS) << 1) | 1;
auto PCHModules = getModuleManager().pch_modules();
auto I = std::find(PCHModules.begin(), PCHModules.end(), F);
assert(I != PCHModules.end() && "emitting reference to unknown file");
return (I - PCHModules.end()) << 1;
}
llvm::Optional<ExternalASTSource::ASTSourceDescriptor>
ASTReader::getSourceDescriptor(unsigned ID) {
if (const Module *M = getSubmodule(ID))
return ExternalASTSource::ASTSourceDescriptor(*M);
// If there is only a single PCH, return it instead.
// Chained PCH are not supported.
const auto &PCHChain = ModuleMgr.pch_modules();
if (std::distance(std::begin(PCHChain), std::end(PCHChain))) {
ModuleFile &MF = ModuleMgr.getPrimaryModule();
StringRef ModuleName = llvm::sys::path::filename(MF.OriginalSourceFileName);
StringRef FileName = llvm::sys::path::filename(MF.FileName);
return ASTReader::ASTSourceDescriptor(ModuleName, MF.OriginalDir, FileName,
MF.Signature);
}
return None;
}
ExternalASTSource::ExtKind ASTReader::hasExternalDefinitions(const Decl *FD) {
auto I = DefinitionSource.find(FD);
if (I == DefinitionSource.end())
return EK_ReplyHazy;
return I->second ? EK_Never : EK_Always;
}
Selector ASTReader::getLocalSelector(ModuleFile &M, unsigned LocalID) {
return DecodeSelector(getGlobalSelectorID(M, LocalID));
}
Selector ASTReader::DecodeSelector(serialization::SelectorID ID) {
if (ID == 0)
return Selector();
if (ID > SelectorsLoaded.size()) {
Error("selector ID out of range in AST file");
return Selector();
}
if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == nullptr) {
// Load this selector from the selector table.
GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID);
assert(I != GlobalSelectorMap.end() && "Corrupted global selector map");
ModuleFile &M = *I->second;
ASTSelectorLookupTrait Trait(*this, M);
unsigned Idx = ID - M.BaseSelectorID - NUM_PREDEF_SELECTOR_IDS;
SelectorsLoaded[ID - 1] =
Trait.ReadKey(M.SelectorLookupTableData + M.SelectorOffsets[Idx], 0);
if (DeserializationListener)
DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]);
}
return SelectorsLoaded[ID - 1];
}
Selector ASTReader::GetExternalSelector(serialization::SelectorID ID) {
return DecodeSelector(ID);
}
uint32_t ASTReader::GetNumExternalSelectors() {
// ID 0 (the null selector) is considered an external selector.
return getTotalNumSelectors() + 1;
}
serialization::SelectorID
ASTReader::getGlobalSelectorID(ModuleFile &M, unsigned LocalID) const {
if (LocalID < NUM_PREDEF_SELECTOR_IDS)
return LocalID;
if (!M.ModuleOffsetMap.empty())
ReadModuleOffsetMap(M);
ContinuousRangeMap<uint32_t, int, 2>::iterator I
= M.SelectorRemap.find(LocalID - NUM_PREDEF_SELECTOR_IDS);
assert(I != M.SelectorRemap.end()
&& "Invalid index into selector index remap");
return LocalID + I->second;
}
DeclarationName
ASTReader::ReadDeclarationName(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
ASTContext &Context = getContext();
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(F, Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(ReadSelector(F, Record, Idx));
case DeclarationName::CXXConstructorName:
return Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXDestructorName:
return Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXDeductionGuideName:
return Context.DeclarationNames.getCXXDeductionGuideName(
ReadDeclAs<TemplateDecl>(F, Record, Idx));
case DeclarationName::CXXConversionFunctionName:
return Context.DeclarationNames.getCXXConversionFunctionName(
Context.getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXOperatorName:
return Context.DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXLiteralOperatorName:
return Context.DeclarationNames.getCXXLiteralOperatorName(
GetIdentifierInfo(F, Record, Idx));
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid NameKind!");
}
void ASTReader::ReadDeclarationNameLoc(ModuleFile &F,
DeclarationNameLoc &DNLoc,
DeclarationName Name,
const RecordData &Record, unsigned &Idx) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx);
break;
case DeclarationName::CXXOperatorName:
DNLoc.CXXOperatorName.BeginOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
DNLoc.CXXOperatorName.EndOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::CXXLiteralOperatorName:
DNLoc.CXXLiteralOperatorName.OpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
case DeclarationName::CXXDeductionGuideName:
break;
}
}
void ASTReader::ReadDeclarationNameInfo(ModuleFile &F,
DeclarationNameInfo &NameInfo,
const RecordData &Record, unsigned &Idx) {
NameInfo.setName(ReadDeclarationName(F, Record, Idx));
NameInfo.setLoc(ReadSourceLocation(F, Record, Idx));
DeclarationNameLoc DNLoc;
ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx);
NameInfo.setInfo(DNLoc);
}
void ASTReader::ReadQualifierInfo(ModuleFile &F, QualifierInfo &Info,
const RecordData &Record, unsigned &Idx) {
Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx);
unsigned NumTPLists = Record[Idx++];
Info.NumTemplParamLists = NumTPLists;
if (NumTPLists) {
Info.TemplParamLists =
new (getContext()) TemplateParameterList *[NumTPLists];
for (unsigned i = 0; i != NumTPLists; ++i)
Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx);
}
}
TemplateName
ASTReader::ReadTemplateName(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
ASTContext &Context = getContext();
TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++];
switch (Kind) {
case TemplateName::Template:
return TemplateName(ReadDeclAs<TemplateDecl>(F, Record, Idx));
case TemplateName::OverloadedTemplate: {
unsigned size = Record[Idx++];
UnresolvedSet<8> Decls;
while (size--)
Decls.addDecl(ReadDeclAs<NamedDecl>(F, Record, Idx));
return Context.getOverloadedTemplateName(Decls.begin(), Decls.end());
}
case TemplateName::QualifiedTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
bool hasTemplKeyword = Record[Idx++];
TemplateDecl *Template = ReadDeclAs<TemplateDecl>(F, Record, Idx);
return Context.getQualifiedTemplateName(NNS, hasTemplKeyword, Template);
}
case TemplateName::DependentTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
if (Record[Idx++]) // isIdentifier
return Context.getDependentTemplateName(NNS,
GetIdentifierInfo(F, Record,
Idx));
return Context.getDependentTemplateName(NNS,
(OverloadedOperatorKind)Record[Idx++]);
}
case TemplateName::SubstTemplateTemplateParm: {
TemplateTemplateParmDecl *param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!param) return TemplateName();
TemplateName replacement = ReadTemplateName(F, Record, Idx);
return Context.getSubstTemplateTemplateParm(param, replacement);
}
case TemplateName::SubstTemplateTemplateParmPack: {
TemplateTemplateParmDecl *Param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!Param)
return TemplateName();
TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx);
if (ArgPack.getKind() != TemplateArgument::Pack)
return TemplateName();
return Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
}
}
llvm_unreachable("Unhandled template name kind!");
}
TemplateArgument ASTReader::ReadTemplateArgument(ModuleFile &F,
const RecordData &Record,
unsigned &Idx,
bool Canonicalize) {
ASTContext &Context = getContext();
if (Canonicalize) {
// The caller wants a canonical template argument. Sometimes the AST only
// wants template arguments in canonical form (particularly as the template
// argument lists of template specializations) so ensure we preserve that
// canonical form across serialization.
TemplateArgument Arg = ReadTemplateArgument(F, Record, Idx, false);
return Context.getCanonicalTemplateArgument(Arg);
}
TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++];
switch (Kind) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type:
return TemplateArgument(readType(F, Record, Idx));
case TemplateArgument::Declaration: {
ValueDecl *D = ReadDeclAs<ValueDecl>(F, Record, Idx);
return TemplateArgument(D, readType(F, Record, Idx));
}
case TemplateArgument::NullPtr:
return TemplateArgument(readType(F, Record, Idx), /*isNullPtr*/true);
case TemplateArgument::Integral: {
llvm::APSInt Value = ReadAPSInt(Record, Idx);
QualType T = readType(F, Record, Idx);
return TemplateArgument(Context, Value, T);
}
case TemplateArgument::Template:
return TemplateArgument(ReadTemplateName(F, Record, Idx));
case TemplateArgument::TemplateExpansion: {
TemplateName Name = ReadTemplateName(F, Record, Idx);
Optional<unsigned> NumTemplateExpansions;
if (unsigned NumExpansions = Record[Idx++])
NumTemplateExpansions = NumExpansions - 1;
return TemplateArgument(Name, NumTemplateExpansions);
}
case TemplateArgument::Expression:
return TemplateArgument(ReadExpr(F));
case TemplateArgument::Pack: {
unsigned NumArgs = Record[Idx++];
TemplateArgument *Args = new (Context) TemplateArgument[NumArgs];
for (unsigned I = 0; I != NumArgs; ++I)
Args[I] = ReadTemplateArgument(F, Record, Idx);
return TemplateArgument(llvm::makeArrayRef(Args, NumArgs));
}
}
llvm_unreachable("Unhandled template argument kind!");
}
TemplateParameterList *
ASTReader::ReadTemplateParameterList(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<NamedDecl *, 16> Params;
Params.reserve(NumParams);
while (NumParams--)
Params.push_back(ReadDeclAs<NamedDecl>(F, Record, Idx));
// TODO: Concepts
TemplateParameterList *TemplateParams = TemplateParameterList::Create(
getContext(), TemplateLoc, LAngleLoc, Params, RAngleLoc, nullptr);
return TemplateParams;
}
void
ASTReader::
ReadTemplateArgumentList(SmallVectorImpl<TemplateArgument> &TemplArgs,
ModuleFile &F, const RecordData &Record,
unsigned &Idx, bool Canonicalize) {
unsigned NumTemplateArgs = Record[Idx++];
TemplArgs.reserve(NumTemplateArgs);
while (NumTemplateArgs--)
TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx, Canonicalize));
}
/// Read a UnresolvedSet structure.
void ASTReader::ReadUnresolvedSet(ModuleFile &F, LazyASTUnresolvedSet &Set,
const RecordData &Record, unsigned &Idx) {
unsigned NumDecls = Record[Idx++];
Set.reserve(getContext(), NumDecls);
while (NumDecls--) {
DeclID ID = ReadDeclID(F, Record, Idx);
AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
Set.addLazyDecl(getContext(), ID, AS);
}
}
CXXBaseSpecifier
ASTReader::ReadCXXBaseSpecifier(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
bool isVirtual = static_cast<bool>(Record[Idx++]);
bool isBaseOfClass = static_cast<bool>(Record[Idx++]);
AccessSpecifier AS = static_cast<AccessSpecifier>(Record[Idx++]);
bool inheritConstructors = static_cast<bool>(Record[Idx++]);
TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx);
CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo,
EllipsisLoc);
Result.setInheritConstructors(inheritConstructors);
return Result;
}
CXXCtorInitializer **
ASTReader::ReadCXXCtorInitializers(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
ASTContext &Context = getContext();
unsigned NumInitializers = Record[Idx++];
assert(NumInitializers && "wrote ctor initializers but have no inits");
auto **CtorInitializers = new (Context) CXXCtorInitializer*[NumInitializers];
for (unsigned i = 0; i != NumInitializers; ++i) {
TypeSourceInfo *TInfo = nullptr;
bool IsBaseVirtual = false;
FieldDecl *Member = nullptr;
IndirectFieldDecl *IndirectMember = nullptr;
CtorInitializerType Type = (CtorInitializerType)Record[Idx++];
switch (Type) {
case CTOR_INITIALIZER_BASE:
TInfo = GetTypeSourceInfo(F, Record, Idx);
IsBaseVirtual = Record[Idx++];
break;
case CTOR_INITIALIZER_DELEGATING:
TInfo = GetTypeSourceInfo(F, Record, Idx);
break;
case CTOR_INITIALIZER_MEMBER:
Member = ReadDeclAs<FieldDecl>(F, Record, Idx);
break;
case CTOR_INITIALIZER_INDIRECT_MEMBER:
IndirectMember = ReadDeclAs<IndirectFieldDecl>(F, Record, Idx);
break;
}
SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx);
Expr *Init = ReadExpr(F);
SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx);
CXXCtorInitializer *BOMInit;
if (Type == CTOR_INITIALIZER_BASE)
BOMInit = new (Context)
CXXCtorInitializer(Context, TInfo, IsBaseVirtual, LParenLoc, Init,
RParenLoc, MemberOrEllipsisLoc);
else if (Type == CTOR_INITIALIZER_DELEGATING)
BOMInit = new (Context)
CXXCtorInitializer(Context, TInfo, LParenLoc, Init, RParenLoc);
else if (Member)
BOMInit = new (Context)
CXXCtorInitializer(Context, Member, MemberOrEllipsisLoc, LParenLoc,
Init, RParenLoc);
else
BOMInit = new (Context)
CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc,
LParenLoc, Init, RParenLoc);
if (/*IsWritten*/Record[Idx++]) {
unsigned SourceOrder = Record[Idx++];
BOMInit->setSourceOrder(SourceOrder);
}
CtorInitializers[i] = BOMInit;
}
return CtorInitializers;
}
NestedNameSpecifier *
ASTReader::ReadNestedNameSpecifier(ModuleFile &F,
const RecordData &Record, unsigned &Idx) {
ASTContext &Context = getContext();
unsigned N = Record[Idx++];
NestedNameSpecifier *NNS = nullptr, *Prev = nullptr;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, II);
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, NS);
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(Context, Prev, Alias);
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *T = readType(F, Record, Idx).getTypePtrOrNull();
if (!T)
return nullptr;
bool Template = Record[Idx++];
NNS = NestedNameSpecifier::Create(Context, Prev, Template, T);
break;
}
case NestedNameSpecifier::Global:
NNS = NestedNameSpecifier::GlobalSpecifier(Context);
// No associated value, and there can't be a prefix.
break;
case NestedNameSpecifier::Super: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::SuperSpecifier(Context, RD);
break;
}
}
Prev = NNS;
}
return NNS;
}
NestedNameSpecifierLoc
ASTReader::ReadNestedNameSpecifierLoc(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
ASTContext &Context = getContext();
unsigned N = Record[Idx++];
NestedNameSpecifierLocBuilder Builder;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, II, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, NS, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(Context, Alias, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
bool Template = Record[Idx++];
TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx);
if (!T)
return NestedNameSpecifierLoc();
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
// FIXME: 'template' keyword location not saved anywhere, so we fake it.
Builder.Extend(Context,
Template? T->getTypeLoc().getBeginLoc() : SourceLocation(),
T->getTypeLoc(), ColonColonLoc);
break;
}
case NestedNameSpecifier::Global: {
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
Builder.MakeGlobal(Context, ColonColonLoc);
break;
}
case NestedNameSpecifier::Super: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.MakeSuper(Context, RD, Range.getBegin(), Range.getEnd());
break;
}
}
}
return Builder.getWithLocInContext(Context);
}
SourceRange
ASTReader::ReadSourceRange(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
SourceLocation beg = ReadSourceLocation(F, Record, Idx);
SourceLocation end = ReadSourceLocation(F, Record, Idx);
return SourceRange(beg, end);
}
/// Read an integral value
llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// Read a signed integral value
llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// Read a floating-point value
llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record,
const llvm::fltSemantics &Sem,
unsigned &Idx) {
return llvm::APFloat(Sem, ReadAPInt(Record, Idx));
}
// Read a string
std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) {
unsigned Len = Record[Idx++];
std::string Result(Record.data() + Idx, Record.data() + Idx + Len);
Idx += Len;
return Result;
}
std::string ASTReader::ReadPath(ModuleFile &F, const RecordData &Record,
unsigned &Idx) {
std::string Filename = ReadString(Record, Idx);
ResolveImportedPath(F, Filename);
return Filename;
}
VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record,
unsigned &Idx) {
unsigned Major = Record[Idx++];
unsigned Minor = Record[Idx++];
unsigned Subminor = Record[Idx++];
if (Minor == 0)
return VersionTuple(Major);
if (Subminor == 0)
return VersionTuple(Major, Minor - 1);
return VersionTuple(Major, Minor - 1, Subminor - 1);
}
CXXTemporary *ASTReader::ReadCXXTemporary(ModuleFile &F,
const RecordData &Record,
unsigned &Idx) {
CXXDestructorDecl *Decl = ReadDeclAs<CXXDestructorDecl>(F, Record, Idx);
return CXXTemporary::Create(getContext(), Decl);
}
DiagnosticBuilder ASTReader::Diag(unsigned DiagID) const {
return Diag(CurrentImportLoc, DiagID);
}
DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) const {
return Diags.Report(Loc, DiagID);
}
/// Retrieve the identifier table associated with the
/// preprocessor.
IdentifierTable &ASTReader::getIdentifierTable() {
return PP.getIdentifierTable();
}
/// Record that the given ID maps to the given switch-case
/// statement.
void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
assert((*CurrSwitchCaseStmts)[ID] == nullptr &&
"Already have a SwitchCase with this ID");
(*CurrSwitchCaseStmts)[ID] = SC;
}
/// Retrieve the switch-case statement with the given ID.
SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) {
assert((*CurrSwitchCaseStmts)[ID] != nullptr && "No SwitchCase with this ID");
return (*CurrSwitchCaseStmts)[ID];
}
void ASTReader::ClearSwitchCaseIDs() {
CurrSwitchCaseStmts->clear();
}
void ASTReader::ReadComments() {
ASTContext &Context = getContext();
std::vector<RawComment *> Comments;
for (SmallVectorImpl<std::pair<BitstreamCursor,
serialization::ModuleFile *>>::iterator
I = CommentsCursors.begin(),
E = CommentsCursors.end();
I != E; ++I) {
Comments.clear();
BitstreamCursor &Cursor = I->first;
serialization::ModuleFile &F = *I->second;
SavedStreamPosition SavedPosition(Cursor);
RecordData Record;
while (true) {
llvm::BitstreamEntry Entry =
Cursor.advanceSkippingSubblocks(BitstreamCursor::AF_DontPopBlockAtEnd);
switch (Entry.Kind) {
case llvm::BitstreamEntry::SubBlock: // Handled for us already.
case llvm::BitstreamEntry::Error:
Error("malformed block record in AST file");
return;
case llvm::BitstreamEntry::EndBlock:
goto NextCursor;
case llvm::BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch ((CommentRecordTypes)Cursor.readRecord(Entry.ID, Record)) {
case COMMENTS_RAW_COMMENT: {
unsigned Idx = 0;
SourceRange SR = ReadSourceRange(F, Record, Idx);
RawComment::CommentKind Kind =
(RawComment::CommentKind) Record[Idx++];
bool IsTrailingComment = Record[Idx++];
bool IsAlmostTrailingComment = Record[Idx++];
Comments.push_back(new (Context) RawComment(
SR, Kind, IsTrailingComment, IsAlmostTrailingComment));
break;
}
}
}
NextCursor:
// De-serialized SourceLocations get negative FileIDs for other modules,
// potentially invalidating the original order. Sort it again.
llvm::sort(Comments.begin(), Comments.end(),
BeforeThanCompare<RawComment>(SourceMgr));
Context.Comments.addDeserializedComments(Comments);
}
}
void ASTReader::visitInputFiles(serialization::ModuleFile &MF,
bool IncludeSystem, bool Complain,
llvm::function_ref<void(const serialization::InputFile &IF,
bool isSystem)> Visitor) {
unsigned NumUserInputs = MF.NumUserInputFiles;
unsigned NumInputs = MF.InputFilesLoaded.size();
assert(NumUserInputs <= NumInputs);
unsigned N = IncludeSystem ? NumInputs : NumUserInputs;
for (unsigned I = 0; I < N; ++I) {
bool IsSystem = I >= NumUserInputs;
InputFile IF = getInputFile(MF, I+1, Complain);
Visitor(IF, IsSystem);
}
}
void ASTReader::visitTopLevelModuleMaps(
serialization::ModuleFile &MF,
llvm::function_ref<void(const FileEntry *FE)> Visitor) {
unsigned NumInputs = MF.InputFilesLoaded.size();
for (unsigned I = 0; I < NumInputs; ++I) {
InputFileInfo IFI = readInputFileInfo(MF, I + 1);
if (IFI.TopLevelModuleMap)
// FIXME: This unnecessarily re-reads the InputFileInfo.
if (auto *FE = getInputFile(MF, I + 1).getFile())
Visitor(FE);
}
}
std::string ASTReader::getOwningModuleNameForDiagnostic(const Decl *D) {
// If we know the owning module, use it.
if (Module *M = D->getImportedOwningModule())
return M->getFullModuleName();
// Otherwise, use the name of the top-level module the decl is within.
if (ModuleFile *M = getOwningModuleFile(D))
return M->ModuleName;
// Not from a module.
return {};
}
void ASTReader::finishPendingActions() {
while (!PendingIdentifierInfos.empty() ||
!PendingIncompleteDeclChains.empty() || !PendingDeclChains.empty() ||
!PendingMacroIDs.empty() || !PendingDeclContextInfos.empty() ||
!PendingUpdateRecords.empty()) {
// If any identifiers with corresponding top-level declarations have
// been loaded, load those declarations now.
using TopLevelDeclsMap =
llvm::DenseMap<IdentifierInfo *, SmallVector<Decl *, 2>>;
TopLevelDeclsMap TopLevelDecls;
while (!PendingIdentifierInfos.empty()) {
IdentifierInfo *II = PendingIdentifierInfos.back().first;
SmallVector<uint32_t, 4> DeclIDs =
std::move(PendingIdentifierInfos.back().second);
PendingIdentifierInfos.pop_back();
SetGloballyVisibleDecls(II, DeclIDs, &TopLevelDecls[II]);
}
// For each decl chain that we wanted to complete while deserializing, mark
// it as "still needs to be completed".
for (unsigned I = 0; I != PendingIncompleteDeclChains.size(); ++I) {
markIncompleteDeclChain(PendingIncompleteDeclChains[I]);
}
PendingIncompleteDeclChains.clear();
// Load pending declaration chains.
for (unsigned I = 0; I != PendingDeclChains.size(); ++I)
loadPendingDeclChain(PendingDeclChains[I].first, PendingDeclChains[I].second);
PendingDeclChains.clear();
// Make the most recent of the top-level declarations visible.
for (TopLevelDeclsMap::iterator TLD = TopLevelDecls.begin(),
TLDEnd = TopLevelDecls.end(); TLD != TLDEnd; ++TLD) {
IdentifierInfo *II = TLD->first;
for (unsigned I = 0, N = TLD->second.size(); I != N; ++I) {
pushExternalDeclIntoScope(cast<NamedDecl>(TLD->second[I]), II);
}
}
// Load any pending macro definitions.
for (unsigned I = 0; I != PendingMacroIDs.size(); ++I) {
IdentifierInfo *II = PendingMacroIDs.begin()[I].first;
SmallVector<PendingMacroInfo, 2> GlobalIDs;
GlobalIDs.swap(PendingMacroIDs.begin()[I].second);
// Initialize the macro history from chained-PCHs ahead of module imports.
for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
++IDIdx) {
const PendingMacroInfo &Info = GlobalIDs[IDIdx];
if (!Info.M->isModule())
resolvePendingMacro(II, Info);
}
// Handle module imports.
for (unsigned IDIdx = 0, NumIDs = GlobalIDs.size(); IDIdx != NumIDs;
++IDIdx) {
const PendingMacroInfo &Info = GlobalIDs[IDIdx];
if (Info.M->isModule())
resolvePendingMacro(II, Info);
}
}
PendingMacroIDs.clear();
// Wire up the DeclContexts for Decls that we delayed setting until
// recursive loading is completed.
while (!PendingDeclContextInfos.empty()) {
PendingDeclContextInfo Info = PendingDeclContextInfos.front();
PendingDeclContextInfos.pop_front();
DeclContext *SemaDC = cast<DeclContext>(GetDecl(Info.SemaDC));
DeclContext *LexicalDC = cast<DeclContext>(GetDecl(Info.LexicalDC));
Info.D->setDeclContextsImpl(SemaDC, LexicalDC, getContext());
}
// Perform any pending declaration updates.
while (!PendingUpdateRecords.empty()) {
auto Update = PendingUpdateRecords.pop_back_val();
ReadingKindTracker ReadingKind(Read_Decl, *this);
loadDeclUpdateRecords(Update);
}
}
// At this point, all update records for loaded decls are in place, so any
// fake class definitions should have become real.
assert(PendingFakeDefinitionData.empty() &&
"faked up a class definition but never saw the real one");
// If we deserialized any C++ or Objective-C class definitions, any
// Objective-C protocol definitions, or any redeclarable templates, make sure
// that all redeclarations point to the definitions. Note that this can only
// happen now, after the redeclaration chains have been fully wired.
for (Decl *D : PendingDefinitions) {
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
if (const TagType *TagT = dyn_cast<TagType>(TD->getTypeForDecl())) {
// Make sure that the TagType points at the definition.
const_cast<TagType*>(TagT)->decl = TD;
}
if (auto RD = dyn_cast<CXXRecordDecl>(D)) {
for (auto *R = getMostRecentExistingDecl(RD); R;
R = R->getPreviousDecl()) {
assert((R == D) ==
cast<CXXRecordDecl>(R)->isThisDeclarationADefinition() &&
"declaration thinks it's the definition but it isn't");
cast<CXXRecordDecl>(R)->DefinitionData = RD->DefinitionData;
}
}
continue;
}
if (auto ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// Make sure that the ObjCInterfaceType points at the definition.
const_cast<ObjCInterfaceType *>(cast<ObjCInterfaceType>(ID->TypeForDecl))
->Decl = ID;
for (auto *R = getMostRecentExistingDecl(ID); R; R = R->getPreviousDecl())
cast<ObjCInterfaceDecl>(R)->Data = ID->Data;
continue;
}
if (auto PD = dyn_cast<ObjCProtocolDecl>(D)) {
for (auto *R = getMostRecentExistingDecl(PD); R; R = R->getPreviousDecl())
cast<ObjCProtocolDecl>(R)->Data = PD->Data;
continue;
}
auto RTD = cast<RedeclarableTemplateDecl>(D)->getCanonicalDecl();
for (auto *R = getMostRecentExistingDecl(RTD); R; R = R->getPreviousDecl())
cast<RedeclarableTemplateDecl>(R)->Common = RTD->Common;
}
PendingDefinitions.clear();
// Load the bodies of any functions or methods we've encountered. We do
// this now (delayed) so that we can be sure that the declaration chains
// have been fully wired up (hasBody relies on this).
// FIXME: We shouldn't require complete redeclaration chains here.
for (PendingBodiesMap::iterator PB = PendingBodies.begin(),
PBEnd = PendingBodies.end();
PB != PBEnd; ++PB) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PB->first)) {
// FIXME: Check for =delete/=default?
// FIXME: Complain about ODR violations here?
const FunctionDecl *Defn = nullptr;
if (!getContext().getLangOpts().Modules || !FD->hasBody(Defn)) {
FD->setLazyBody(PB->second);
} else {
auto *NonConstDefn = const_cast<FunctionDecl*>(Defn);
mergeDefinitionVisibility(NonConstDefn, FD);
if (!FD->isLateTemplateParsed() &&
!NonConstDefn->isLateTemplateParsed() &&
FD->getODRHash() != NonConstDefn->getODRHash()) {
PendingFunctionOdrMergeFailures[FD].push_back(NonConstDefn);
}
}
continue;
}
ObjCMethodDecl *MD = cast<ObjCMethodDecl>(PB->first);
if (!getContext().getLangOpts().Modules || !MD->hasBody())
MD->setLazyBody(PB->second);
}
PendingBodies.clear();
// Do some cleanup.
for (auto *ND : PendingMergedDefinitionsToDeduplicate)
getContext().deduplicateMergedDefinitonsFor(ND);
PendingMergedDefinitionsToDeduplicate.clear();
}
void ASTReader::diagnoseOdrViolations() {
if (PendingOdrMergeFailures.empty() && PendingOdrMergeChecks.empty() &&
PendingFunctionOdrMergeFailures.empty())
return;
// Trigger the import of the full definition of each class that had any
// odr-merging problems, so we can produce better diagnostics for them.
// These updates may in turn find and diagnose some ODR failures, so take
// ownership of the set first.
auto OdrMergeFailures = std::move(PendingOdrMergeFailures);
PendingOdrMergeFailures.clear();
for (auto &Merge : OdrMergeFailures) {
Merge.first->buildLookup();
Merge.first->decls_begin();
Merge.first->bases_begin();
Merge.first->vbases_begin();
for (auto &RecordPair : Merge.second) {
auto *RD = RecordPair.first;
RD->decls_begin();
RD->bases_begin();
RD->vbases_begin();
}
}
// Trigger the import of functions.
auto FunctionOdrMergeFailures = std::move(PendingFunctionOdrMergeFailures);
PendingFunctionOdrMergeFailures.clear();
for (auto &Merge : FunctionOdrMergeFailures) {
Merge.first->buildLookup();
Merge.first->decls_begin();
Merge.first->getBody();
for (auto &FD : Merge.second) {
FD->buildLookup();
FD->decls_begin();
FD->getBody();
}
}
// For each declaration from a merged context, check that the canonical
// definition of that context also contains a declaration of the same
// entity.
//
// Caution: this loop does things that might invalidate iterators into
// PendingOdrMergeChecks. Don't turn this into a range-based for loop!
while (!PendingOdrMergeChecks.empty()) {
NamedDecl *D = PendingOdrMergeChecks.pop_back_val();
// FIXME: Skip over implicit declarations for now. This matters for things
// like implicitly-declared special member functions. This isn't entirely
// correct; we can end up with multiple unmerged declarations of the same
// implicit entity.
if (D->isImplicit())
continue;
DeclContext *CanonDef = D->getDeclContext();
bool Found = false;
const Decl *DCanon = D->getCanonicalDecl();
for (auto RI : D->redecls()) {
if (RI->getLexicalDeclContext() == CanonDef) {
Found = true;
break;
}
}
if (Found)
continue;
// Quick check failed, time to do the slow thing. Note, we can't just
// look up the name of D in CanonDef here, because the member that is
// in CanonDef might not be found by name lookup (it might have been
// replaced by a more recent declaration in the lookup table), and we
// can't necessarily find it in the redeclaration chain because it might
// be merely mergeable, not redeclarable.
llvm::SmallVector<const NamedDecl*, 4> Candidates;
for (auto *CanonMember : CanonDef->decls()) {
if (CanonMember->getCanonicalDecl() == DCanon) {
// This can happen if the declaration is merely mergeable and not
// actually redeclarable (we looked for redeclarations earlier).
//
// FIXME: We should be able to detect this more efficiently, without
// pulling in all of the members of CanonDef.
Found = true;
break;
}
if (auto *ND = dyn_cast<NamedDecl>(CanonMember))
if (ND->getDeclName() == D->getDeclName())
Candidates.push_back(ND);
}
if (!Found) {
// The AST doesn't like TagDecls becoming invalid after they've been
// completed. We only really need to mark FieldDecls as invalid here.
if (!isa<TagDecl>(D))
D->setInvalidDecl();
// Ensure we don't accidentally recursively enter deserialization while
// we're producing our diagnostic.
Deserializing RecursionGuard(this);
std::string CanonDefModule =
getOwningModuleNameForDiagnostic(cast<Decl>(CanonDef));
Diag(D->getLocation(), diag::err_module_odr_violation_missing_decl)
<< D << getOwningModuleNameForDiagnostic(D)
<< CanonDef << CanonDefModule.empty() << CanonDefModule;
if (Candidates.empty())
Diag(cast<Decl>(CanonDef)->getLocation(),
diag::note_module_odr_violation_no_possible_decls) << D;
else {
for (unsigned I = 0, N = Candidates.size(); I != N; ++I)
Diag(Candidates[I]->getLocation(),
diag::note_module_odr_violation_possible_decl)
<< Candidates[I];
}
DiagnosedOdrMergeFailures.insert(CanonDef);
}
}
if (OdrMergeFailures.empty() && FunctionOdrMergeFailures.empty())
return;
// Ensure we don't accidentally recursively enter deserialization while
// we're producing our diagnostics.
Deserializing RecursionGuard(this);
// Common code for hashing helpers.
ODRHash Hash;
auto ComputeQualTypeODRHash = [&Hash](QualType Ty) {
Hash.clear();
Hash.AddQualType(Ty);
return Hash.CalculateHash();
};
auto ComputeODRHash = [&Hash](const Stmt *S) {
assert(S);
Hash.clear();
Hash.AddStmt(S);
return Hash.CalculateHash();
};
auto ComputeSubDeclODRHash = [&Hash](const Decl *D) {
assert(D);
Hash.clear();
Hash.AddSubDecl(D);
return Hash.CalculateHash();
};
auto ComputeTemplateArgumentODRHash = [&Hash](const TemplateArgument &TA) {
Hash.clear();
Hash.AddTemplateArgument(TA);
return Hash.CalculateHash();
};
auto ComputeTemplateParameterListODRHash =
[&Hash](const TemplateParameterList *TPL) {
assert(TPL);
Hash.clear();
Hash.AddTemplateParameterList(TPL);
return Hash.CalculateHash();
};
// Issue any pending ODR-failure diagnostics.
for (auto &Merge : OdrMergeFailures) {
// If we've already pointed out a specific problem with this class, don't
// bother issuing a general "something's different" diagnostic.
if (!DiagnosedOdrMergeFailures.insert(Merge.first).second)
continue;
bool Diagnosed = false;
CXXRecordDecl *FirstRecord = Merge.first;
std::string FirstModule = getOwningModuleNameForDiagnostic(FirstRecord);
for (auto &RecordPair : Merge.second) {
CXXRecordDecl *SecondRecord = RecordPair.first;
// Multiple different declarations got merged together; tell the user
// where they came from.
if (FirstRecord == SecondRecord)
continue;
std::string SecondModule = getOwningModuleNameForDiagnostic(SecondRecord);
auto *FirstDD = FirstRecord->DefinitionData;
auto *SecondDD = RecordPair.second;
assert(FirstDD && SecondDD && "Definitions without DefinitionData");
// Diagnostics from DefinitionData are emitted here.
if (FirstDD != SecondDD) {
enum ODRDefinitionDataDifference {
NumBases,
NumVBases,
BaseType,
BaseVirtual,
BaseAccess,
};
auto ODRDiagError = [FirstRecord, &FirstModule,
this](SourceLocation Loc, SourceRange Range,
ODRDefinitionDataDifference DiffType) {
return Diag(Loc, diag::err_module_odr_violation_definition_data)
<< FirstRecord << FirstModule.empty() << FirstModule << Range
<< DiffType;
};
auto ODRDiagNote = [&SecondModule,
this](SourceLocation Loc, SourceRange Range,
ODRDefinitionDataDifference DiffType) {
return Diag(Loc, diag::note_module_odr_violation_definition_data)
<< SecondModule << Range << DiffType;
};
unsigned FirstNumBases = FirstDD->NumBases;
unsigned FirstNumVBases = FirstDD->NumVBases;
unsigned SecondNumBases = SecondDD->NumBases;
unsigned SecondNumVBases = SecondDD->NumVBases;
auto GetSourceRange = [](struct CXXRecordDecl::DefinitionData *DD) {
unsigned NumBases = DD->NumBases;
if (NumBases == 0) return SourceRange();
auto bases = DD->bases();
return SourceRange(bases[0].getLocStart(),
bases[NumBases - 1].getLocEnd());
};
if (FirstNumBases != SecondNumBases) {
ODRDiagError(FirstRecord->getLocation(), GetSourceRange(FirstDD),
NumBases)
<< FirstNumBases;
ODRDiagNote(SecondRecord->getLocation(), GetSourceRange(SecondDD),
NumBases)
<< SecondNumBases;
Diagnosed = true;
break;
}
if (FirstNumVBases != SecondNumVBases) {
ODRDiagError(FirstRecord->getLocation(), GetSourceRange(FirstDD),
NumVBases)
<< FirstNumVBases;
ODRDiagNote(SecondRecord->getLocation(), GetSourceRange(SecondDD),
NumVBases)
<< SecondNumVBases;
Diagnosed = true;
break;
}
auto FirstBases = FirstDD->bases();
auto SecondBases = SecondDD->bases();
unsigned i = 0;
for (i = 0; i < FirstNumBases; ++i) {
auto FirstBase = FirstBases[i];
auto SecondBase = SecondBases[i];
if (ComputeQualTypeODRHash(FirstBase.getType()) !=
ComputeQualTypeODRHash(SecondBase.getType())) {
ODRDiagError(FirstRecord->getLocation(), FirstBase.getSourceRange(),
BaseType)
<< (i + 1) << FirstBase.getType();
ODRDiagNote(SecondRecord->getLocation(),
SecondBase.getSourceRange(), BaseType)
<< (i + 1) << SecondBase.getType();
break;
}
if (FirstBase.isVirtual() != SecondBase.isVirtual()) {
ODRDiagError(FirstRecord->getLocation(), FirstBase.getSourceRange(),
BaseVirtual)
<< (i + 1) << FirstBase.isVirtual() << FirstBase.getType();
ODRDiagNote(SecondRecord->getLocation(),
SecondBase.getSourceRange(), BaseVirtual)
<< (i + 1) << SecondBase.isVirtual() << SecondBase.getType();
break;
}
if (FirstBase.getAccessSpecifierAsWritten() !=
SecondBase.getAccessSpecifierAsWritten()) {
ODRDiagError(FirstRecord->getLocation(), FirstBase.getSourceRange(),
BaseAccess)
<< (i + 1) << FirstBase.getType()
<< (int)FirstBase.getAccessSpecifierAsWritten();
ODRDiagNote(SecondRecord->getLocation(),
SecondBase.getSourceRange(), BaseAccess)
<< (i + 1) << SecondBase.getType()
<< (int)SecondBase.getAccessSpecifierAsWritten();
break;
}
}
if (i != FirstNumBases) {
Diagnosed = true;
break;
}
}
using DeclHashes = llvm::SmallVector<std::pair<Decl *, unsigned>, 4>;
const ClassTemplateDecl *FirstTemplate =
FirstRecord->getDescribedClassTemplate();
const ClassTemplateDecl *SecondTemplate =
SecondRecord->getDescribedClassTemplate();
assert(!FirstTemplate == !SecondTemplate &&
"Both pointers should be null or non-null");
enum ODRTemplateDifference {
ParamEmptyName,
ParamName,
ParamSingleDefaultArgument,
ParamDifferentDefaultArgument,
};
if (FirstTemplate && SecondTemplate) {
DeclHashes FirstTemplateHashes;
DeclHashes SecondTemplateHashes;
auto PopulateTemplateParameterHashs =
[&ComputeSubDeclODRHash](DeclHashes &Hashes,
const ClassTemplateDecl *TD) {
for (auto *D : TD->getTemplateParameters()->asArray()) {
Hashes.emplace_back(D, ComputeSubDeclODRHash(D));
}
};
PopulateTemplateParameterHashs(FirstTemplateHashes, FirstTemplate);
PopulateTemplateParameterHashs(SecondTemplateHashes, SecondTemplate);
assert(FirstTemplateHashes.size() == SecondTemplateHashes.size() &&
"Number of template parameters should be equal.");
auto FirstIt = FirstTemplateHashes.begin();
auto FirstEnd = FirstTemplateHashes.end();
auto SecondIt = SecondTemplateHashes.begin();
for (; FirstIt != FirstEnd; ++FirstIt, ++SecondIt) {
if (FirstIt->second == SecondIt->second)
continue;
auto ODRDiagError = [FirstRecord, &FirstModule,
this](SourceLocation Loc, SourceRange Range,
ODRTemplateDifference DiffType) {
return Diag(Loc, diag::err_module_odr_violation_template_parameter)
<< FirstRecord << FirstModule.empty() << FirstModule << Range
<< DiffType;
};
auto ODRDiagNote = [&SecondModule,
this](SourceLocation Loc, SourceRange Range,
ODRTemplateDifference DiffType) {
return Diag(Loc, diag::note_module_odr_violation_template_parameter)
<< SecondModule << Range << DiffType;
};
const NamedDecl* FirstDecl = cast<NamedDecl>(FirstIt->first);
const NamedDecl* SecondDecl = cast<NamedDecl>(SecondIt->first);
assert(FirstDecl->getKind() == SecondDecl->getKind() &&
"Parameter Decl's should be the same kind.");
DeclarationName FirstName = FirstDecl->getDeclName();
DeclarationName SecondName = SecondDecl->getDeclName();
if (FirstName != SecondName) {
const bool FirstNameEmpty =
FirstName.isIdentifier() && !FirstName.getAsIdentifierInfo();
const bool SecondNameEmpty =
SecondName.isIdentifier() && !SecondName.getAsIdentifierInfo();
assert((!FirstNameEmpty || !SecondNameEmpty) &&
"Both template parameters cannot be unnamed.");
ODRDiagError(FirstDecl->getLocation(), FirstDecl->getSourceRange(),
FirstNameEmpty ? ParamEmptyName : ParamName)
<< FirstName;
ODRDiagNote(SecondDecl->getLocation(), SecondDecl->getSourceRange(),
SecondNameEmpty ? ParamEmptyName : ParamName)
<< SecondName;
break;
}
switch (FirstDecl->getKind()) {
default:
llvm_unreachable("Invalid template parameter type.");
case Decl::TemplateTypeParm: {
const auto *FirstParam = cast<TemplateTypeParmDecl>(FirstDecl);
const auto *SecondParam = cast<TemplateTypeParmDecl>(SecondDecl);
const bool HasFirstDefaultArgument =
FirstParam->hasDefaultArgument() &&
!FirstParam->defaultArgumentWasInherited();
const bool HasSecondDefaultArgument =
SecondParam->hasDefaultArgument() &&
!SecondParam->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstDecl->getLocation(),
FirstDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasFirstDefaultArgument;
ODRDiagNote(SecondDecl->getLocation(),
SecondDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasSecondDefaultArgument;
break;
}
assert(HasFirstDefaultArgument && HasSecondDefaultArgument &&
"Expecting default arguments.");
ODRDiagError(FirstDecl->getLocation(), FirstDecl->getSourceRange(),
ParamDifferentDefaultArgument);
ODRDiagNote(SecondDecl->getLocation(), SecondDecl->getSourceRange(),
ParamDifferentDefaultArgument);
break;
}
case Decl::NonTypeTemplateParm: {
const auto *FirstParam = cast<NonTypeTemplateParmDecl>(FirstDecl);
const auto *SecondParam = cast<NonTypeTemplateParmDecl>(SecondDecl);
const bool HasFirstDefaultArgument =
FirstParam->hasDefaultArgument() &&
!FirstParam->defaultArgumentWasInherited();
const bool HasSecondDefaultArgument =
SecondParam->hasDefaultArgument() &&
!SecondParam->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstDecl->getLocation(),
FirstDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasFirstDefaultArgument;
ODRDiagNote(SecondDecl->getLocation(),
SecondDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasSecondDefaultArgument;
break;
}
assert(HasFirstDefaultArgument && HasSecondDefaultArgument &&
"Expecting default arguments.");
ODRDiagError(FirstDecl->getLocation(), FirstDecl->getSourceRange(),
ParamDifferentDefaultArgument);
ODRDiagNote(SecondDecl->getLocation(), SecondDecl->getSourceRange(),
ParamDifferentDefaultArgument);
break;
}
case Decl::TemplateTemplateParm: {
const auto *FirstParam = cast<TemplateTemplateParmDecl>(FirstDecl);
const auto *SecondParam =
cast<TemplateTemplateParmDecl>(SecondDecl);
const bool HasFirstDefaultArgument =
FirstParam->hasDefaultArgument() &&
!FirstParam->defaultArgumentWasInherited();
const bool HasSecondDefaultArgument =
SecondParam->hasDefaultArgument() &&
!SecondParam->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstDecl->getLocation(),
FirstDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasFirstDefaultArgument;
ODRDiagNote(SecondDecl->getLocation(),
SecondDecl->getSourceRange(),
ParamSingleDefaultArgument)
<< HasSecondDefaultArgument;
break;
}
assert(HasFirstDefaultArgument && HasSecondDefaultArgument &&
"Expecting default arguments.");
ODRDiagError(FirstDecl->getLocation(), FirstDecl->getSourceRange(),
ParamDifferentDefaultArgument);
ODRDiagNote(SecondDecl->getLocation(), SecondDecl->getSourceRange(),
ParamDifferentDefaultArgument);
break;
}
}
break;
}
if (FirstIt != FirstEnd) {
Diagnosed = true;
break;
}
}
DeclHashes FirstHashes;
DeclHashes SecondHashes;
auto PopulateHashes = [&ComputeSubDeclODRHash, FirstRecord](
DeclHashes &Hashes, CXXRecordDecl *Record) {
for (auto *D : Record->decls()) {
// Due to decl merging, the first CXXRecordDecl is the parent of
// Decls in both records.
if (!ODRHash::isWhitelistedDecl(D, FirstRecord))
continue;
Hashes.emplace_back(D, ComputeSubDeclODRHash(D));
}
};
PopulateHashes(FirstHashes, FirstRecord);
PopulateHashes(SecondHashes, SecondRecord);
// Used with err_module_odr_violation_mismatch_decl and
// note_module_odr_violation_mismatch_decl
// This list should be the same Decl's as in ODRHash::isWhiteListedDecl
enum {
EndOfClass,
PublicSpecifer,
PrivateSpecifer,
ProtectedSpecifer,
StaticAssert,
Field,
CXXMethod,
TypeAlias,
TypeDef,
Var,
Friend,
FunctionTemplate,
Other
} FirstDiffType = Other,
SecondDiffType = Other;
auto DifferenceSelector = [](Decl *D) {
assert(D && "valid Decl required");
switch (D->getKind()) {
default:
return Other;
case Decl::AccessSpec:
switch (D->getAccess()) {
case AS_public:
return PublicSpecifer;
case AS_private:
return PrivateSpecifer;
case AS_protected:
return ProtectedSpecifer;
case AS_none:
break;
}
llvm_unreachable("Invalid access specifier");
case Decl::StaticAssert:
return StaticAssert;
case Decl::Field:
return Field;
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
return CXXMethod;
case Decl::TypeAlias:
return TypeAlias;
case Decl::Typedef:
return TypeDef;
case Decl::Var:
return Var;
case Decl::Friend:
return Friend;
case Decl::FunctionTemplate:
return FunctionTemplate;
}
};
Decl *FirstDecl = nullptr;
Decl *SecondDecl = nullptr;
auto FirstIt = FirstHashes.begin();
auto SecondIt = SecondHashes.begin();
// If there is a diagnoseable difference, FirstDiffType and
// SecondDiffType will not be Other and FirstDecl and SecondDecl will be
// filled in if not EndOfClass.
while (FirstIt != FirstHashes.end() || SecondIt != SecondHashes.end()) {
if (FirstIt != FirstHashes.end() && SecondIt != SecondHashes.end() &&
FirstIt->second == SecondIt->second) {
++FirstIt;
++SecondIt;
continue;
}
FirstDecl = FirstIt == FirstHashes.end() ? nullptr : FirstIt->first;
SecondDecl = SecondIt == SecondHashes.end() ? nullptr : SecondIt->first;
FirstDiffType = FirstDecl ? DifferenceSelector(FirstDecl) : EndOfClass;
SecondDiffType =
SecondDecl ? DifferenceSelector(SecondDecl) : EndOfClass;
break;
}
if (FirstDiffType == Other || SecondDiffType == Other) {
// Reaching this point means an unexpected Decl was encountered
// or no difference was detected. This causes a generic error
// message to be emitted.
Diag(FirstRecord->getLocation(),
diag::err_module_odr_violation_different_definitions)
<< FirstRecord << FirstModule.empty() << FirstModule;
if (FirstDecl) {
Diag(FirstDecl->getLocation(), diag::note_first_module_difference)
<< FirstRecord << FirstDecl->getSourceRange();
}
Diag(SecondRecord->getLocation(),
diag::note_module_odr_violation_different_definitions)
<< SecondModule;
if (SecondDecl) {
Diag(SecondDecl->getLocation(), diag::note_second_module_difference)
<< SecondDecl->getSourceRange();
}
Diagnosed = true;
break;
}
if (FirstDiffType != SecondDiffType) {
SourceLocation FirstLoc;
SourceRange FirstRange;
if (FirstDiffType == EndOfClass) {
FirstLoc = FirstRecord->getBraceRange().getEnd();
} else {
FirstLoc = FirstIt->first->getLocation();
FirstRange = FirstIt->first->getSourceRange();
}
Diag(FirstLoc, diag::err_module_odr_violation_mismatch_decl)
<< FirstRecord << FirstModule.empty() << FirstModule << FirstRange
<< FirstDiffType;
SourceLocation SecondLoc;
SourceRange SecondRange;
if (SecondDiffType == EndOfClass) {
SecondLoc = SecondRecord->getBraceRange().getEnd();
} else {
SecondLoc = SecondDecl->getLocation();
SecondRange = SecondDecl->getSourceRange();
}
Diag(SecondLoc, diag::note_module_odr_violation_mismatch_decl)
<< SecondModule << SecondRange << SecondDiffType;
Diagnosed = true;
break;
}
assert(FirstDiffType == SecondDiffType);
// Used with err_module_odr_violation_mismatch_decl_diff and
// note_module_odr_violation_mismatch_decl_diff
enum ODRDeclDifference {
StaticAssertCondition,
StaticAssertMessage,
StaticAssertOnlyMessage,
FieldName,
FieldTypeName,
FieldSingleBitField,
FieldDifferentWidthBitField,
FieldSingleMutable,
FieldSingleInitializer,
FieldDifferentInitializers,
MethodName,
MethodDeleted,
MethodVirtual,
MethodStatic,
MethodVolatile,
MethodConst,
MethodInline,
MethodNumberParameters,
MethodParameterType,
MethodParameterName,
MethodParameterSingleDefaultArgument,
MethodParameterDifferentDefaultArgument,
MethodNoTemplateArguments,
MethodDifferentNumberTemplateArguments,
MethodDifferentTemplateArgument,
TypedefName,
TypedefType,
VarName,
VarType,
VarSingleInitializer,
VarDifferentInitializer,
VarConstexpr,
FriendTypeFunction,
FriendType,
FriendFunction,
FunctionTemplateDifferentNumberParameters,
FunctionTemplateParameterDifferentKind,
FunctionTemplateParameterName,
FunctionTemplateParameterSingleDefaultArgument,
FunctionTemplateParameterDifferentDefaultArgument,
FunctionTemplateParameterDifferentType,
FunctionTemplatePackParameter,
};
// These lambdas have the common portions of the ODR diagnostics. This
// has the same return as Diag(), so addition parameters can be passed
// in with operator<<
auto ODRDiagError = [FirstRecord, &FirstModule, this](
SourceLocation Loc, SourceRange Range, ODRDeclDifference DiffType) {
return Diag(Loc, diag::err_module_odr_violation_mismatch_decl_diff)
<< FirstRecord << FirstModule.empty() << FirstModule << Range
<< DiffType;
};
auto ODRDiagNote = [&SecondModule, this](
SourceLocation Loc, SourceRange Range, ODRDeclDifference DiffType) {
return Diag(Loc, diag::note_module_odr_violation_mismatch_decl_diff)
<< SecondModule << Range << DiffType;
};
switch (FirstDiffType) {
case Other:
case EndOfClass:
case PublicSpecifer:
case PrivateSpecifer:
case ProtectedSpecifer:
llvm_unreachable("Invalid diff type");
case StaticAssert: {
StaticAssertDecl *FirstSA = cast<StaticAssertDecl>(FirstDecl);
StaticAssertDecl *SecondSA = cast<StaticAssertDecl>(SecondDecl);
Expr *FirstExpr = FirstSA->getAssertExpr();
Expr *SecondExpr = SecondSA->getAssertExpr();
unsigned FirstODRHash = ComputeODRHash(FirstExpr);
unsigned SecondODRHash = ComputeODRHash(SecondExpr);
if (FirstODRHash != SecondODRHash) {
ODRDiagError(FirstExpr->getLocStart(), FirstExpr->getSourceRange(),
StaticAssertCondition);
ODRDiagNote(SecondExpr->getLocStart(),
SecondExpr->getSourceRange(), StaticAssertCondition);
Diagnosed = true;
break;
}
StringLiteral *FirstStr = FirstSA->getMessage();
StringLiteral *SecondStr = SecondSA->getMessage();
assert((FirstStr || SecondStr) && "Both messages cannot be empty");
if ((FirstStr && !SecondStr) || (!FirstStr && SecondStr)) {
SourceLocation FirstLoc, SecondLoc;
SourceRange FirstRange, SecondRange;
if (FirstStr) {
FirstLoc = FirstStr->getLocStart();
FirstRange = FirstStr->getSourceRange();
} else {
FirstLoc = FirstSA->getLocStart();
FirstRange = FirstSA->getSourceRange();
}
if (SecondStr) {
SecondLoc = SecondStr->getLocStart();
SecondRange = SecondStr->getSourceRange();
} else {
SecondLoc = SecondSA->getLocStart();
SecondRange = SecondSA->getSourceRange();
}
ODRDiagError(FirstLoc, FirstRange, StaticAssertOnlyMessage)
<< (FirstStr == nullptr);
ODRDiagNote(SecondLoc, SecondRange, StaticAssertOnlyMessage)
<< (SecondStr == nullptr);
Diagnosed = true;
break;
}
if (FirstStr && SecondStr &&
FirstStr->getString() != SecondStr->getString()) {
ODRDiagError(FirstStr->getLocStart(), FirstStr->getSourceRange(),
StaticAssertMessage);
ODRDiagNote(SecondStr->getLocStart(), SecondStr->getSourceRange(),
StaticAssertMessage);
Diagnosed = true;
break;
}
break;
}
case Field: {
FieldDecl *FirstField = cast<FieldDecl>(FirstDecl);
FieldDecl *SecondField = cast<FieldDecl>(SecondDecl);
IdentifierInfo *FirstII = FirstField->getIdentifier();
IdentifierInfo *SecondII = SecondField->getIdentifier();
if (FirstII->getName() != SecondII->getName()) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldName)
<< FirstII;
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldName)
<< SecondII;
Diagnosed = true;
break;
}
assert(getContext().hasSameType(FirstField->getType(),
SecondField->getType()));
QualType FirstType = FirstField->getType();
QualType SecondType = SecondField->getType();
if (ComputeQualTypeODRHash(FirstType) !=
ComputeQualTypeODRHash(SecondType)) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldTypeName)
<< FirstII << FirstType;
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldTypeName)
<< SecondII << SecondType;
Diagnosed = true;
break;
}
const bool IsFirstBitField = FirstField->isBitField();
const bool IsSecondBitField = SecondField->isBitField();
if (IsFirstBitField != IsSecondBitField) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldSingleBitField)
<< FirstII << IsFirstBitField;
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldSingleBitField)
<< SecondII << IsSecondBitField;
Diagnosed = true;
break;
}
if (IsFirstBitField && IsSecondBitField) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldDifferentWidthBitField)
<< FirstII << FirstField->getBitWidth()->getSourceRange();
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldDifferentWidthBitField)
<< SecondII << SecondField->getBitWidth()->getSourceRange();
Diagnosed = true;
break;
}
const bool IsFirstMutable = FirstField->isMutable();
const bool IsSecondMutable = SecondField->isMutable();
if (IsFirstMutable != IsSecondMutable) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldSingleMutable)
<< FirstII << IsFirstMutable;
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldSingleMutable)
<< SecondII << IsSecondMutable;
Diagnosed = true;
break;
}
const Expr *FirstInitializer = FirstField->getInClassInitializer();
const Expr *SecondInitializer = SecondField->getInClassInitializer();
if ((!FirstInitializer && SecondInitializer) ||
(FirstInitializer && !SecondInitializer)) {
ODRDiagError(FirstField->getLocation(), FirstField->getSourceRange(),
FieldSingleInitializer)
<< FirstII << (FirstInitializer != nullptr);
ODRDiagNote(SecondField->getLocation(), SecondField->getSourceRange(),
FieldSingleInitializer)
<< SecondII << (SecondInitializer != nullptr);
Diagnosed = true;
break;
}
if (FirstInitializer && SecondInitializer) {
unsigned FirstInitHash = ComputeODRHash(FirstInitializer);
unsigned SecondInitHash = ComputeODRHash(SecondInitializer);
if (FirstInitHash != SecondInitHash) {
ODRDiagError(FirstField->getLocation(),
FirstField->getSourceRange(),
FieldDifferentInitializers)
<< FirstII << FirstInitializer->getSourceRange();
ODRDiagNote(SecondField->getLocation(),
SecondField->getSourceRange(),
FieldDifferentInitializers)
<< SecondII << SecondInitializer->getSourceRange();
Diagnosed = true;
break;
}
}
break;
}
case CXXMethod: {
enum {
DiagMethod,
DiagConstructor,
DiagDestructor,
} FirstMethodType,
SecondMethodType;
auto GetMethodTypeForDiagnostics = [](const CXXMethodDecl* D) {
if (isa<CXXConstructorDecl>(D)) return DiagConstructor;
if (isa<CXXDestructorDecl>(D)) return DiagDestructor;
return DiagMethod;
};
const CXXMethodDecl *FirstMethod = cast<CXXMethodDecl>(FirstDecl);
const CXXMethodDecl *SecondMethod = cast<CXXMethodDecl>(SecondDecl);
FirstMethodType = GetMethodTypeForDiagnostics(FirstMethod);
SecondMethodType = GetMethodTypeForDiagnostics(SecondMethod);
auto FirstName = FirstMethod->getDeclName();
auto SecondName = SecondMethod->getDeclName();
if (FirstMethodType != SecondMethodType || FirstName != SecondName) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodName)
<< FirstMethodType << FirstName;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodName)
<< SecondMethodType << SecondName;
Diagnosed = true;
break;
}
const bool FirstDeleted = FirstMethod->isDeleted();
const bool SecondDeleted = SecondMethod->isDeleted();
if (FirstDeleted != SecondDeleted) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodDeleted)
<< FirstMethodType << FirstName << FirstDeleted;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodDeleted)
<< SecondMethodType << SecondName << SecondDeleted;
Diagnosed = true;
break;
}
const bool FirstVirtual = FirstMethod->isVirtualAsWritten();
const bool SecondVirtual = SecondMethod->isVirtualAsWritten();
const bool FirstPure = FirstMethod->isPure();
const bool SecondPure = SecondMethod->isPure();
if ((FirstVirtual || SecondVirtual) &&
(FirstVirtual != SecondVirtual || FirstPure != SecondPure)) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodVirtual)
<< FirstMethodType << FirstName << FirstPure << FirstVirtual;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodVirtual)
<< SecondMethodType << SecondName << SecondPure << SecondVirtual;
Diagnosed = true;
break;
}
// CXXMethodDecl::isStatic uses the canonical Decl. With Decl merging,
// FirstDecl is the canonical Decl of SecondDecl, so the storage
// class needs to be checked instead.
const auto FirstStorage = FirstMethod->getStorageClass();
const auto SecondStorage = SecondMethod->getStorageClass();
const bool FirstStatic = FirstStorage == SC_Static;
const bool SecondStatic = SecondStorage == SC_Static;
if (FirstStatic != SecondStatic) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodStatic)
<< FirstMethodType << FirstName << FirstStatic;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodStatic)
<< SecondMethodType << SecondName << SecondStatic;
Diagnosed = true;
break;
}
const bool FirstVolatile = FirstMethod->isVolatile();
const bool SecondVolatile = SecondMethod->isVolatile();
if (FirstVolatile != SecondVolatile) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodVolatile)
<< FirstMethodType << FirstName << FirstVolatile;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodVolatile)
<< SecondMethodType << SecondName << SecondVolatile;
Diagnosed = true;
break;
}
const bool FirstConst = FirstMethod->isConst();
const bool SecondConst = SecondMethod->isConst();
if (FirstConst != SecondConst) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodConst)
<< FirstMethodType << FirstName << FirstConst;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodConst)
<< SecondMethodType << SecondName << SecondConst;
Diagnosed = true;
break;
}
const bool FirstInline = FirstMethod->isInlineSpecified();
const bool SecondInline = SecondMethod->isInlineSpecified();
if (FirstInline != SecondInline) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodInline)
<< FirstMethodType << FirstName << FirstInline;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodInline)
<< SecondMethodType << SecondName << SecondInline;
Diagnosed = true;
break;
}
const unsigned FirstNumParameters = FirstMethod->param_size();
const unsigned SecondNumParameters = SecondMethod->param_size();
if (FirstNumParameters != SecondNumParameters) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodNumberParameters)
<< FirstMethodType << FirstName << FirstNumParameters;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodNumberParameters)
<< SecondMethodType << SecondName << SecondNumParameters;
Diagnosed = true;
break;
}
// Need this status boolean to know when break out of the switch.
bool ParameterMismatch = false;
for (unsigned I = 0; I < FirstNumParameters; ++I) {
const ParmVarDecl *FirstParam = FirstMethod->getParamDecl(I);
const ParmVarDecl *SecondParam = SecondMethod->getParamDecl(I);
QualType FirstParamType = FirstParam->getType();
QualType SecondParamType = SecondParam->getType();
if (FirstParamType != SecondParamType &&
ComputeQualTypeODRHash(FirstParamType) !=
ComputeQualTypeODRHash(SecondParamType)) {
if (const DecayedType *ParamDecayedType =
FirstParamType->getAs<DecayedType>()) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodParameterType)
<< FirstMethodType << FirstName << (I + 1) << FirstParamType
<< true << ParamDecayedType->getOriginalType();
} else {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodParameterType)
<< FirstMethodType << FirstName << (I + 1) << FirstParamType
<< false;
}
if (const DecayedType *ParamDecayedType =
SecondParamType->getAs<DecayedType>()) {
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodParameterType)
<< SecondMethodType << SecondName << (I + 1)
<< SecondParamType << true
<< ParamDecayedType->getOriginalType();
} else {
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodParameterType)
<< SecondMethodType << SecondName << (I + 1)
<< SecondParamType << false;
}
ParameterMismatch = true;
break;
}
DeclarationName FirstParamName = FirstParam->getDeclName();
DeclarationName SecondParamName = SecondParam->getDeclName();
if (FirstParamName != SecondParamName) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodParameterName)
<< FirstMethodType << FirstName << (I + 1) << FirstParamName;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodParameterName)
<< SecondMethodType << SecondName << (I + 1) << SecondParamName;
ParameterMismatch = true;
break;
}
const Expr *FirstInit = FirstParam->getInit();
const Expr *SecondInit = SecondParam->getInit();
if ((FirstInit == nullptr) != (SecondInit == nullptr)) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(),
MethodParameterSingleDefaultArgument)
<< FirstMethodType << FirstName << (I + 1)
<< (FirstInit == nullptr)
<< (FirstInit ? FirstInit->getSourceRange() : SourceRange());
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(),
MethodParameterSingleDefaultArgument)
<< SecondMethodType << SecondName << (I + 1)
<< (SecondInit == nullptr)
<< (SecondInit ? SecondInit->getSourceRange() : SourceRange());
ParameterMismatch = true;
break;
}
if (FirstInit && SecondInit &&
ComputeODRHash(FirstInit) != ComputeODRHash(SecondInit)) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(),
MethodParameterDifferentDefaultArgument)
<< FirstMethodType << FirstName << (I + 1)
<< FirstInit->getSourceRange();
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(),
MethodParameterDifferentDefaultArgument)
<< SecondMethodType << SecondName << (I + 1)
<< SecondInit->getSourceRange();
ParameterMismatch = true;
break;
}
}
if (ParameterMismatch) {
Diagnosed = true;
break;
}
const auto *FirstTemplateArgs =
FirstMethod->getTemplateSpecializationArgs();
const auto *SecondTemplateArgs =
SecondMethod->getTemplateSpecializationArgs();
if ((FirstTemplateArgs && !SecondTemplateArgs) ||
(!FirstTemplateArgs && SecondTemplateArgs)) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(), MethodNoTemplateArguments)
<< FirstMethodType << FirstName << (FirstTemplateArgs != nullptr);
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(), MethodNoTemplateArguments)
<< SecondMethodType << SecondName
<< (SecondTemplateArgs != nullptr);
Diagnosed = true;
break;
}
if (FirstTemplateArgs && SecondTemplateArgs) {
// Remove pack expansions from argument list.
auto ExpandTemplateArgumentList =
[](const TemplateArgumentList *TAL) {
llvm::SmallVector<const TemplateArgument *, 8> ExpandedList;
for (const TemplateArgument &TA : TAL->asArray()) {
if (TA.getKind() != TemplateArgument::Pack) {
ExpandedList.push_back(&TA);
continue;
}
for (const TemplateArgument &PackTA : TA.getPackAsArray()) {
ExpandedList.push_back(&PackTA);
}
}
return ExpandedList;
};
llvm::SmallVector<const TemplateArgument *, 8> FirstExpandedList =
ExpandTemplateArgumentList(FirstTemplateArgs);
llvm::SmallVector<const TemplateArgument *, 8> SecondExpandedList =
ExpandTemplateArgumentList(SecondTemplateArgs);
if (FirstExpandedList.size() != SecondExpandedList.size()) {
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(),
MethodDifferentNumberTemplateArguments)
<< FirstMethodType << FirstName
<< (unsigned)FirstExpandedList.size();
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(),
MethodDifferentNumberTemplateArguments)
<< SecondMethodType << SecondName
<< (unsigned)SecondExpandedList.size();
Diagnosed = true;
break;
}
bool TemplateArgumentMismatch = false;
for (unsigned i = 0, e = FirstExpandedList.size(); i != e; ++i) {
const TemplateArgument &FirstTA = *FirstExpandedList[i],
&SecondTA = *SecondExpandedList[i];
if (ComputeTemplateArgumentODRHash(FirstTA) ==
ComputeTemplateArgumentODRHash(SecondTA)) {
continue;
}
ODRDiagError(FirstMethod->getLocation(),
FirstMethod->getSourceRange(),
MethodDifferentTemplateArgument)
<< FirstMethodType << FirstName << FirstTA << i + 1;
ODRDiagNote(SecondMethod->getLocation(),
SecondMethod->getSourceRange(),
MethodDifferentTemplateArgument)
<< SecondMethodType << SecondName << SecondTA << i + 1;
TemplateArgumentMismatch = true;
break;
}
if (TemplateArgumentMismatch) {
Diagnosed = true;
break;
}
}
break;
}
case TypeAlias:
case TypeDef: {
TypedefNameDecl *FirstTD = cast<TypedefNameDecl>(FirstDecl);
TypedefNameDecl *SecondTD = cast<TypedefNameDecl>(SecondDecl);
auto FirstName = FirstTD->getDeclName();
auto SecondName = SecondTD->getDeclName();
if (FirstName != SecondName) {
ODRDiagError(FirstTD->getLocation(), FirstTD->getSourceRange(),
TypedefName)
<< (FirstDiffType == TypeAlias) << FirstName;
ODRDiagNote(SecondTD->getLocation(), SecondTD->getSourceRange(),
TypedefName)
<< (FirstDiffType == TypeAlias) << SecondName;
Diagnosed = true;
break;
}
QualType FirstType = FirstTD->getUnderlyingType();
QualType SecondType = SecondTD->getUnderlyingType();
if (ComputeQualTypeODRHash(FirstType) !=
ComputeQualTypeODRHash(SecondType)) {
ODRDiagError(FirstTD->getLocation(), FirstTD->getSourceRange(),
TypedefType)
<< (FirstDiffType == TypeAlias) << FirstName << FirstType;
ODRDiagNote(SecondTD->getLocation(), SecondTD->getSourceRange(),
TypedefType)
<< (FirstDiffType == TypeAlias) << SecondName << SecondType;
Diagnosed = true;
break;
}
break;
}
case Var: {
VarDecl *FirstVD = cast<VarDecl>(FirstDecl);
VarDecl *SecondVD = cast<VarDecl>(SecondDecl);
auto FirstName = FirstVD->getDeclName();
auto SecondName = SecondVD->getDeclName();
if (FirstName != SecondName) {
ODRDiagError(FirstVD->getLocation(), FirstVD->getSourceRange(),
VarName)
<< FirstName;
ODRDiagNote(SecondVD->getLocation(), SecondVD->getSourceRange(),
VarName)
<< SecondName;
Diagnosed = true;
break;
}
QualType FirstType = FirstVD->getType();
QualType SecondType = SecondVD->getType();
if (ComputeQualTypeODRHash(FirstType) !=
ComputeQualTypeODRHash(SecondType)) {
ODRDiagError(FirstVD->getLocation(), FirstVD->getSourceRange(),
VarType)
<< FirstName << FirstType;
ODRDiagNote(SecondVD->getLocation(), SecondVD->getSourceRange(),
VarType)
<< SecondName << SecondType;
Diagnosed = true;
break;
}
const Expr *FirstInit = FirstVD->getInit();
const Expr *SecondInit = SecondVD->getInit();
if ((FirstInit == nullptr) != (SecondInit == nullptr)) {
ODRDiagError(FirstVD->getLocation(), FirstVD->getSourceRange(),
VarSingleInitializer)
<< FirstName << (FirstInit == nullptr)
<< (FirstInit ? FirstInit->getSourceRange(): SourceRange());
ODRDiagNote(SecondVD->getLocation(), SecondVD->getSourceRange(),
VarSingleInitializer)
<< SecondName << (SecondInit == nullptr)
<< (SecondInit ? SecondInit->getSourceRange() : SourceRange());
Diagnosed = true;
break;
}
if (FirstInit && SecondInit &&
ComputeODRHash(FirstInit) != ComputeODRHash(SecondInit)) {
ODRDiagError(FirstVD->getLocation(), FirstVD->getSourceRange(),
VarDifferentInitializer)
<< FirstName << FirstInit->getSourceRange();
ODRDiagNote(SecondVD->getLocation(), SecondVD->getSourceRange(),
VarDifferentInitializer)
<< SecondName << SecondInit->getSourceRange();
Diagnosed = true;
break;
}
const bool FirstIsConstexpr = FirstVD->isConstexpr();
const bool SecondIsConstexpr = SecondVD->isConstexpr();
if (FirstIsConstexpr != SecondIsConstexpr) {
ODRDiagError(FirstVD->getLocation(), FirstVD->getSourceRange(),
VarConstexpr)
<< FirstName << FirstIsConstexpr;
ODRDiagNote(SecondVD->getLocation(), SecondVD->getSourceRange(),
VarConstexpr)
<< SecondName << SecondIsConstexpr;
Diagnosed = true;
break;
}
break;
}
case Friend: {
FriendDecl *FirstFriend = cast<FriendDecl>(FirstDecl);
FriendDecl *SecondFriend = cast<FriendDecl>(SecondDecl);
NamedDecl *FirstND = FirstFriend->getFriendDecl();
NamedDecl *SecondND = SecondFriend->getFriendDecl();
TypeSourceInfo *FirstTSI = FirstFriend->getFriendType();
TypeSourceInfo *SecondTSI = SecondFriend->getFriendType();
if (FirstND && SecondND) {
ODRDiagError(FirstFriend->getFriendLoc(),
FirstFriend->getSourceRange(), FriendFunction)
<< FirstND;
ODRDiagNote(SecondFriend->getFriendLoc(),
SecondFriend->getSourceRange(), FriendFunction)
<< SecondND;
Diagnosed = true;
break;
}
if (FirstTSI && SecondTSI) {
QualType FirstFriendType = FirstTSI->getType();
QualType SecondFriendType = SecondTSI->getType();
assert(ComputeQualTypeODRHash(FirstFriendType) !=
ComputeQualTypeODRHash(SecondFriendType));
ODRDiagError(FirstFriend->getFriendLoc(),
FirstFriend->getSourceRange(), FriendType)
<< FirstFriendType;
ODRDiagNote(SecondFriend->getFriendLoc(),
SecondFriend->getSourceRange(), FriendType)
<< SecondFriendType;
Diagnosed = true;
break;
}
ODRDiagError(FirstFriend->getFriendLoc(), FirstFriend->getSourceRange(),
FriendTypeFunction)
<< (FirstTSI == nullptr);
ODRDiagNote(SecondFriend->getFriendLoc(),
SecondFriend->getSourceRange(), FriendTypeFunction)
<< (SecondTSI == nullptr);
Diagnosed = true;
break;
}
case FunctionTemplate: {
FunctionTemplateDecl *FirstTemplate =
cast<FunctionTemplateDecl>(FirstDecl);
FunctionTemplateDecl *SecondTemplate =
cast<FunctionTemplateDecl>(SecondDecl);
TemplateParameterList *FirstTPL =
FirstTemplate->getTemplateParameters();
TemplateParameterList *SecondTPL =
SecondTemplate->getTemplateParameters();
if (FirstTPL->size() != SecondTPL->size()) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateDifferentNumberParameters)
<< FirstTemplate << FirstTPL->size();
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateDifferentNumberParameters)
<< SecondTemplate << SecondTPL->size();
Diagnosed = true;
break;
}
bool ParameterMismatch = false;
for (unsigned i = 0, e = FirstTPL->size(); i != e; ++i) {
NamedDecl *FirstParam = FirstTPL->getParam(i);
NamedDecl *SecondParam = SecondTPL->getParam(i);
if (FirstParam->getKind() != SecondParam->getKind()) {
enum {
TemplateTypeParameter,
NonTypeTemplateParameter,
TemplateTemplateParameter,
};
auto GetParamType = [](NamedDecl *D) {
switch (D->getKind()) {
default:
llvm_unreachable("Unexpected template parameter type");
case Decl::TemplateTypeParm:
return TemplateTypeParameter;
case Decl::NonTypeTemplateParm:
return NonTypeTemplateParameter;
case Decl::TemplateTemplateParm:
return TemplateTemplateParameter;
}
};
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentKind)
<< FirstTemplate << (i + 1) << GetParamType(FirstParam);
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentKind)
<< SecondTemplate << (i + 1) << GetParamType(SecondParam);
ParameterMismatch = true;
break;
}
if (FirstParam->getName() != SecondParam->getName()) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterName)
<< FirstTemplate << (i + 1) << (bool)FirstParam->getIdentifier()
<< FirstParam;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterName)
<< SecondTemplate << (i + 1)
<< (bool)SecondParam->getIdentifier() << SecondParam;
ParameterMismatch = true;
break;
}
if (isa<TemplateTypeParmDecl>(FirstParam) &&
isa<TemplateTypeParmDecl>(SecondParam)) {
TemplateTypeParmDecl *FirstTTPD =
cast<TemplateTypeParmDecl>(FirstParam);
TemplateTypeParmDecl *SecondTTPD =
cast<TemplateTypeParmDecl>(SecondParam);
bool HasFirstDefaultArgument =
FirstTTPD->hasDefaultArgument() &&
!FirstTTPD->defaultArgumentWasInherited();
bool HasSecondDefaultArgument =
SecondTTPD->hasDefaultArgument() &&
!SecondTTPD->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< FirstTemplate << (i + 1) << HasFirstDefaultArgument;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< SecondTemplate << (i + 1) << HasSecondDefaultArgument;
ParameterMismatch = true;
break;
}
if (HasFirstDefaultArgument && HasSecondDefaultArgument) {
QualType FirstType = FirstTTPD->getDefaultArgument();
QualType SecondType = SecondTTPD->getDefaultArgument();
if (ComputeQualTypeODRHash(FirstType) !=
ComputeQualTypeODRHash(SecondType)) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< FirstTemplate << (i + 1) << FirstType;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< SecondTemplate << (i + 1) << SecondType;
ParameterMismatch = true;
break;
}
}
if (FirstTTPD->isParameterPack() !=
SecondTTPD->isParameterPack()) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< FirstTemplate << (i + 1) << FirstTTPD->isParameterPack();
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< SecondTemplate << (i + 1) << SecondTTPD->isParameterPack();
ParameterMismatch = true;
break;
}
}
if (isa<TemplateTemplateParmDecl>(FirstParam) &&
isa<TemplateTemplateParmDecl>(SecondParam)) {
TemplateTemplateParmDecl *FirstTTPD =
cast<TemplateTemplateParmDecl>(FirstParam);
TemplateTemplateParmDecl *SecondTTPD =
cast<TemplateTemplateParmDecl>(SecondParam);
TemplateParameterList *FirstTPL =
FirstTTPD->getTemplateParameters();
TemplateParameterList *SecondTPL =
SecondTTPD->getTemplateParameters();
if (ComputeTemplateParameterListODRHash(FirstTPL) !=
ComputeTemplateParameterListODRHash(SecondTPL)) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentType)
<< FirstTemplate << (i + 1);
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentType)
<< SecondTemplate << (i + 1);
ParameterMismatch = true;
break;
}
bool HasFirstDefaultArgument =
FirstTTPD->hasDefaultArgument() &&
!FirstTTPD->defaultArgumentWasInherited();
bool HasSecondDefaultArgument =
SecondTTPD->hasDefaultArgument() &&
!SecondTTPD->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< FirstTemplate << (i + 1) << HasFirstDefaultArgument;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< SecondTemplate << (i + 1) << HasSecondDefaultArgument;
ParameterMismatch = true;
break;
}
if (HasFirstDefaultArgument && HasSecondDefaultArgument) {
TemplateArgument FirstTA =
FirstTTPD->getDefaultArgument().getArgument();
TemplateArgument SecondTA =
SecondTTPD->getDefaultArgument().getArgument();
if (ComputeTemplateArgumentODRHash(FirstTA) !=
ComputeTemplateArgumentODRHash(SecondTA)) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< FirstTemplate << (i + 1) << FirstTA;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< SecondTemplate << (i + 1) << SecondTA;
ParameterMismatch = true;
break;
}
}
if (FirstTTPD->isParameterPack() !=
SecondTTPD->isParameterPack()) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< FirstTemplate << (i + 1) << FirstTTPD->isParameterPack();
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< SecondTemplate << (i + 1) << SecondTTPD->isParameterPack();
ParameterMismatch = true;
break;
}
}
if (isa<NonTypeTemplateParmDecl>(FirstParam) &&
isa<NonTypeTemplateParmDecl>(SecondParam)) {
NonTypeTemplateParmDecl *FirstNTTPD =
cast<NonTypeTemplateParmDecl>(FirstParam);
NonTypeTemplateParmDecl *SecondNTTPD =
cast<NonTypeTemplateParmDecl>(SecondParam);
QualType FirstType = FirstNTTPD->getType();
QualType SecondType = SecondNTTPD->getType();
if (ComputeQualTypeODRHash(FirstType) !=
ComputeQualTypeODRHash(SecondType)) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentType)
<< FirstTemplate << (i + 1);
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentType)
<< SecondTemplate << (i + 1);
ParameterMismatch = true;
break;
}
bool HasFirstDefaultArgument =
FirstNTTPD->hasDefaultArgument() &&
!FirstNTTPD->defaultArgumentWasInherited();
bool HasSecondDefaultArgument =
SecondNTTPD->hasDefaultArgument() &&
!SecondNTTPD->defaultArgumentWasInherited();
if (HasFirstDefaultArgument != HasSecondDefaultArgument) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< FirstTemplate << (i + 1) << HasFirstDefaultArgument;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterSingleDefaultArgument)
<< SecondTemplate << (i + 1) << HasSecondDefaultArgument;
ParameterMismatch = true;
break;
}
if (HasFirstDefaultArgument && HasSecondDefaultArgument) {
Expr *FirstDefaultArgument = FirstNTTPD->getDefaultArgument();
Expr *SecondDefaultArgument = SecondNTTPD->getDefaultArgument();
if (ComputeODRHash(FirstDefaultArgument) !=
ComputeODRHash(SecondDefaultArgument)) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< FirstTemplate << (i + 1) << FirstDefaultArgument;
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplateParameterDifferentDefaultArgument)
<< SecondTemplate << (i + 1) << SecondDefaultArgument;
ParameterMismatch = true;
break;
}
}
if (FirstNTTPD->isParameterPack() !=
SecondNTTPD->isParameterPack()) {
ODRDiagError(FirstTemplate->getLocation(),
FirstTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< FirstTemplate << (i + 1) << FirstNTTPD->isParameterPack();
ODRDiagNote(SecondTemplate->getLocation(),
SecondTemplate->getSourceRange(),
FunctionTemplatePackParameter)
<< SecondTemplate << (i + 1)
<< SecondNTTPD->isParameterPack();
ParameterMismatch = true;
break;
}
}
}
if (ParameterMismatch) {
Diagnosed = true;
break;
}
break;
}
}
if (Diagnosed)
continue;
Diag(FirstDecl->getLocation(),
diag::err_module_odr_violation_mismatch_decl_unknown)
<< FirstRecord << FirstModule.empty() << FirstModule << FirstDiffType
<< FirstDecl->getSourceRange();
Diag(SecondDecl->getLocation(),
diag::note_module_odr_violation_mismatch_decl_unknown)
<< SecondModule << FirstDiffType << SecondDecl->getSourceRange();
Diagnosed = true;
}
if (!Diagnosed) {
// All definitions are updates to the same declaration. This happens if a
// module instantiates the declaration of a class template specialization
// and two or more other modules instantiate its definition.
//
// FIXME: Indicate which modules had instantiations of this definition.
// FIXME: How can this even happen?
Diag(Merge.first->getLocation(),
diag::err_module_odr_violation_different_instantiations)
<< Merge.first;
}
}
// Issue ODR failures diagnostics for functions.
for (auto &Merge : FunctionOdrMergeFailures) {
enum ODRFunctionDifference {
ReturnType,
ParameterName,
ParameterType,
ParameterSingleDefaultArgument,
ParameterDifferentDefaultArgument,
FunctionBody,
};
FunctionDecl *FirstFunction = Merge.first;
std::string FirstModule = getOwningModuleNameForDiagnostic(FirstFunction);
bool Diagnosed = false;
for (auto &SecondFunction : Merge.second) {
if (FirstFunction == SecondFunction)
continue;
std::string SecondModule =
getOwningModuleNameForDiagnostic(SecondFunction);
auto ODRDiagError = [FirstFunction, &FirstModule,
this](SourceLocation Loc, SourceRange Range,
ODRFunctionDifference DiffType) {
return Diag(Loc, diag::err_module_odr_violation_function)
<< FirstFunction << FirstModule.empty() << FirstModule << Range
<< DiffType;
};
auto ODRDiagNote = [&SecondModule, this](SourceLocation Loc,
SourceRange Range,
ODRFunctionDifference DiffType) {
return Diag(Loc, diag::note_module_odr_violation_function)
<< SecondModule << Range << DiffType;
};
if (ComputeQualTypeODRHash(FirstFunction->getReturnType()) !=
ComputeQualTypeODRHash(SecondFunction->getReturnType())) {
ODRDiagError(FirstFunction->getReturnTypeSourceRange().getBegin(),
FirstFunction->getReturnTypeSourceRange(), ReturnType)
<< FirstFunction->getReturnType();
ODRDiagNote(SecondFunction->getReturnTypeSourceRange().getBegin(),
SecondFunction->getReturnTypeSourceRange(), ReturnType)
<< SecondFunction->getReturnType();
Diagnosed = true;
break;
}
assert(FirstFunction->param_size() == SecondFunction->param_size() &&
"Merged functions with different number of parameters");
auto ParamSize = FirstFunction->param_size();
bool ParameterMismatch = false;
for (unsigned I = 0; I < ParamSize; ++I) {
auto *FirstParam = FirstFunction->getParamDecl(I);
auto *SecondParam = SecondFunction->getParamDecl(I);
assert(getContext().hasSameType(FirstParam->getType(),
SecondParam->getType()) &&
"Merged function has different parameter types.");
if (FirstParam->getDeclName() != SecondParam->getDeclName()) {
ODRDiagError(FirstParam->getLocation(), FirstParam->getSourceRange(),
ParameterName)
<< I + 1 << FirstParam->getDeclName();
ODRDiagNote(SecondParam->getLocation(), SecondParam->getSourceRange(),
ParameterName)
<< I + 1 << SecondParam->getDeclName();
ParameterMismatch = true;
break;
};
QualType FirstParamType = FirstParam->getType();
QualType SecondParamType = SecondParam->getType();
if (FirstParamType != SecondParamType &&
ComputeQualTypeODRHash(FirstParamType) !=
ComputeQualTypeODRHash(SecondParamType)) {
if (const DecayedType *ParamDecayedType =
FirstParamType->getAs<DecayedType>()) {
ODRDiagError(FirstParam->getLocation(),
FirstParam->getSourceRange(), ParameterType)
<< (I + 1) << FirstParamType << true
<< ParamDecayedType->getOriginalType();
} else {
ODRDiagError(FirstParam->getLocation(),
FirstParam->getSourceRange(), ParameterType)
<< (I + 1) << FirstParamType << false;
}
if (const DecayedType *ParamDecayedType =
SecondParamType->getAs<DecayedType>()) {
ODRDiagNote(SecondParam->getLocation(),
SecondParam->getSourceRange(), ParameterType)
<< (I + 1) << SecondParamType << true
<< ParamDecayedType->getOriginalType();
} else {
ODRDiagNote(SecondParam->getLocation(),
SecondParam->getSourceRange(), ParameterType)
<< (I + 1) << SecondParamType << false;
}
ParameterMismatch = true;
break;
}
const Expr *FirstInit = FirstParam->getInit();
const Expr *SecondInit = SecondParam->getInit();
if ((FirstInit == nullptr) != (SecondInit == nullptr)) {
ODRDiagError(FirstParam->getLocation(), FirstParam->getSourceRange(),
ParameterSingleDefaultArgument)
<< (I + 1) << (FirstInit == nullptr)
<< (FirstInit ? FirstInit->getSourceRange() : SourceRange());
ODRDiagNote(SecondParam->getLocation(), SecondParam->getSourceRange(),
ParameterSingleDefaultArgument)
<< (I + 1) << (SecondInit == nullptr)
<< (SecondInit ? SecondInit->getSourceRange() : SourceRange());
ParameterMismatch = true;
break;
}
if (FirstInit && SecondInit &&
ComputeODRHash(FirstInit) != ComputeODRHash(SecondInit)) {
ODRDiagError(FirstParam->getLocation(), FirstParam->getSourceRange(),
ParameterDifferentDefaultArgument)
<< (I + 1) << FirstInit->getSourceRange();
ODRDiagNote(SecondParam->getLocation(), SecondParam->getSourceRange(),
ParameterDifferentDefaultArgument)
<< (I + 1) << SecondInit->getSourceRange();
ParameterMismatch = true;
break;
}
assert(ComputeSubDeclODRHash(FirstParam) ==
ComputeSubDeclODRHash(SecondParam) &&
"Undiagnosed parameter difference.");
}
if (ParameterMismatch) {
Diagnosed = true;
break;
}
// If no error has been generated before now, assume the problem is in
// the body and generate a message.
ODRDiagError(FirstFunction->getLocation(),
FirstFunction->getSourceRange(), FunctionBody);
ODRDiagNote(SecondFunction->getLocation(),
SecondFunction->getSourceRange(), FunctionBody);
Diagnosed = true;
break;
}
(void)Diagnosed;
assert(Diagnosed && "Unable to emit ODR diagnostic.");
}
}
void ASTReader::StartedDeserializing() {
if (++NumCurrentElementsDeserializing == 1 && ReadTimer.get())
ReadTimer->startTimer();
}
void ASTReader::FinishedDeserializing() {
assert(NumCurrentElementsDeserializing &&
"FinishedDeserializing not paired with StartedDeserializing");
if (NumCurrentElementsDeserializing == 1) {
// We decrease NumCurrentElementsDeserializing only after pending actions
// are finished, to avoid recursively re-calling finishPendingActions().
finishPendingActions();
}
--NumCurrentElementsDeserializing;
if (NumCurrentElementsDeserializing == 0) {
// Propagate exception specification updates along redeclaration chains.
while (!PendingExceptionSpecUpdates.empty()) {
auto Updates = std::move(PendingExceptionSpecUpdates);
PendingExceptionSpecUpdates.clear();
for (auto Update : Updates) {
ProcessingUpdatesRAIIObj ProcessingUpdates(*this);
auto *FPT = Update.second->getType()->castAs<FunctionProtoType>();
auto ESI = FPT->getExtProtoInfo().ExceptionSpec;
if (auto *Listener = getContext().getASTMutationListener())
Listener->ResolvedExceptionSpec(cast<FunctionDecl>(Update.second));
for (auto *Redecl : Update.second->redecls())
getContext().adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI);
}
}
if (ReadTimer)
ReadTimer->stopTimer();
diagnoseOdrViolations();
// We are not in recursive loading, so it's safe to pass the "interesting"
// decls to the consumer.
if (Consumer)
PassInterestingDeclsToConsumer();
}
}
void ASTReader::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
if (IdentifierInfo *II = Name.getAsIdentifierInfo()) {
// Remove any fake results before adding any real ones.
auto It = PendingFakeLookupResults.find(II);
if (It != PendingFakeLookupResults.end()) {
for (auto *ND : It->second)
SemaObj->IdResolver.RemoveDecl(ND);
// FIXME: this works around module+PCH performance issue.
// Rather than erase the result from the map, which is O(n), just clear
// the vector of NamedDecls.
It->second.clear();
}
}
if (SemaObj->IdResolver.tryAddTopLevelDecl(D, Name) && SemaObj->TUScope) {
SemaObj->TUScope->AddDecl(D);
} else if (SemaObj->TUScope) {
// Adding the decl to IdResolver may have failed because it was already in
// (even though it was not added in scope). If it is already in, make sure
// it gets in the scope as well.
if (std::find(SemaObj->IdResolver.begin(Name),
SemaObj->IdResolver.end(), D) != SemaObj->IdResolver.end())
SemaObj->TUScope->AddDecl(D);
}
}
ASTReader::ASTReader(Preprocessor &PP, ASTContext *Context,
const PCHContainerReader &PCHContainerRdr,
ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
StringRef isysroot, bool DisableValidation,
bool AllowASTWithCompilerErrors,
bool AllowConfigurationMismatch, bool ValidateSystemInputs,
bool UseGlobalIndex,
std::unique_ptr<llvm::Timer> ReadTimer)
: Listener(DisableValidation
? cast<ASTReaderListener>(new SimpleASTReaderListener(PP))
: cast<ASTReaderListener>(new PCHValidator(PP, *this))),
SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()),
PCHContainerRdr(PCHContainerRdr), Diags(PP.getDiagnostics()), PP(PP),
ContextObj(Context),
ModuleMgr(PP.getFileManager(), PP.getPCMCache(), PCHContainerRdr,
PP.getHeaderSearchInfo()),
PCMCache(PP.getPCMCache()), DummyIdResolver(PP),
ReadTimer(std::move(ReadTimer)), isysroot(isysroot),
DisableValidation(DisableValidation),
AllowASTWithCompilerErrors(AllowASTWithCompilerErrors),
AllowConfigurationMismatch(AllowConfigurationMismatch),
ValidateSystemInputs(ValidateSystemInputs),
UseGlobalIndex(UseGlobalIndex), CurrSwitchCaseStmts(&SwitchCaseStmts) {
SourceMgr.setExternalSLocEntrySource(this);
for (const auto &Ext : Extensions) {
auto BlockName = Ext->getExtensionMetadata().BlockName;
auto Known = ModuleFileExtensions.find(BlockName);
if (Known != ModuleFileExtensions.end()) {
Diags.Report(diag::warn_duplicate_module_file_extension)
<< BlockName;
continue;
}
ModuleFileExtensions.insert({BlockName, Ext});
}
}
ASTReader::~ASTReader() {
if (OwnsDeserializationListener)
delete DeserializationListener;
}
IdentifierResolver &ASTReader::getIdResolver() {
return SemaObj ? SemaObj->IdResolver : DummyIdResolver;
}
unsigned ASTRecordReader::readRecord(llvm::BitstreamCursor &Cursor,
unsigned AbbrevID) {
Idx = 0;
Record.clear();
return Cursor.readRecord(AbbrevID, Record);
}